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Extended braking stiffness estimation based on a switched observer,

with an application to wheel-acceleration control∗

Tro. ng Biên Hoàng1, William Pasillas-Lépine1, Alexandre De Bernardinis2 and Mariana Netto3

Abstract—In the context of hybrid anti-lock brake systems
(ABS), a closed-loop wheel-acceleration controller based on the
observation of the extended braking stiffness (XBS) is provided.
Its objective is to improve the system’s robustness with respect to
changes in the environment (as changes in road conditions, brake
properties, etc.). The observer design is based on Burckhardt’s
tyre model, which provides a wheel acceleration dynamics that
is linear up to time-scaling. The XBS is one of the state variables
of this model. The paper’s main result is an observer that
estimates this unmeasured variable. When the road conditions
are known, a three-dimensional observer solves the problem. But,
for unknown road conditions, a more complex four-dimensional
observer must be used instead. In both cases, the observer’s
convergence is analysed using tools for switched linear systems
that ensure uniform exponential stability (provided that a dwell-
time condition is satisfied). Both experiments and simulations
confirm the convergence properties predicted by the theoretical
analysis.

Index Terms—Automotive control, Anti-lock brake systems,
Observer design, Switched linear systems, Lyapunov stability.

I. INTRODUCTION

The anti-lock brake system (ABS) is now a standard equip-

ment on most new passenger cars, in order to prevent wheel

lock-up and limit the risk of skidding. With this system, the

car maintains its steerability and reduces its braking distance,

even in the case of an emergency braking. Historically, the

first commercial ABS systems were designed using logic-

based switching controllers, in which the mode changes are

determined by the evolution of the wheel’s angular accelera-

tion (see, e.g., [20], [19], [18], [4]). The main force of these

controllers is that they avoid the use of the (unmeasured) wheel

slip and of its (unknown) optimal value. They are therefore

quite robust with respect to changes in tyre parameters and

road conditions. Their main drawback is, however, that they

were derived from purely heuristic arguments and are, as

a consequence, difficult to tune. Despite of this, the ABS

controllers present on today’s commercial vehicles mainly

belong to this category. More recently, mainly in an academic

context, several wheel slip controllers have been proposed in
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the literature (see, e.g., [34], [17], [30], [7], [28]). The main

interest of these controllers is that they apply a brake torque

that converges to a specific value, which avoids the typical

limit cycles generated by logic-switched algorithms. This leads

to shorter braking distances, at least on standard road condi-

tions. Unfortunately, these approaches assume (implicitly) that

the wheel slip is measured (or estimated) and that its optimal

value is known, two requirements that are often difficult to

meet. Even if such algorithms might not be robust enough

to be implemented on commercial ABS, they are still useful

for some specific applications [35], like the electronic stability

program (ESP).

In addition to hybrid and continuous approaches for ABS,

which both have their pros and cons [31], one can find

a different research line (see, e.g., [12], [25], [32]) based

on the concept of extended braking stiffness (XBS). The

XBS is the slope µ′(λ) of the tyre characteristic µ(λ). For

additional details, the reader is referred to Section II. In

standard conditions, there exists an (unknown) value of the

wheel slip λ∗ for which the curve µ reaches its maximum.

That is, such that µ′(λ∗) = 0. The main theoretical interest of

XBS for braking strategies is hence clear: unlike wheel slip,

that has an unknown optimal target value λ∗, the optimal value

of XBS is always the same (zero). An intuitive approach for

ABS control is thus to regulate the value of XBS around zero.

But, actually, the XBS appears also in other contexts related to

braking systems. A first example is wheel acceleration control.

In this context, the XBS can be seen as a disturbance that must

be compensated in order to increase either the controller’s

bandwidth or its delay margin (see, e.g., [8], [11], [15]). A

second (related) example is wheel slip control. Indeed, since

the wheel acceleration is closely related to the derivative of the

wheel slip (see Section II-B), the XBS appears also naturally

in this domain [28]. One should stress, however, that the XBS

cannot be measured directly using standard sensors. In order to

use it in a control algorithm one must therefore address first

its real-time estimation, which is the main objective of this

paper. Because of the diversity of control problems in which

the XBS appears, it would have been difficult to treat all of

them here. The choice of the authors was thus to emphasize

the contributions associated to the estimation problem, and to

consider the control issues only for illustration purposes.

