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Abstract—This paper proposes a novel azimuth-range decouple
based L1 regularization imaging approach for the focusing in Ter-
rain Observation by Progressive Scans (TOPS) synthetic aperture
radar (SAR). Due to conventional L1 regularization technique
requires transferring the two-dimensional (2-D) echo data into
a vector and reconstructing the scene via 2-D matrix operations
leading to significantly more computational complexity, it very
difficult to apply in high-resolution and wide-swath SAR imaging,
e.g., TOPS. The proposed method can achieve azimuth-range
decouple by constructing an approximated observation operator
to simulate the raw data, the inverse of matching filtering (MF)
procedure, which makes large-scale sparse reconstruction, or
called compressive sensing (CS) reconstruction of surveillance
region with full- or down-sampled raw data in TOPS SAR
possible. Compared to MF algorithm, e.g., extended chirp scaling-
baseband azimuth scaling (ECS-BAS), it shows huge potential
in image performance improvement. While compared with con-
ventional L1 regularization technique, it significantly reduces
the computational cost, and provides similar image features.
Furthermore, this novel approach also can obtain a non-sparse
estimation of considered scene retaining a similar background
statistical distribution as MF based image, which can be used
to the further application of SAR images with precondition
being a preserving image statistical properties, e.g., constant false
alarm rate detection (CFAR). Experimental results along with a
performance analysis validate the proposed method.

Index Terms—Synthetic aperture radar (SAR), terrain obser-
vation by progressive scans (TOPS), extended chirp scaling (EC-
S), baseband azimuth scaling (BAS), azimuth-range decouple, L1

regularization, complex approximated message passing (CAMP).
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IN modern synthetic aperture radar (SAR) processing [1],

wide-swath imaging is one of the most important devel-

opment trends which has been commonly used in marine

monitoring, ship detection, etc. Terrain Observation by Pro-

gressive Scans (TOPS) is a novel wide-swath SAR imaging

mode which increases the swath by periodically switching the

incidence angle of antenna among different subswaths from

near to far range [2], [3]. Compared to ScanSAR [4], the other

typical wide-swath mode, TOPS can overcome the problems

of scalloping and azimuth varying signal-to-ambiguity ratio

efficiently through steering the antenna mechanically or elec-

tronically in the along-track direction [5].

Chirp scaling [6], [7] is a well-known matching filtering

(MF) based SAR focusing algorithm, which can obtain high-

resolution SAR image without using interpolation operation,

and hence has been widely used in Stripmap [8], [9] and

Spotlight [10], [11] modes. In 1996, Moreira et al. have

developed an extended chirp scaling (ECS) algorithm [12] for

ScanSAR imaging by achieving azimuth scaling with Spectral

Analysis (SPECAN) technique [13], and further applied ECS

to Stripmap [12] and Spotlight [14] SAR successfully. For

TOPS, Prats et al. proposed a baseband azimuth scaling

(BAS) algorithm in 2010 [5], which extends the conventional

ECS approach, utilizes the sub-aperture technique to resolve

the aliased Doppler spectra without interpolation, and hence

obtains high-resolution TOPS SAR image. In these years,

several algorithms have been proposed and show exciting

performance in raw data processing of TOPS [15]- [20]. Gen-

erally, above-mentioned existing TOPS SAR imaging methods

are computationally efficient, but may suffer severely from

clutter and sidelobes, which restrict their application in target

identification, feature extraction, etc.

Compressive sensing (CS) [21], [22], an important devel-

opment in sparse signal processing, was proposed by Donoho

et al. in 2006. CS theory shows that, if measurement matrix

satisfies some conditions, e.g., restricted isometry property

(RIP) [23], original sparse signals can be recovered from

far less samples than the well-known Shannon-Nyquist sam-

pling theory requires [24], [25]. Baraniuk and Steeghs first

introduced CS to radar imaging in 2007 [26]. Then sparse

reconstruction was widely used and led to promising results

in radar signal processing, e.g., synthetic aperture radar to-

mography (TomoSAR) [27], inverse synthetic aperture radar

(ISAR) [28], and multiple input multiple output (MIMO)

[29]. Certainly, sparse signal processing technique also can be
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applied to SAR imaging. In 2012, Zhang et al. demonstrated

this combination, called sparse microwave imaging, and recon-

structed the surveillance region by solving a Lq (0 ≤ q ≤ 1)
regularization problem [30]. Then Çetin et al. summarized

the development of sparsity-driven SAR imaging in 2014

[31]. Compared to MF based SAR imaging techniques, it

can improve the recovered image quality efficiently [32].

