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4 PRISM, Princeton Institute for the Science and Technology of Materials,

Princeton University, Princeton, NJ 08540, USA
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The Hubbard model constitutes one of the most celebrated theoretical frameworks
of condensed-matter physics. It describes strongly correlated phases of interacting
quantum particles confined in lattice potentials [1, 2]. For bosons, the Hubbard Hamil-
tonian has been deeply scrutinised for short-range on-site interactions [3–6]. However,
accessing longer-range couplings has remained elusive experimentally [7]. This marks
the frontier towards the extended Bose-Hubbard Hamiltonian that allows insulating
ordered phases at fractional lattice fillings [8–12]. Here we implement this Hamil-
tonian by confining semiconductor dipolar excitons in an artificial two-dimensional
square lattice. Strong dipolar repulsions between nearest neighbouring lattice sites
then stabilise an insulating state at half filling. This characteristic feature of the ex-
tended Bose-Hubbard model exhibits signatures theoretically expected for a checker-
board spatial order. Our work thus highlights that dipolar excitons enable controlled
implementations of boson-like arrays with strong off-site interactions, in lattices with
programmable geometries and over 100 sites.

Introduction: The extended Bose-Hubbard (BH)
Hamiltonian is controlled by three main physical pa-
rameters – the strength of on-site interactions U , the
tunnelling strength t, and the interaction strength be-
tween nearest neighbouring lattice sites V [1]. While
the standard regime where V plays a negligible role
has been thoroughly studied [3–6], exploring the sit-
uation where V controls the many-body ground-state
continues to seriously challenge experimental research
in condensed-matter physics [7]. In this regime, theo-
retical works have predicted that long-range interac-
tions stabilise quantum phases spontaneously break-
ing the lattice symmetry [8–14], like density waves
manifesting checkerboard (CB) or stripe solids. Such
phases have been observed for fermionic systems [15–
17] while their implementation for bosons still consti-
tutes a long-lasting goal.

Theoretically, it is established that dipolar bosons
in a lattice provide an ideal platform to implement the
extended BH model [10–12]. Here, we experimentally
follow this path by confining semiconductor dipolar
excitons in an artificial two-dimensional square lat-
tice. We then evidence two insulating phases, at unity
and half-filling of the lattice sites. The former case
marks the Mott insulator (MI) regime where lattice
sites are all occupied by a single exciton [26]. On
the other hand, an incompressible region at half-filling
points towards an exciton density wave, which spon-
taneously breaks the lattice symmetry, favoured by
nearest-neighbour (NN) repulsions. For our physical
parameters mean-field and exact diagonalisation cal-
culations predict that this phase corresponds to a CB

solid. Importantly, we directly support this expecta-
tion, by measuring the thermal melting of both insu-
lating phases that quantitatively agree with theoreti-
cal predictions.

Dipolar excitons in a lattice: In recent years,
different techniques for engineering tunable lattice po-
tentials in excitonic systems have been developed, in-
cluding optical [18] or Moiré lattices [19–24]. As il-
lustrated in Fig.1.a, here we follow the approach de-
vised in Refs. [25–28] and polarise an array of gate
electrodes deposited at the surface of a field-effect de-
vice embedding a GaAs double quantum well. These
electrodes imprint a sinusoidally varying electric field,
perpendicular to the plane of the two quantum wells
where electrons (black balls) and holes (white balls)
are spatially separated to realise dipolar excitons (red
arrows) [29–32]. Excitonic dipoles being all aligned
with the applied electric field, dipolar excitons are
confined in an artificial lattice with 250 nm period
where they interact through a quasi-long-range repul-
sive dipolar potential. This provides a unique environ-
ment to emulate the extended Bose-Hubbard Hamil-
tonian.

In our experiments excitons are optically injected,
using a 100 ns long laser excitation repeated at 1 MHz.
The laser has a rectangular profile at the surface of our
device, with around (10x5) µm2 dimension, its aver-
age power P controlling the mean exciton density in
the lattice potential. We analyse stroboscopically the
photoluminescence (PL) emitted in a (3x2.5) µm2 area
at the center of the illuminated region, 300 ns after ter-
mination of the loading laser pulse and at bath tem-
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peratures T as low as 330 mK. Moreover, let us under-
line that a single measurement refers to an acquisition
lasting typically 30 to 60 seconds, thereby accumulat-
ing 3 to 6·107 experimental realisations (Methods).
In the following, we discuss experimental results ob-
tained by statistically analysing 10 measurements for
every experimental conditions.