The simplest approach to estimate XBS is probably to

consider this variable as a constant parameter, which allows the

use of online least squares methods [25]. Other approaches an-

alyze the tyre/carcass resonance in the frequency domain [32]

or use algebraic methods [36]. Solutions based on wheel slip

measurements are also available [33]. Nevertheless, to the

author’s knowledge, the idea of exploiting the nonlinear XBS

dynamics in a model-based observer has not been considered



before in the literature, at least in the case of the longitudinal

stiffness. The approach proposed in this paper is based on

a new model for the wheel acceleration dynamics. In this

model, the extended braking stiffness enters as one of the state

variables. When the road conditions are known this model

is three-dimensional. Otherwise a fourth order dynamics is

obtained. In both cases an observer can be constructed using

a copy of the system’s dynamics and adding a nonlinear

correction term that is proportional to the observation error.

After a suitable time-rescaling, the observer error is reduced to

a linear switched system that can be analyzed using standard

methods [13]. When the observer switches admit a strictly

positive dwell-time, the observer’s convergence is global,

uniform, and exponential. Compared to previous works, the

authors believe that the main interest of this method comes

from its simplicity and from the fact that the parameters of

the tyre model are not needed by the proposed algorithm.

In order to illustrate on a concrete example the interest of

this observer, the case of a simple academic ABS strategy [27]

is considered. In their standard form, this kind of algorithms

might fail to cycle correctly [1] when there are significant

changes in the environment (as changes in road conditions,

brake properties, etc.). In a recent work [11], it has been

shown that adding closed-loop wheel acceleration control

during the phases for which the brake pressure is modified

can compensate this lack of robustness. But, in order to reach

the bandwidth required by this kind of controllers, an XBS

estimate is necessary. The combination of such control laws

with the proposed XBS observer has been tested both on

simulations (with changes of road conditions) and experimen-

tally (with constant road conditions, imposed by the test-rig

characteristics).

This paper is organized as follows. First, the system’s dy-

namics is described in Section 2. Then, the main contributions

of the paper (the design and the stability analysis of two

switched observers) are presented in Sections 3 and 4, with

the corresponding experimental and simulation results. An

academic five-phase hybrid ABS and a closed-loop wheel-

acceleration control law are briefly described in Section 5, in

order to exhibit a potential application for these observers. Fi-

nally, concluding remarks and perspectives for future research

are presented in Section 6.

II. SYSTEM MODELLING

The basic dynamics of the wheel, which is central to this

study, can be analyzed using a single-wheel model (see, e.g.,

[24] and [25]). The main reason for using this model is that,

despite of its simplicity, all the basic phenomena related to

ABS control appear in it [11].

A. Wheel dynamics

The angular velocity ω of the wheel has the following

dynamics:

I
dω

dt
= −RFx + Tw, (1)

where I denotes the inertia of the wheel, R its radius, Fx

the longitudinal tyre force, and Tw the torque applied to the
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Fig. 1. Comparison of the tyre characteristic µ(λ) given by Burckhardt’s
model (5) and its approximation (18), on different road conditions. For clarity,
only the positive wheel slip part of the curve is shown (instead of the negative
part, which corresponds to braking). The parameters of the tyre models are
given in Table I (Section III).

wheel. The torque Tw = Te − Tb is composed of the engine

torque Te and the brake torque Tb. It is assumed that during

ABS braking the clutch is open and thus the engine torque is

neglected. In other words, Tb = γbPb, where Pb > 0 denotes

the brake pressure and γb > 0 the brake efficiency.

The longitudinal tyre force Fx is often modelled by the

relation

Fx = µ(λ)Fz , (2)

where Fz denotes the vertical load and

λ =
Rω − vx

vx
(3)

denotes the wheel slip [18]. The longitudinal speed of the

vehicle vx, which is considered as an external variable of

the model, is assumed to be strictly positive. In a braking

manoeuvre, this implies λ < 0 and Fx < 0. The tyre

characteristic µ(·) is a function that is both smooth and odd.

It satisfies µ(0) = 0 and µ′(0) > 0 (see Figure 1), where

µ′(λ) denotes the derivative of µ with respect to λ. Several

mathematical descriptions are available in order to describe

this curve. Two of them are considered in Sections III-A

and IV-A.

B. Wheel acceleration dynamics

The state variables of the model are

x1 = λ and x2 = R
dω

dt
− ax(t),

where ax(t) = dvx(t)/dt denotes the vehicle’s longitudinal

acceleration. The state x1 is the wheel slip. The state x2 is

the wheel acceleration offset, that is, the difference between

the acceleration of the wheel and that of the vehicle. These



variables evolve with the following dynamics

dx1

dt
=

1

vx(t)
(−ax(t)x1 + x2)

dx2

dt
= −

aµ′(x1)

vx(t)
(−ax(t)x1 + x2) +

R

I

dTw

dt
−

dax(t)

dt
,

where a = (R2/I)Fz and the extended braking stiffness µ′(.)
is defined as the derivative of the tyre characteristic µ(.) with

respect to λ.