However, due to azimuth and range directions are coupled in

raw data domain, conventional Lq regularization methods need

to transfer the two-dimensional (2-D) raw data into a vector

before reconstruction, which is time-consuming and produces

significant computational complexity, hence is very difficult to

apply in practical large-scale imaging. To solve this problem,

Zhang et al. proposed an azimuth-range decouple based Lq

regularization SAR imaging idea to reduce the computational

cost [30], and applied this concept to Stripmap and ScanSAR

imaging successfully [33], [34]. This method decouples az-

imuth and range couple by constructing an approximated

observation operator to simulate the raw data, the inverse of

MF procedure, and hence relieves the computational pressure

compared with conventional Lq regularization technique.

Complex approximated message passing (CAMP), a L1

regularization recovery algorithm, was proposed by Maleki et

al. [35]- [37]. Compared to other Lq regularization recovery

algorithms, e.g., iterative thresholding algorithm (ITA) [38],

orthogonal matching pursuit (OMP) [39], CAMP can not

only obtain a sparse image of considered scene, but also a

non-sparse estimation of surveillance region with background

statistical properties similar to the MF based result, and hence

can be used for further application of S AR image which

precondition is the preserving image statistical distribution,

e.g., constant false alarm rate (CFAR) detection [37].

In this paper, the main constructions are that we propose a

novel azimuth-range decouple based L1 regularization TOPS

SAR imaging mechanism, and successfully apply it to the

large-scale sparse reconstruction of considered scene from raw

data. In the proposed method, we use the echo simulation

operator constructed based on ECS-BAS algorithm to replace

the exact observation (measurement matrix) in convention-

al L1 regularization based TOPS SAR imaging, where the

construction of a high dimensional measurement matrix can

be avoided, and then utilize the CAMP algorithm to recover

the considered scene from the observations by means of the

constructed echo simulation operator. For clarity, the proposed

method is denoted as L1-ECS-BAS-CAMP. Compare to MF

based imaging approaches, the proposed method can improve

the image performance efficiently, e.g., sidelobes reduction,

clutter suppression, and down-sampling reconstruction for s-

parse scene. While compared to conventional L1 regularization

recovery technique, it can significantly reduce computational

cost, and achieve similar recovered image quality. This method

makes large-scale regularization reconstruction, or called CS

reconstruction, of surveillance region in TOPS SAR with full-

or down-sampled raw data become possible. In addition, since

CAMP recovered non-sparse image preserves the background

statistical distribution as MF based result, thus it can be further

used for the image statistical property based applications.

The rest of this paper is organized as follows. Section II

Fig. 1. TOPS SAR imaging geometry.

provides a brief introduction of ECS-BAS algorithm. Then

conventional L1 regularization based TOPS SAR imaging

scheme along with a CAMP iterative recovery for one-

dimensional (1-D) signal are demonstrated in Section III.

Section IV presents the proposed method detailedly form mod-

el construction, azimuth-range decouple principle, algorithm

derivation, parameter setting, to computational cost analysis.

Section V provides the experimental results based on simulated

data along with a comprehensive performance analysis in

Section VI. The reconstruction of non-sparse scene is shown

in Section VII. And conclusions are draw in Section VII with

several useful remarks.

II. EXTENDED CHIRP SCALING-BASEBAND AZIMUTH

SCALING

As shown in Fig. 1, TOPS SAR exploits the burst working

mechanism. Thus the baseband echo data y (η, τ) at time (η, τ)
can be expressed as

y (η, τ) =

∫∫

(p,q) ∈ Cb

x (p, q) · rect

(

η

Tb

)

· ωa

(

(η − p/vr)− ηc (η)

Tobs

)

· exp

{

−j
4π

λ
r

}

· s

(

τ −
2r

c

)

dpdq. (1)

The meaning of parameters are as follows.