The states accessible to dipolar excitons in the lat-
tice are directly visualised in the PL spectrum emitted
in the very dilute limit, i.e. when the mean density n̄ is
around 0.2 exciton per site. Indeed, Fig.1.d shows that
the spectrum then consists of two peaks separated by
150 µeV. This splitting matches the energy separa-
tion theoretically calculated between the two Wannier
states (WS) confined in the lattice (Fig.1.b), the lat-
tice depth being around 250 µeV (Methods). Thus, we
quantitatively reproduce the PL spectrum by adding
two lorentzian-like lines separated by 150 µeV, each
line profile being given by the spectral response of
our imaging spectrometer (with 150 µeV full-width-
at-half-maximum). In Fig.1d, we then only adjust the
two lines amplitudes that reflect the fraction of ex-
citons occupying the corresponding WS (orange and
green). On the other hand, in a denser regime, when
n̄ ∼1.3, Fig.1.e highlights that a second emission (blue
area) emerges. It occurs at too high energies to be
possibly attributed to lattice confined states. In fact,
it signals excitons occupying the continuum states ac-
cessible above the lattice potential (blue in Fig.1.b).
The energy splitting between this contribution and
the lattice one, around 500 µeV, provides an order of
magnitude of the dipolar interaction strength between
excitons.

Extended BH model: Following the approach
detailed in Ref. [26, 33], we computed the parame-
ters of the extended Bose-Hubbard Hamiltonian. We
assumed that the two WS (1 and 2 in Fig.1.b) cor-
respond to s and p orbitals respectively [34]. Then,
we deduced that on-site interactions have a strength
greatly exceeding the lattice depth, with for instance
U1,1 ∼ 1 meV for excitons populating WS 1 (Meth-
ods B). As a result, lattice sites cannot be doubly
occupied, since on-site interactions easily “expel” ex-
citons into the continuum. Moreover, the interaction
strength V between excitons in nearest neighbouring
lattice sites largely exceeds the tunnelling strength
t for both WS (Methods), as necessary to stabilise
symmetry-breaking phases [12].

Figure 1.c presents the phase diagram calculated in
the (µ, T ) parameter space, µ denoting the chemical
potential. The diagram was computed for an extended
two-band BH Hamiltonian in the mean-field approxi-
mation, combining measured and calculated values for
U , V and t for each WS (Methods B-D). The accu-
racy of this approach was confirmed by exact diag-
onalization (ED) of the full Hamiltonian. Figure 1.c
first shows that a MI is energetically favoured at unity
filling of the lattice sites (purple lobe). As reported
recently [26], this phase is marked by a minimised
compressibility and by excitons uniformly occupying
the same WS in every lattice site. Moreover, ED (ex-

tended data Fig.1) and mean-field theory strikingly
predict that, at half-filling of the lattice sites, V is suf-
ficiently large to stabilize a checkerboard (CB) solid
(orange lobe). For this incompressible density wave
the exciton distribution is such that NN interactions
are fully avoided. Finally, in Fig.1.c we recover that
MI and CB are surrounded by a normal fluid phase
(NF – gray region). Indeed, superfluid properties are
only accessible at temperatures below 20 – 30 mK for
n̄ ∼ 1.

Incompressible phases in the lattice: To detect
the buildup of insulating phases in the lattice, we mea-
sured the exciton compressibility κ. For that we mon-
itored statistically the maximum of the PL spectrum
(Amax). Precisely, we computed the average Amax and
standard deviation σ(Amax), which directly quantify
κ, since σ(Amax)/Amax is proportional to (κkBT )1/2

according to the fluctuation-dissipation theorem [4].
Figure 2.a presents the variation of σ(Amax)/Amax

at T = 330 mK, as a function of the average power
of the loading laser P . For two specific excitations,
P = 8 and 17 nW (center of orange and purple re-
gions), Fig.2.a shows that κ is strongly decreased com-
pared to the level of Poissonian fluctuations (gray re-
gion). Furthermore, for P = 17 nW we expect that
n̄ ∼ 1 (Methods). Noting that PL intensities differ
by around two-fold between P = 8 and P = 17 nW
(Fig.2.b-d), we deduce that n̄ = 1/2 for the former
excitation. Accordingly, Fig.2.a signals two insulating
phases, which extend over 100 lattice sites according
to spatially resolved PL intensity and intensity fluctu-
ations (extended data Fig.2). Importantly, we verified
that the emergence of the incompressible states at n̄ =
1 and 1/2 does not depend on the region of the lattice
explored experimentally (extended data Fig.3).