During an ABS-controlled braking manoeuvre, the vehicle’s

acceleration ax(t) stays almost constant and close to the

maximal value a∗x allowed by the road’s conditions [11].

Moreover, the wheel slip λ remains relatively small. In such

conditions, the control and observer designs can be simplified

by considering that (−axx1 + x2) ≃ x2. This approximation

is exact only at constant speed, but it remains reasonable in

the case of ABS manoeuvres [11]. Its validity is checked a

posteriori in Sections III and IV, by simulating the proposed

observers on the original (non-simplified) model. This approx-

imation leads to a simpler dynamics

dx1

dt
=

1

vx(t)
x2

dx2

dt
= −

a

vx(t)
µ′(x1)x2 + bu,

(4)

where the control variable u = dPb(t)/dt is the derivative of

the brake pressure and b = −Rγb/I . Indeed, we have Tw =
−γbPb (see Section II-A), and thus (R/I)dTw/dt = b dPb/dt.

III. OBSERVER DESIGN (KNOWN ROAD CONDITIONS)

A. Tyre characteristic

In the literature, one can find several mathematical formulas

that have been used to describe the tyre characteristic µ(λ),
such as trigonometric functions in [26], second order rational

fractions in [18] and [27], and exponentials in [5]. This section

is based on Burckhardt’s [5] model

µ(λ) = c1(1− e−c2λ)− c3λ, (5)

where the coefficients ci are constants depending on the road

conditions, the tyre model, the tyre pressure, etc. Therefore,

for the sake of robustness, the ABS algorithms should be able

to handle the uncertainty associated with these coefficients. A

typical tyre characteristic associated to this model is illustrated

in Figure 1.

B. Extended braking stiffness dynamics

Burckhardt’s tyre model is particularly interesting when it

comes to estimate the value of the extended braking stiffness,

which cannot be measured directly. Indeed, a simple math-

ematical formula for µ′(λ) can be obtained by differentiat-

ing (5), with respect to λ. From this formula and from the

second order derivative of (5), one can establish a relation

between these variables:

µ′′(λ) + c2µ
′(λ) + c2c3 = 0. (6)

Now, defining the wheel acceleration offset z1 = x2, the

extended braking stiffness z2 = µ′(x1), and the unknown

Burckhardt’s model Approximate model
c1 c2 c3 θ0 θ1 θ2

Dry road 1.28 24 0.52 -0.53 25.22 7.2

Wet road 0.86 34 0.35 -0.36 8.86 24

Snow 0.28 50 0.05 -0.05 0.24 14

Table I - Tyre parameters for Burckhardt’s model.

product of parameters z3 = −c2c3 as new variables, com-

bining equations (4) and (6) gives

dz1
dt

=
−a

vx(t)
z1z2 + bu

dz2
dt

= (cz2 + z3)
z1

vx(t)
dz3
dt

= 0,

(7)

where c = −c2 is a constant that depends on road conditions.

This model can be seen as a generalization of the model

proposed in [25] and as a particular case of (4), associated to

Burckhardt’s tyre model. Somehow, considering the unknown

constant z3 as a new state variable (and not as a parameter) is

not optimal. Indeed, the adaptive observer approach [3] could

have been a more standard way to handle this problem. Nev-

ertheless, that approach has not been followed here because

(for the authors) it is not obvious how to combine it with

the switchings introduced in the next section. While, using a

representation of the form (7), the approach of [16] is directly

applicable.

On the one hand, an interesting quality of this model is that

the wheel slip (which cannot be measured) does not appear

explicitly in it as a state variable. One might argue that this

is not that interesting, since the velocity (which cannot be

measured neither) appears instead in the system’s dynamics.

Nevertheless, at least at high speeds, it is much easier to

estimate the vehicle’s velocity than to estimate wheel slip [10].

On the other hand, the main drawback of our model (7) is that

it is assumed that the value of c is known, which is true only

for a fixed type of road conditions (the more complex case of

unknown road conditions is considered later, in Section IV).

C. Observer Design

Since, unlike the wheel acceleration offset z1, the extended

braking stiffness z2 is not directly measurable, it must be

estimated using an observer. To that aim, one can start with a

copy of the original system and add some terms proportional

to the observation error, in order to ensure the convergence

of the trajectories between both systems. As it is shown

later, multiplying these terms by z1 simplifies considerably

the analysis. At the end, one obtains

dẑ1
dt

=
−a

vx
z1ẑ2 + bu+

k1(z1)

vx
z1(z1 − ẑ1)

dẑ2
dt

= (cẑ2 + ẑ3)
z1
vx

+
k2(z1)

vx
z1(z1 − ẑ1)

dẑ3
dt

=
k3(z1)

vx
z1(z1 − ẑ1),

(8)

where ẑi are the observer states.