η Azimuth time

τ Range time

p Target azimuth position, 1 ≤ p ≤ NP

q Target ground range position, 1 ≤ q ≤ NQ

x (p, q) Backscattered coefficient at point (p, q)

λ Wavelength

ωa (·) Antenna azimuth weighting

c Light speed
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vr Platform velocity

Tb Burst duration

Tobs Signal cycle period

ηc (η) Beam center crossing time

s (τ) Transmitted pulse signal

Hr Relative altitude of platform

r Slant range with

r (p, q, η) =

√

Hr
2 + q2 + (p− vrη)

2

In BAS [5], the data should be divided in several subaper-

tures whose size satisfy

Tsub 6
PRF −Ba

krot
(2)

where Ba is the processed azimuth bandwidth, and krot is the

instantaneous Doppler centroid varying rate. Then the echo

data in (1) of one point target can be rewritten as

y (η, τ) = x (p, q) · rect

(

η

Tb

)

· rect

(

η − ηsub
Tsub

)

· ωa

(

(η − p/vr)− ηc (η)

Tobs

)

· exp

{

−j
4π

λ
r

}

· s

(

τ −
2r

c

)

(3)

where ηsub = p/vf with vf being the footprint velocity.

Let operator R (·) indicate the ECS-BAS imaging procedure

[5], [12], which flow diagram is depicted in the upper row of

Fig. 2. The definition of several operators used in ECS-BAS

are listed as following.

Fr Range Fourier transform

Fa Azimuth Fourier transform

F−1
r Range inverse Fourier transform

F−1
a Azimuth inverse Fourier transform

Γsub Sub− aperture division

Γsum Sub− aperture recombination

Θ1 Chirp scaling operation matrix

Θ2 RCMC, SRC, Range compression

operation matrix

Θ3 Phase correction operation matrix

Θ4 Replace hyperbolic azimuth phase with

quadratic phase operation matrix

Θ5 De− rotation operation matrix

Θ6 Azimuth compression and weighting

operation matrix

Θ7 Phase preservation operation matrix

In ECS-BAS, after sub-aperture division, using chirp signal

as the transmitted pulse s (τ), chirp scaling operation matrix

Θ1, bulk range cell migration correction (RCMC), secondary

range compression (SRC), and range compression operation

matrix Θ2, and phase correction operation matrix Θ3 can be

represented as

Θ1 (fη, τ) =

exp











jπKs (fη; rref)C (fη)



τ −
τref

D
(

fη,Vrref

)





2










(4)

Θ2 (fη, fτ ) = exp

{

jπ
f2τ

Ks (fη; rref) · [1 + C (fη)]

}

· exp

{

j4π
rrefC (fη)

cD (fηref
, Vrref

)
fτ

}

(5)

Θ3 (fη, τ) =

exp

{

−jπ
Ks (fη, rref) [1 + C (fη)]Cs (fη)

D2 (fηref
, Vrref

)
(τ − τref)

2

}

(6)

where fη and fτ are the azimuth and range frequency, respec-

tively; rref is the reference slant range; τref is the range time

corresponding to rref ; r0 is the nearest range; f0 = c/λ is the

carrier frequency; and Ks (fη; rref) is the modified modulation

rate of chirp signal which can be expressed as

Ks (fη; r) =
Kr

1−Kr
cr0f2

η

2V 2
r f3

0
D3(fη,Vr)

(7)

with

D (fη, Vr) =

√

1−

(

fηλ

2Vr

)2

(8)

and the chirp scaling factor C (fη) being

C (fη) =
D (fηref

, Vrref
)

D (fη, Vrref
)

− 1. (9)

After above three operations, BAS will replace the hyperbolic

azimuth phase with a quadratic phase by using

Θ4 (fη, τ) = exp

{

j4π
r0f0D (fη, Vr)

c

}

· exp

{

−jπ
fη

2

Kscl

}

(10)
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Fig. 2. Flow diagram of the proposed L1-ECS-BAS-CAMP TOPS SAR imaging method.

where the scaling Doppler rate is

Kscl = −
2v2rref

λrscl(r0)
(11)

where vrref is the effective velocity at reference range, rscl(r0)
is a function of slant range r0 with r0 =

√

H2 + q2. Due

to the time at scene center is zero, the demodulation can be

performed based on the following de-rotation function

Θ5 (η, r0) = exp
{

−jπKrot (r0) η
2
}

(12)

with Krot (r0) = −2v2r
/

λrrot(r0).