Figure 2.b and 2.d compare the PL spectra radiated
at n̄=1 and 1/2. We first note that for the latter case
(Fig.2.b) the maximum of the PL lies at the energy of
the 1st WS (see left vertical line), while for n̄=1 it does
not coincide with any WS energy (Fig.2.d). Instead,
the PL maximum lies at ∆ ∼100 µeV above the energy
of the 1st WS. Since we theoretically expect that for
n̄=1/2 and 1 excitons occupy the 1st WS and realize
CB and MI phases respectively, we deduce that ∆ =
4V1,1, V1,1 denoting the strength of NN interactions
for the 1st WS. Figure 2 thus yields V1,1 = 25 ± 5
µeV.

We have scrutinised the buildup of the two insulat-
ing phases by modelling the PL spectra emitted for
every average filling n̄. Fig.2.c then shows that for
n̄ ∼1/2 the fraction of excitons with no NN interac-
tion is maximised, reaching around 90% for P = 8
nW (Fig.2.d and extended data Fig.4), as expected
for a CB solid. Increasing P breaks this distribution,
and remarkably for n̄ ∼ 1 we observe a characteristic
feature of MIs, namely that the fraction of excitons in-
teracting with 4 NN is maximised suddenly. For P =
17 nW, it reaches around 90% of the exciton popu-
lation (Fig.2.b and extended data Fig.4), underlining
that excitons are spontaneously ordered with one ex-
citon per site.
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Thermal melting of insulating phases: Over-
all, Fig.2 provides evidence for the theoretically ex-
pected MI and CB phases at n̄=1 and n̄=1/2 respec-
tively. To further support this conclusion we measured
the temperature dependence of the excitons compress-
ibility. Hence, we study the thermal melting of the two
insulating phases and confront our observations with
the theoretical phase diagram, measuring cuts along
the horizontal axis in Fig.1.c (dotted lines).

For n̄ = 1, Fig.3.a shows that κ increases slowly to-
wards the level given by Poissonian fluctuations (gray
points). The latter is reached for T & 750 mK, in
agreement with the theoretical critical temperature
for the melting of the MI (vertical dashed line). In
fact, the solid lines in Fig.3.a highlight that our ob-
servations accurately follow mean-field predictions, for
both κ and the level of Poissonian fluctations (violet
and gray respectively). Hence, we confirm the calcu-
lated magnitudes of on-site interactions U , since these
govern the melting of MIs [36–38]. This melting is pos-
sibly scrutinised by modelling the PL profile. Indeed,
Fig.3.b-c signal that the fraction of excitons with no
NN (orange) increases by around 20% between 330
and 750 mK. At the same time, the population of
excitons occupying the 2nd WS or the continuum is
also enhanced. These combined variations manifest
that a significant fraction of empty sites is thermally
activated. We attribute their emergence to the very
strong on-site interaction strengths, so that thermal
excitations expel excitons from the lattice (Fig.1.b).
Finally, in the normal phase (T &750 mK) we note
that the various occupation fractions vary weakly.

On the other hand, Fig.3.d reveals that for n̄ = 1/2
κ increases steeply while T is enhanced. Below the
critical temperature calculated for the melting of the
CB phase, around 400 mK (vertical dashed line), κ is
sub-poissonian and then follows the (classical) varia-
tion given by Poissonian fluctuations (gray points).
Again, the solid lines in Fig.3.d signal that mean-
field calculations quantitatively follow our experimen-
tal observations for both κ and the Poissonian noise
level (orange and gray respectively). These predic-
tions only rely on the Bose-Hubbard parameters cal-
culated for the profile of our lattice potential, and by
setting V1,1 = 35 µeV. This value lies in good agree-
ment with the one deduced in Fig.2. Thereby we con-
firm that V1,1 is around 30 µeV, which is reasonable
compared to the magnitude calculated from the theo-
retical profile of the lattice potential (Methods).