In (8), the observer gains ki(z1), for 1 ≤ i ≤ 3, must depend

on the value of z1 in order to ensure the observer’s stability

independently of the sign of z1. The simplest choice might be

ki(z1) =

{
k+i if z1 > 0

k−i if z1 < 0.
(9)

Even if the gains ki(z1) are discontinuous, it must be stressed

that the observer gains ki(z1)zi are continuous, which ensures

the existence and uniqueness of solutions for (8) when z1(t)
is considered as an external input.

Consider the observer errors ei := zi − ẑi, for 1 ≤ i ≤ 3.

Subtracting equation (8) from equation (7) leads to

de

dt
=

z1
vx



−k1(z1) −a 0
−k2(z1) c 1
−k3(z1) 0 0


 e. (10)

Notice that if the right hand side of (10) is divided by z1/vx
then the observer error dynamics is transformed into a linear

system. This leads to the idea of changing the time-scaling.

Indeed, let

s(t) :=

∫ t

0

|z1(τ)|

vx(τ)
dτ, (11)

which ensures that dt/ds > 0, independently of the values

of z1. Since, for any function ϕ : R → R
n, one has

dϕ

ds
=

dϕ

dt

dt

ds
=

dϕ

dt

vx
|z1(t)|

. (12)

This implies

de

ds
=





A+e =



−k+1 −a 0

−k+2 c 1

−k+3 0 0


 e if z1 > 0

A−e =



k−1 a 0

k−2 −c −1

k−3 0 0


 e if z1 < 0,

(13)

which can be written using a more compact notation in the

form
de(s)

ds
= Aσ(s)e(s), (14)

where σ denotes a piecewise constant signal that selects, at

each instant, a matrix from the pair {A+, A−}.

D. Stability Conditions

It results from the previous section that the analysis of the

asymptotic convergence of the observer (8) can be derived

from the stability analysis of the error equation (14), which is

an autonomous switched linear system. It appears that numer-

ous stability results are available for that class of systems [21].

Most of them are based on classical Lyapunov-functions. But

some LaSalle-like results are also available [13], for which

the stability properties of the switched system are proved via

regularity assumptions on the set of switching signals.

Define the switching signal σ(t) = sign(z1(t)), and as-

sume that the solutions of (14) are such that e and σ are

piecewise differentiable and piecewise constant, respectively.

Following [22], define moreover the set S[τD], with τD > 0,

of switchings for which any two consecutive discontinuities

of σ are separated by no less than τD . The constant τD is

called the dwell-time. The origin of a switched system of the

form (14) is said to be uniformly exponentially stable if there

exists constants c0 and λ0 such that, for each t ≥ 0, we have

‖e(t)‖ ≤ c0 exp(−λ0t)‖e(0)‖. In this definition, the word

uniform refers to the fact that c0 and λ0 do not depend on

the switching signal [2].

Under a dwell-time condition, as a particular case of The-

orem 4 of [13], one can prove that a switched linear system

is uniformly exponentially stable if there exists a symmetric

positive definite matrix that satisfies simultaneously two non-

strict Lyapunov equations (more details on this point are given

in the Appendix). The aim of Theorem 1 below is to show

that, for the switched system (14), it is always possible to

find a pair of gains K+ and K− such that this LaSalle-like

condition is satisfied. To ensure the stability of (14), a first

natural condition is to impose the matrices A+ and A− to be

Hurwitz. The corresponding conditions on the observer gains

can be derived using Routh’s criterion, which gives

k+1 > c, k+2 < −
c

a
k+1 , and

−
(ck+1 + ak+2 )(c− k+1 )

a
< k+3 < 0;

(15)

and

k−1 < c, k−2 < −
c

a
k−1 , and

0 < k−3 < −
(ck−1 + ak−2 )(c− k−1 )

a
.

(16)

From these conditions, with the help of Theorem 4 of [13],

one can obtain the following result (proved in the Appendix,

at the end of the paper).

Theorem 1 Assume that the three following conditions are

satisfied

(i) The gain K+ =
(
k+1 k+2 k+3

)
satisfies (15).

(ii) The gain K− =
(
k−1 k−2 k−3

)
satisfies (16).

(iii) The gains K+ and K− satisfy

(c− k−1 )

ak−3
=

(c− k+1 )

ak+3
> 0 and

(ck+1 + ak+2 ) = (ck−1 + ak−2 ) < 0.