In the next, the individual subapertures will be assembled.

At this time, the effective chirp rate will be changed from

Krot (r0) to Keff (r0) = Kscl (r0) − Krot (r0). After above

operations, azimuth compression and weighting will be done

based on the matrix

Θ6 (fη, r0) = W (fη) · exp

{

jπ
1

Keff
f2η

}

(13)

with W (fη) being the weighting function. Finally, matrix

Θ7 (η, r0) =

exp

{

−jπ
2v2rref

λ (rrot(r0)− rscl(r0))
·

(

1−
rscl0
rrot0

)2

· η2

}

(14)

is used for phase preserving, where rrot0 is the distance to

the rotation center which has a fixed value when the scaling

range equals to the range of target, and rslc0 is a scaling range

decided by the azimuth sampling. The scaling vector rscl(r0)
and rotation vector rrot(r0) satisfy

rscl(r0) =
rscl0
rrot0

rrot(r0) (15)

and

rrot(r0) =
rrot0 − r0

1− rscl0/rrot0
. (16)

After performing above operations based on Θ1 ∼ Θ7, we

can obtain the focused TOPS SAR image.

III. CAMP FOR L1 REGULARIZATION BASED TOPS SAR

IMAGING

In this section, we focus on the conventional L1 regu-

larization based TOPS SAR imaging including the general

formalization of imaging model, with detailed introduction of a

CAMP iterative algorithm for L1 regularization reconstruction.

A. TOPS SAR Imaging Model

We assume the surveillance region is rectangular, with NP

pixels in azimuth and NQ pixels in range, and characterize a

point by its 2-D index (p, q). Let X denote a NP ×NQ matrix

whose (p, q) entry is x (p, q), and x = vec (X) ∈ C
N×1,

where the operation vec (·) stacks the columns one after the

other. Let ⌊a⌋ represents the floor of a nonnegative real number
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a. For 1 ≤ n ≤ N with N = NP ×NQ, define

pn = ⌊(n− 1)/NP ⌋+ 1

qn = n− (pn − 1)NP . (17)

The nth entry of x is then x (pn, qn).

According to the imaging model (1), we discrete the time

series as Tm (m = 1, 2, · · · ,M). Let Y ∈ C
Nη×Nτ represent

the 2-D echo data, and y = vec (Y) ∈ C
M×1 with M =

Nη ×Nτ . Thus we can obtain the discretized model as

y =

M
∑

m=1

N
∑

n=1

H (m,n)x (pn, qn) (18)

where TOPS SAR observation matrix H ∼= {H (m,n)}M×N

represents the imaging geometry relationship between radar

and surveillance region, which can be expressed as

H (m,n) =

∫∫

(η,τ)∈Tm

rect

(

η

Tb

)

· ωa

(

(η − p/v)− ηc (η)

Tobs

)

· exp

{

−j
4π

λ
r

}

· s

(

τ −
2r

c

)

dηdτ. (19)

Therefore, TOPS SAR imaging model of one burst without

down-sampling can be rewritten as

y = Hx + n0 (20)

where n0 ∈ C
M×1 is the noise vector. Let Ψ ∼= {ψm} ∈

C
L×M , L ≤ M denote the sampling matrix, then the down-

sampled 1-D echo data yd ∈ C
L×1 is

yd = ΨHx + n0 = Φx + n0 (21)

where Φ ∼= {φ (l, n)}L×N is the 1-D Lq regularization based

SAR imaging measurement matrix which can be expressed as

φ (l, n) =

∫∫

(η,τ)∈Tm

rect

(

η

Tb

)

· ωa

(

(η − p/v)− ηc (η)

Tobs

)

· exp

{

−j
4π

λ
r

}

· s

(

τ −
2r

c

)

· ψm (η, τ) dηdτ.

(22)

If L =M , then Ψ is an identity matrix, i.e., there is no down-

sampling for the echo data.

In TOPS, the rotation of antenna will reduce the observation

time of target. Therefore, we have ‖p‖ ≤ Tsvr with

Ts = (ωrTb + λ/La)
√

H2 + q2
/

vr + Tb (23)

where ωr is the antenna rotation rate, and La is the antenna

size. In Ts, only the targets in
[

−Tse

2 , Tse

2

]

with Tse = Ts −
2 λ
La

r
vr

have the all-aperture echo data and can be achieved

regularization reconstruction based on the imaging model (21).