As for the MI phase, we finally studied the PL spec-
trum to extract the thermal variation of the exciton
distribution for n̄ = 1/2. At 330 mK, Fig.3.e shows
that the PL is only due to the recombination of exci-
tons in the 1st WS with no NN interactions. Increas-
ing T we observe that the contribution at ∆ above
the lowest WS grows rapidly (middle panel of Fig.3.f).
This higher energy PL, dominant for T & 750 mK, re-
flects thermal excitations of the CB, so that excitons
tunnel between lattice sites and then interact with ex-
citons in neighbouring sites. Furthermore, the bottom
panel of Fig.3.f verifies that both the 2nd WS and the

continuum are weakly occupied, so that these states
play a negligible role.

Conclusions: Our studies evidence that dipolar
excitons can be used to controllably implement ex-
tended Bose-Hubbard Hamiltonians. On the one hand
this offers a new platform to map Ising models with
bosonic arrays [39], potentially across hundreds of lat-
tice sites. On the other hand, for the strength of
NN interactions extracted in our studies (V1,1 ∼ 30
µeV), we expect a lattice supersolid phase for exci-
ton temperatures around 10 mK, which is within ex-
perimental reach. For our current device this phase
would buildup in the lowest energy WS, but more ex-
otic configurations seem accessible in the parameter
space explorable with dipolar excitons. Particularly,
for shallower lattices CB and lattice supersolids can
theoretically form simultaneously in both s-like and p-
like orbitals. Such multi-component symmetry break-
ing collective states would provide a novel realm for
research of quantum matter.
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in moiré superlattices in van der Waals heterostruc-
tures”, Nature 567, 81-86 (2019)

[23] D.M. Kennes, M. Claassen, L. Xian, et al. ”Moiré het-
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the emissions of excitons populating the WS 1 and 2, orange (67% fraction) and green (33%) respectively. e
PL spectrum for n̄=1.3 exciton per site. The solid black line provides the profile reproduced (with R2=99%)
by setting 54% and 46 % occupations for the 1st and 2nd WS respectively (orange and green shaded regions).
The blue area marks the contribution from excitons in the continuum states above the lattice. Measurements
shown in d-e were performed at T=330 mK, error bars displaying Poissonian noise.
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Fig. 2: Incompressible phases at unity and half filling. a Fluctuations of the maximum of the PL
spectrum σ(Amax)/Amax as a function of the power P of the laser excitation. b PL spectrum measured for
P=8.2 nW, corresponding to n̄=1/2. The black line shows the modelled profile (R2=98%) assigning a 90%
fraction for excitons in the 1st WS (orange) and 10% in the 2nd WS (green). c Occupation fractions of excitons
occupying the 1st WS shifted in energy by ∆ (due to four NN interactions – black) and with no NN (gray),
as a function of P . d PL spectrum measured for P=17 nW, corresponding to n̄=1. The black line shows
the modelled profile (R2=99%) assigning a 90% fraction of excitons in the 1st WS with 4 NN (violet) and 10
% without NN (orange). Measurements were all carried out at T=330 mK. Error bars provide our statistical
confidence in a, the standard deviation in c and the poissonian noise in b-d.
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Fig. 3: Melting of insulating phases. a Temperature variation of the compressibility κ measured for
n̄=1 at the maximum of the PL spectrum (black points) and its theoretical variation deduced from mean-field
calculations (violet line). Gray points and the gray line display the measured and theoretical level of poissonian
fluctuations respectively. b PL spectra at T=330 and 750 mK for n̄=1. Black lines provide modelled profiles
(R2=98 and 97%) with orange and violet areas marking the contributions from excitons in the 1st WS, without
and with NN interactions. Excitons occupying the continuum (blue) and the 2nd WS (green) are also shown. c
Temperature dependence of the exciton fractions occupying the 1st WS without (orange) or with (violet) NN
interactions, together with the fraction of excitons occupying the continuum (blue) and the 2nd WS (green).
d-f Same experimental results as in a-c but for n̄=1/2. Error bars display our statistical precision in a-d, the
poissonian noise level in b-e and the standard deviation in c-f.
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Methods