(17)

Then, the system (14) is uniformly exponentially stable, pro-

vided that the switching signal σ admits a strictly positive

dwell-time.

This result gives at least a certain degree of freedom: we

can chose any K+ that stabilizes the system. Once this choice

has been made, it imposes however an almost unique choice

for K− (in order to assign the same spectrum to A+ and A−).

We do not know, in general, if this constraint can be avoided,

but this issue is discussed in [16].

E. Experimental Results

The observer design proposed in this section has been

validated on data coming from the tyre-in-the-loop setup of



6.5 7 7.5
−100

−50

0

50

W
h
e
e
l 
a
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

 

 

Experimental data

Observer

6.5 7 7.5

0

20

40

60

Time [s]

B
ra

k
e
 p

re
s
s
u
re

 [
b
a
r]

6.5 7 7.5

0

20

40

B
ra

k
in

g
 s

ti
fn

e
s
s
 [

−
]

 

 

Experimental data

Observer

6.5 7 7.5

0

0.2

0.4

Time [s]

W
h

e
e

l 
s
lip

 [
−

]

Fig. 2. Comparison between experimental measurements and the estimated states given by the observer (8), during an ABS test [27]. The parameters of
the test-rig’s tyre characteristics are: c1 = −1.24, c2 = −34, and c3 = 0.65. The system’s parameters are: I = 1.2kg.m2, R = 0.3m, Fz = 2500N ,
and γb = 17.5N.m/bar. The speed of the drum is 65 km/h. The XBS estimated by the observer is compared to the theoretical value obtained from the
wheel slip and the derivative of the tyre characteristic.

TU Delft, acquired in the context of ABS research [11]. The

test-rig consists in a large steel drum on top of which the tyre

is rolling. The tyre is mounted on a wheel that is attached to

a rotating axle, which has a rigidly constrained height. The

axle is supported by two bearings on both sides of the wheel.

The bearing housings are connected to a fixed frame by means

of piezo-electric force transducers. A hydraulic disk brake is

mounted on one side of the axle. The pressure in the calliper

is locally controlled by an analog electronic circuit connected

to a servo-valve, in order to match the reference pressure. An

illustration of this test-rig can be seen on Section 9.4 of [26].

The setup has been used for several years, at TU Delft, for

tyre modelling and identification (see [26, Section 9.4] and

[37, Appendix A], and the references therein).

In order to satisfy the conditions imposed by Theorem 1,

for positive z1’s, the following observer gains are chosen

k+1 = c+ (β1 + 2β2)

k+2 = −(β2
2 + 2β1β2 + ck+1 )/a

k+3 = −β1β
2
2/a.

And, for negative z1’s,

k−1 = c− (β1 + 2β2)

k−2 = −(β2
2 + 2β1β2 + ck−1 )/a

k−3 = β1β
2
2/a,

where β1 and β2 are positive constants that assign the spectrum

of the error’s dynamics. More precisely, the error dynam-

ics (13) will always have two real eigenvalues −β1 (with

multiplicity 1) and −β2 (with multiplicity 2), independently

of the sign of z1. The interest of assigning the same spectrum

to A+ and A− is explained in [16].

The experimental results are shown on Figure 2, where it

can be seen that the states of the system and of the observer

remain close to each other. In this figure, the observer’s

variable ẑ1 is compared to the measure of z1, while the

variable ẑ2 is compared to an estimation µ′(x1) of the XBS

obtained directly from the measure of wheel slip. One can

observe in this figure a surprising phenomenon: the noise of

the observed variable ẑ2 is bigger when the wheel acceleration

is positive. A possible explanation for these oscillations might

be that the norm of K+ is bigger than that of K−, a constraint

imposed by Theorem 1.

This phenomenon reduces the accuracy of the estimation,

which is nevertheless good enough to detect whether the tyre

is in its stable or unstable region. The proposed observer has

however another weak point: it only works correctly when

the parameter c2 of Burckhardt’s model is known, at least

approximatively. The knowledge of this parameter is closely

related to the knowledge of road conditions, a problem that is

considered in the next section.

IV. OBSERVER DESIGN (UNKNOWN ROAD CONDITIONS)

In contrast to the simpler approach of Section III, it is now

assumed that the observer does not have any information on

the road conditions (and thus on the parameters of Burck-

hardt’s model). This new context imposes the use a more com-

plex four-dimensional observer, which can be considered as a

generalization of the previous three-dimensional observer (8).