A. Device and experimental procedure

The 250 nm period electrostatic lattice has been
realized using an heterostructure described in Ref.
[26]. It is based on two 8 nm wide GaAs quantum
wells, separated by a 4 nm AlGaAs barrier. The quan-
tum wells are positioned 200 nm below the surface of
the field-effect device where they are embedded, and
150 nm above a conductive layer that serves as electri-
cal ground. The lattice potential was engineered using
the procedure detailed in the Supplementary Informa-
tions of Ref. [26]. Then, we designed and realized gate
electrodes deposited at the surface of the heterostruc-
ture. These were polarised at around 1 V in our ex-
periments, yielding a periodically varying electric field
perpendicular to the quantum wells plane. This field
imprints the excitons lattice potential due to its in-
teraction with the excitons permanent electric dipole.
The latter has an amplitude around 12 e.nm, where e
denotes the electron charge, so that the lattice depth
is about 250 µeV for 1 V applied across our 350 nm
thick field-effect device.

In our studies electronic carriers are injected in the
lattice potential using a laser excitation at resonance
with the direct exciton absorption of each quantum
well. The laser excitation is set with a rectangular
profile at the surface of our device, with an area equal
to around (10x5) µm2. We then study spectrally the
PL reemitted by dipolar excitons in the (3x2.5) µm2

central region (Figs.2-3), the horizontal extension be-
ing set by the width of our spectrometer’s slit given
our optical magnification. This area corresponds then
to over 100 lattice sites. Moreover, PL spectra are
acquired with a 1800 lines/mm grating. The PL is
then sampled with 15 µeV precision so that the nar-
rowest profile possibly measured, e.g. a laser line,
is lorentzian-like with a 150 µeV full-width-at-half-
maximum. In Fig.1-3, we assign this profile to the
emission of the 1st and 2nd WS, as well as for the one
of the 1st WS shifted by ∆. The energy position of
each contribution is fixed throughout our analysis, so
that we only adjust their amplitudes. Finally, note
that the PL is acquired during a 100 ns long time
interval, starting 300 ns after extinction of the load-
ing laser pulse, while the excitons radiative lifetime
exceeds 700 ns [26]. Hence, we ensure that excitons
are thermalised at the bath temperature and that the
concentration of photo-injected excess carriers is min-
imised [40? ].

To calibrate the average exciton density, as in Ref.
[26], we monitored the temporal dynamics of the PL
energy following the laser excitation. For that we used
a region without lattice potential so that dipolar ex-
citons realize a homogeneous fluid. Comparing the
PL energy detected 300 ns after the laser pulse, to the
one at much longer delays, we deduce the magnitude
of repulsive dipolar interactions that translates into
the average exciton density. Thus, for P ∼ 33 nW we

observed that the energy shift is bound to 150 µeV,
so that the exciton density is about 6× 109 cm2. In
a 250 nm period lattice potential this translates into
n̄ ∼2 excitons per lattice site. Accordingly, we deduce
that n̄ ∼1 for P = 17 nW, since we verified that the
average exciton density varies linearly with the power
of the loading laser pulse.

B. Physical parameters of the extended
Bose-Hubbard Hamiltonian

At low filling (n̄ / 1), we observe experi-
mentally (e.g. Fig.3.e) that continuum states are
barely occupied, such that our system is theo-
retically well described by a two-band extended
BH model. In its most generic form, the cor-
responding Hamiltonian reads H =

∑
i hi +∑

〈i,j〉 hij , (see Ref. [12]), with the on-site terms

hi =
∑
α,β,δ,γ Uαβδγb

†
iαb
†
iβbiγbiδ −

∑
α µαniα, and

the terms between NN sites 〈i, j〉 given by hij =∑
α−tα(b†iαbjα + h.c.) +

∑
α,β,δ,γ Vαβδγb

†
iαb
†
jβbjγbiδ,

where Greek (Latin) indices represent band (site) de-

grees of freedom, biα (b†iα) are bosonic annihilation

(creation) operators, and niα = b†iαbiα. The dom-
inant interaction terms are density-density interac-
tions, U1,1 ≡ U1111, U2,2 ≡ U2222, and U1,2 ≡
U1221 + U1212 + U2121 + U2112 for the on-site inter-
actions, as well as V1,1 ≡ V1111, V2,2 ≡ V2222, and
V1,2 = V1221 + V2112 for NN interactions. Other in-
teraction channels which mix bands have also been
included within our calculations based on exact di-
agonalization (see Methods C), but are disregarded
within the mean-field description (see Methods D).

To evaluate the strength of the different on-site and
inter-site interactions, U and V respectively, we pro-
ceed as detailed in Refs. [26, 33]. Relying on the spa-
tial profiles of the Wannier wave-functions expected
for our lattice potential with around 250 µeV depth,
we estimate the magnitudes of U , V and t. For the
former, dominant terms are the density-density on-
site interactions, namely U1,1 ∼ 1 meV and U2,2 ∼
500 µeV for the WS 1 and 2, which both exceed the
excitons confinement depth in the lattice and can then
not be measured. Also, we find that U1,2 ∼ 200 µeV.
Density-density interactions are also the dominant
inter-site interactions, and for the first WS our cal-
culations yield V1111 ≡ V1,1 ∼ 15 µeV. This magni-
tude is two times smaller than the one deduced from
our experiments. Nevertheless, in Fig.2-3, within the
framework of the extended Bose-Hubbard model, we
attribute the energy difference between MI and CB
phases to dipolar interactions between excitons con-
fined in NN sites only. Thereby we neglect longer-
range contributions. These need to be included to
possibly compare the value calculated from the lattice
profile to the one extracted from our measurements.
The value calculated for V1,1 then has to be multiplied
by a Madelung constant, of around 6/4, and is thus
effectively increased from 15 to 22 µeV, in reasonable
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agreement with the measurements shown in Fig.2-3.
Moreover, let us note that the lattice potential possi-
bly confines excitons more weakly than expected. In
this case, the overlap between Wannier wave-functions
localized in neighbouring lattice sites would increase
rapidly, resulting in larger values of V1,1. Finally, for
the tunnelling strength between nearest neighbouring
lattice sites, our model calculations yield t1 ∼ 1 µeV
and t2 ∼ 7 µeV for the first and second WS respec-
tively.

C. Exact diagonalisation calculations

For the theoretical description we consider the ex-
tended two-band Bose-Hubbard Hamiltonian, rely-
ing on the theoretically expected parameters for tα,
Uαβγδ, and Vαβγδ, but with increased amplitude for
density-density inter-site interactions to match the ex-
perimentally measured value of V1,1 in the first WS.
Specifically, we use V1,1 = 35µeV, V2,2 = 250µeV and
V1,2 = 40µeV.

We obtain the full eigen-spectrum of the Hamilto-
nian by applying exact diagonalization (ED) on a su-
percell, spanned by L1 = (2, 2)a and L2 = (2,−2)a, a
denoting the lattice period, which contains 8 sites of
the square lattice. In the ED calculation, we fix the
particle number to 4 excitons (half filling). From the
eigenspectrum, we calculate thermal expectation val-
ues of observables of interest. A hallmark of CB order
is a peak of the structure factor at kCB ≡ (πa ,

π
a ). In-

deed, the structure factor in the first WS, defined as
S1(k) ∼

∑
ij(〈ni1nj,1〉− 〈ni1〉〈nj1〉)e−ik·Rij , with Rij

the lattice vector connecting sites i and j, is found

to exhibit a pronounced peak at kCB (extended data
Fig.1.a), with a value |S1(kCB)| which remains more
than twice as large as any other value of |S1(k)| up to
temperatures as large as T ∼ 400 mK (extended data
Fig.1.b).