A. Tyre characteristic

The main difficulty with Burckhardt’s model (5) is that its

parametrization is nonlinear. Recently, in [33], an alternative

parametrization of this model by exponentials has been pro-

posed (see also [6]). This kind of approximations can be traced

back up to the work of Prony [29] (see [14] for a modern

treatment). In this section, Burckhardt’s model is approximated

with a similar parametrization

µ(λ) = θ0λ+ θ1
ed1λ − 1

d1
+ θ2

ed2λ − 1

d2
, (18)
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Fig. 3. Simulation of a braking ABS scenario with changes of road conditions: The car runs on dry asphalt during three seconds and on wet asphalt afterwards.
In this figure, it can be seen that the XBS observer is highly perturbed by the swift road transition but that, once the transition is over, it converges again in
a fraction of a second towards the appropriate state.

defined for λ ≤ 0. The constants d1 and d2 must be chosen

in such a way that −c2 ∈ [d1, d2]. Since, for negative

wheel slip, the parameter c2 varies in the range [−50,−24],
one can take d1 = 22 and d2 = 52. The parameters of

Burckhardt’s model are shown in Table I. For different road

conditions, the coefficients θi can be identified using the

Least Squares method (see Table I). In Figure 1, the tyre

characteristics given by Burckhardt’s model (5) is compared

to its approximation (18).

B. Extended braking stiffness dynamics

Computing the first, second and third derivatives of the

approximate model (18), with respect to λ, one can see that

these derivatives satisfy the following relation

µ′′′(λ) = α0 + α1µ
′(λ) + α2µ

′′(λ), (19)

where α0 = d1d2θ0, α1 = −d1d2, α2 = (d1 + d2).
Therefore, following the ideas of Section III, we take as state

variables z1 = x2, z2 = µ′(λ), z3 = µ′′(λ), and z4 = α0.

Now, combining equations (4) and (19) gives

dz1
dt

=
−a

vx(t)
z1z2 + bu(t)

dz2
dt

=
z1

vx(t)
z3

dz3
dt

=
z1

vx(t)
(α1z2 + α2z3 + z4)

dz4
dt

= 0,

(20)

where a and b are defined in Section II.

The most important property of this model is that the

parameters α1 and α2 do not depend on road conditions.

This leads to the possibility of observing the extended braking

stiffness, using neither the wheel slip nor the parameters that

describe the tyre characteristic. It should be stressed, however,

that this model is only valid for constant road conditions. In

the case of a change of road conditions (see, e.g., Figure 3), the

validity of the model fails temporarily, which might induce a

brief divergence between the system’s and the observer states.

C. Observer design

For system (20), an observer with an error dynamics that

is linearizable by a time-scaling can be constructed following

the same approach as in Section III. This leads to a switching

error dynamics (13), with

A+ =




−k+1 −a 0 0
−k+2 0 1 0
−k+3 α1 α2 1
−k+4 0 0 0




and

A− =




k−1 a 0 0
k−2 0 −1 0
k−3 −α1 −α2 −1
k−4 0 0 0


 .

Conditions for the stability of (14), in the case of these new

matrices A+ and A−, can be derived following the same

approach as for Theorem 1 (see the Appendix).

D. Simulation results

In test-rigs like those of TU Delft, changes of road con-

ditions are not possible. Nevertheless, numerical simulations

can still be used to assess the performance of the proposed

observer. This has been done considering the (non-simplified)

model of Section II and using the observer’s output to im-

plement the control law of Section V. In order to ensure the

observer’s stability, for positive z1’s, the following observer
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Fig. 4. Wheel acceleration tracking (during phases 1, 3, and 4) is achieved using the observer of Section IV and the control design of Section V. The car
runs on dry asphalt during three seconds, then on wet asphalt for one second, and finally on snow until the end of the simulation. When the road conditions
change, the brake pressure is reduced and follows the available tyre force potential.

gains are chosen:

k+1 = α2 + 2(β1 + β2)

k+2 = (−α1 − k+1 α2 − (β2
1 + β2

2 + 4β1β2))/a

k+3 = (−k+1 α1 + ak+2 α2 − 2β1β2(β1 + β2))/a

k+4 = −β2
1β

2
2/a.

And, for negative z1’s,

k−1 = α2 − 2(β1 + β2)

k−2 = (−α1 − k−1 α2 − (β2
1 + β2

2 + 4β1β2))/a

k−3 = (−k−1 α1 + ak−2 α2 + 2β1β2(β1 + β2))/a

k−4 = −β2
1β

2
2/a,

are positive constants that assign the spectrum of the er-

ror’s dynamics, which has two double real eigenvalues −β1

and −β2.

Figure 3 shows the obtained simulation results. The details

of the braking scenario are given in the figure’s caption. The

observer estimates accurately the values of the XBS, for differ-

ent road conditions. During transitions, (which last 25ms), the

estimated XBS values change abruptly. The observer cannot

give good estimations during these transitions. Nevertheless,

as soon as they are over, the observer error decreases in a

relatively short period of time that, of course, depends on the

choice of β1 and β2.

V. CONTROL DESIGN

A five-phase hybrid ABS algorithm [27] is described in

Figure 5. Each of the algorithm’s phases defines either a

constant or quickly changed brake pressure Pb(t) that is

applied to the brake. The switches between each phase are

triggered when the value of the wheel acceleration offset x2

crosses some predefined threshold. The main interest of such

hybrid approaches is that they do not use any information on

the unmeasured variable x1. Nevertheless, they are able to

keep the wheel slip in a small neighborhood of its optimal

value λ∗, for which the longitudinal tyre force is maximal

(with the aim of minimizing the braking distance), without

using explicitly the value of the optimal setpoint. The reader

can find in [27] more details about this five-phase hybrid ABS

algorithm.

When the algorithm of Figure 5 is tested on an experimental

setup [11], it might fail to cycle correctly as soon as there are

considerable changes in the environment. The main reason

behind this lack of robustness is that, during the different

phases, the wheel acceleration is controlled in open-loop, with

a brake pressure increase that is independent of the wheel’s

acceleration. This shortcoming can be overcome [11] by

controlling the wheel acceleration x2 in closed-loop (around

a predefined trajectory x∗

2), during the phases for which the

brake torque changes quickly.

In order to do this, define τ := t−t0, where t0 is the instant

at which a given phase begins. Consider the time T needed by

the reference trajectory x∗

2 to go from the previous threshold ǫi
to the next one ǫj . Ideally, the duration T should be as small

as possible but, due to the physical limitations of the brake

actuator, there exists a lower bound on the achievable T ’s.

If ṖM
b is defined as the maximum brake pressure derivative

that the actuator can deliver (in absolute value), then the choice

of the reference trajectory x∗

2 must guarantee that |Ṗ | ≤ ṖM
b .

Furthermore, in order to minimize the system’s sensitivity to

actuator delays, it is natural to require a zero derivative for x∗

2

at the beginning and at the end of each phase [11]. A possible

choice for a reference trajectory x∗

2 that goes from ǫi to ǫj is

therefore

x∗

2(τ) = a0 + a1τ + a2τ
2 + a3τ

3, (21)

where a0 = ǫi, a1 = 0, a2 = −3(ǫi − ǫj)/T
2, and a3 =

2(ǫi − ǫj)/T
3. By imposing, additionally, the constraint T ≥

(3/2b)|ǫi − ǫj |/Ṗ
M
b , one can ensure that the reference trajec-

tory respects the brake actuator’s limitations described above.



Now, define the tracking error ξ = x2 − x∗

2 and the control

law

u(t) =
1

b

(
a

vx
µ̂′(t)x2 +

dx∗

2(t)

dt
− αξ(t)

)
, (22)

where α > 0 is the control gain and µ̂′(t) is an estimation

of the extended braking stiffness µ′(x1(t)). In the absence of

estimation error, the tracking error converges exponentially to

zero, provided that the control gain α is taken big enough.

Observe, however, that the gain α is limited by the delay

margin of the system [15]. In this approach, the choice of

controlling only the variable x2 might be surprising. But

it appears that the stability of all other variables actually

comes from the fact that they are bounded functions of the

wheel slip x1, which remains bounded both for hybrid [11]

and continuous [28] control designs, provided that the wheel

acceleration offset x2 follows its reference.

In the simulation of Figure 4, the control uses the XBS

estimation given by the observer. Thanks to the observer

performance, the control law (22) ensures a good tracking

performance of the wheel acceleration x2 to its pre-defined

reference. As a consequence of the robustness added by the

closed-loop wheel acceleration control, the brake pressure is

automatically increased or decreased to match road conditions.

VI. CONCLUSION

In the context of anti-lock brake systems (ABS), this paper

presented a new approach to estimate the extended braking

stiffness. The first contribution of this work is a new nonlinear

wheel acceleration model in which the XBS enters as one

of the state variables. This model is obtained using either

Burckhardt’s model or its linearly parametrized approximation.

The second contribution is the design of two stable XBS

observers. When the road conditions are known, a three-

dimensional observer solves the problem. But, for unknown

road conditions, a more complex four-dimensional observer

should be used instead. In both cases, the stability of the ob-

servers is proved via time-rescaling and LaSalle-like theorems

for linear switched systems.