D. Mean-field calculations

Larger system sizes are studied in the mean-field
approximation which reduces the Hamiltonian to a
sum of single-site terms, HMF =

∑
i(hi + hNN

i ), with

hNN
i =

∑
j [−

∑
α tα(b†iα〈bjα〉 − 〈b

†
iα〉〈bjα〉 + h.c.) +∑

α,β Vαββα(niα〈njβ〉 − 〈niα〉〈njβ〉]. The sum in j in-
cludes all nearest neighbouring sites of i, and for sim-
plicity we restrict ourselves to density-density inter-
actions. On every site, the 4 mean-field values 〈bi1〉,
〈bi2〉, 〈ni1〉, and 〈ni2〉 have to be chosen such that
they self-consistently match the corresponding ther-
mal expectation values obtained from the solution of
the mean-field Hamiltonian. In our numerical cal-
culation, the self-consistency loop sweeps through a
4x4 lattice. From the solution of the self-consistent
mean-field Hamiltonian, we calculate the phase dia-
gram, shown in Fig.1.c, and the compressibility κ,
shown in Fig.3. Fixing the chemical potential such
that the filling corresponds to n̄ = 1 or n̄ = 1/2,
the temperature-dependence of κ shown in Figs. 3.a
and 3.d match quantitatively the experimental data.
Moreover, extended data Fig.1.c plots the population
imbalance between sublattices whose non-zero values
theoretically characterize the CB phase.
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Extended Data Fig.1: Theoretical hallmarks of CB order. a Lowest band structure factor S1(k) at
T=100 mK obtained by exact diagonalisation of a 8 site square lattice (Betts cluster) with periodic boundary
conditions. It exhibits a dominant peak at quasi-momentum k = (π/a, π/a), which is a characteristic signature
of CB order. A second strongly suppressed quasi-peak lies at k = (0, 0) (due to finite size effects), corresponding
to a homogenous liquid without any density order. b |S1(π/a, π/a)| (black) and |S1(0, 0)| (blue) are plotted vs.
temperature T . Up to T . Tc = 420 mK, the structure factor signalling CB order remains at least twice as large
as the structure factor for a homogeneous liquid. c CB order parameter deduced from mean-field calculations
as a function of the chemical potential µ and temperature (T = 4, 125, 247, 389, 450 mK in blue, violet, black,
red and green respectively). The order parameter is given by the population difference |nA − nB | between two
sub-lattices, A and B, of the square lattice. Below around 410 mK |nA − nB | is significant manifesting CB
order.
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Extended Data Fig.2: Spatially resolved PL intensity and intensity fluctuations. a Spatial vari-
ations of the PL intensity Amax (black line) and σ(Amax)/Amax (violet bars) measured at T = 330 mK and
P = 17 nW, i.e. for the MI phase. Both Amax and σ(Amax)/Amax vary weakly in the 3 µm central region of
the laser excited region, evidencing that the MI phase is homogeneous across over 100 lattice sites. Outside
this region we note that σ(Amax)/Amax increases steeply while Amax drops, which signals that excitons realise
a normal fluid. b Same measurements obtained for P = 8.2 nW, i.e. for the CB phase. Results are extracted
from the experiments reported in Fig.2.
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Extended Data Fig.3: Exciton compressibility vs. average lattice filling. a Fluctuations of the
maximum of the PL intensity (σ(Amax)/Amax) as a function of the power P of the loading laser, in a different
region of our two-dimensional square lattice. As for Fig.2, experimental results are obtained by statistically
analysing a series of 10 measurements for every value of P . The laser excitation profile was set close to the one
for the experiments shown in Fig.2. Remarkably we recover that two insulating phases emerge for P = 7 and
14.4 nW, in good agreement with the findings discussed in the main text. Experiments were realised at T =
330 mK, error bars display statistical confidence while the level of Poissonian fluctuations is given by the gray
shaded region.



14

P
L 

 [c
ou

nt
s/

m
in

]

4.5

14.5

17.5

  [
co

un
ts

/m
in

]

-2

2

Energy [meV]
1534.6 1535 1535.4

0

3.3

43.3

23.3

39.3

P
L 

 [c
ou

nt
s/

m
in

]
Energy [meV]

1534.6 1535 1535.4

  [
co

un
ts

/m
in

]

-2

2

0

ba

Extended Data Fig.4: Residuals at n̄ = 1/2 and 1. a PL spectrum measured at n̄=1/2 (top) together
with the modelled profile (black line). The bottom panel displays the residuals between modelled and measured
profiles (black line), compared to the amplitude of poissonian fluctuations (gray area). b Same measurements
for n̄=1. Experimental results are taken from the data reported in Fig.2.b-d.
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