The three-dimensional observer has been tested on ex-

perimental data coming from TU-Delft’s test-rig [11]. In

such tests, the parameters associated to the mounted tyre are

known. The experimental results show the effectiveness of this

observer. The four-dimensional observer has been tested in

simulations in a scenario that includes unkown changes of road

conditions. The simulation results show a precise estimation

of the XBS even in the case of discontinuous jumps of road

conditions.

The proposed method has nevertheless several limitations.

First, it needs a (rough) estimation of the vehicle’s speed

(see, e.g., [10] and [9] for works that consider this problem).

Second, the combined convergence of the observer and of

the control law has not been proved. One could expect,

however, that such a proof is obtainable via cascaded design

arguments [23]. Third, the vertical load Fz has been considered

to be both known and constant. It is true that Fz can be

“reconstructed” using the longitudinal and lateral accelerations

as inputs. It is also known that hybrid ABS strategies have a

Ṗb =
−u5x2

Rω
5

Ṗb = −
u1

Rω
1

Ṗb = 0 2

Ṗb =
u3

Rω
3Ṗb =

u4

Rω
4

x2 < 0 and x1 < 0

x2 ≤ −ǫ5 x2 ≥ ǫ1

x2 ≥ ǫ2

x2 ≤ ǫ1

x2 ≤ ǫ3

x2 ≤ −ǫ4

Fig. 5. The academic five-phase hybrid ABS strategy proposed in [27]. The
wheel acceleration thresholds ǫi and the brake pressure increase and decrease
rates ui must be tuned in order to obtain an asymptotically stable limit cycle
(see, e.g., [1] and [27]).

certain degree of robustness with respect to vertical load un-

certainties (see, e.g., the Appendix A.1 of [11]). Nevertheless,

the impact of a time-varying vertical load on the proposed

design is clearly a topic that deserves further investigations.

APPENDIX

This section includes a sketch of the proof of Theorem 1.

The interested reader can find in [16] an approach that

generalizes this method to a more general class of switched

systems that contains, as particular cases, the three and four-

dimensional observers proposed in this paper.

The characteristic polynomial of the matrix A+ is given by

η3 + (k+1 − c)η2 − (ck+1 + ak+2 )η − ak+3 = 0. (23)

Using the Routh criterion for (23) leads directly to con-

dition (15). The same argument, but applied to A−, gives

condition (16).

Assume that the observer gains K+ and K− satisfy, re-

spectively, the conditions (15) and (16). For additional details

concerning the following steps, the reader is referred to [13,

Theorem 4]. The objective is to show that there exists a pair

{P+, P−}, of symmetric positive definite matrices satisfying

all the conditions required by that theorem, for an appropri-

ately defined pair of matrices {C+, C−}.

Define C+ =
(
c+1 0 0

)
and C− =

(
c−1 0 0

)
,

where c+1 , c
−

1 6= 0. It is easy to check that the pairs (A+, C+)
and (A−, C−) are observable. In order to satisfy the conditions

of [13, Theorem 4], one must find a matrix P that satisfies

simultaneously the equations AT
+P + PA+ = −CT

+C+ and

AT
−
P + PA− = −CT

−
C−. Observe that P defines a non-

strict Lyapunov function only, because the symmetric ma-

trices CT
i Ci are not definite positive. Denote by (pij) the

elements of P . One can easily deduce from AT
+P + PA+ =

−CT
+C+ that

p11 =
c2 − (ck+1 + ak+2 )

a2
p22, p12 =

c

a
p22,

p13 =
1

a
p22, p23 = 0, and p33 =

(c− k+1 )

ak+3
p22,

(24)



where p22 > 0. With the elements of P computed as in (24),

one obtains

c+1 = ±

√

2
(c− k+1 )(ck

+
1 + ak+2 ) + ak+3
a2

p22 6= 0. (25)

The term in the square root is positive because of (15)

and p22 > 0.

Similarly, since P has to satisfy the condition AT
−
P +

PA− = −CT
−
C−, it follows that the elements of P are also

of the form

p11 =
c2 − (ck−1 + ak−2 )

a2
p22, p12 =

c

a
p22,

p13 =
1

a
p22, p23 = 0, and p33 =

(c− k−1 )

ak−3
p22.

(26)

From (24) and (26), additional conditions on the observer

gains K+ and K− can be obtained:

(c− k−1)

ak−3
=
(c− k+1 )

ak+3
> 0 and

(ck+1 + ak+2 ) = (ck−1 + ak−2 ) < 0.

(27)

The element c−1 of C− is also different from zero and,

because of (16) and p22 > 0, one obtains

c−1 = ±

√

−2
(c− k−1 )(ck

−

1 + ak−2 ) + ak−3
a2

p22, (28)

which ends the proof. �
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