B. L1 Regularization Reconstruction

Since (21) is an under-determined linear system when L <
M , if x is sparse enough and Φ satisfies RIP condition [23],

then we can recover the considered scene x by solving the

Lasso [40], a kind of L1 regularization problem as

x̂ = argmin
x

{

1

2
‖yd −Φx‖

2
2 + ζ‖x‖1

}

(24)

where ζ is the regularization parameter. After above recovery,

x should be reshaped back into a matrix representing the

backscattering of 2-D considered scene.

The optimization problem argmin
x

{

1
2 ‖v − x‖

2
2 + ζ‖x‖1

}

has a closed form solution

β (v; ζ)
∆
= (|v| − ζ) · ej ·angle(v) · 1 (|v| > ζ) (25)

where 1 (·) is the indicator factor, angle (·) indicates the

phase of a complex number, and β (·; ζ) is the complex soft

thresholding function applied component-wise to the input

element v.

C. CAMP Iterative Algorithm

L1 regularization problem can be solved efficiently by

several algorithms, e.g., ITA. However, in SAR imaging, these

existing algorithms will not obtain an image that preserves the

background statistical properties as MF result, which restrict

the further application of the regularization reconstruction

SAR image, e.g., CFAR detection. CAMP introduces a “state

evolution” (SE) term which represents the evolution of the

“noise” standard deviation as the iteration proceeds, and pro-

duces sparse and non-sparse (noisy) estimations of considered

scene at the same time [36]. Thus, not only can we obtain a

sparse solution of the considered scene as other regularization

recovery algorithms, but also a non-sparse image with similar

background distribution as MF recovered result. The CAMP

iterative recovery algorithm used to solve the L1 regularization

problem (24) is detailed in Table I, where µ is the iterative

parameter, σt is the standard deviation of the “noise” vector,

z(t)
∆
= x̃(t) − x (26)

with x̃(t) being the non-sparse estimation of the considered

scene x at tth iteration.
∣

∣x̃(t+1)
∣

∣

k+1
denotes the k+ 1 largest

component of
∣

∣x̃(t+1)
∣

∣ with k = ‖x‖0. δ is the down-sampling

ratio with δ = L/N , 〈·〉 is the average operator, βR and βI

are the real and imagery part of complex soft thresholding

function, β, and ∂βR

∂xR
and ∂βI

∂xI
are the partial derivative of

βR and βI with respect to the real and imagery part of input

element, respectively.
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TABLE I
CAMP ALGORITHM FOR L1 REGULARIZATION BASED TOPS SAR IMAGING

Input:- Down-sampled echo data yd, Measurement matrix Φ

Initial: x̂(0) = 0, w(0) = yd

Iterative parameter µ, Error parameter ε, Maximum iterative step Tmax

Iteration: While t ≤ Tmax and Residual >ε

Step1: x̃(t+1) = ΦHw(t) + x̂(t)

Step2: σt+1 =
∣

∣

∣
x̃(t+1)

∣

∣

∣

k+1

Step3: w(t+1) = y − Φx̂(t) +w(t) 1

2δ

(〈

∂βR

∂xR

(

x̃(t+1);µσt+1

)

〉

+

〈

∂βI

∂xI

(

x̃(t+1);µσt+1

)

〉)

Step4: x̂(t+1) = β
(

x̃(t+1);µσt+1

)

Step5: Residual =
∥

∥

∥x̂
(t+1) − x̂(t)

∥

∥

∥

2

Step6: t = t+ 1

end

Output: Reconstructed sparse image x̂ = x̂(t+1)

Reconstructed non-sparse image x̃ = x̃(t+1)

IV. ECS-BAS BASED AZIMUTH-RANGE DECOUPLE L1

REGULARIZATION TOPS SAR IMAGING VIA CAMP

(L1-ECS-BAS-CAMP)

In this section, using ECS-BAS algorithm depicted in Sec-

tion II as the imaging operator R (·), we propose and derive

a CAMP based azimuth-range decouple L1 regularization

TOPS SAR focusing mechanism, and demonstrate it from

model construction, iterative recovery, parameter setting, to

computational cost analysis in detail.

A. Model

Similar to 1-D imaging in Section III, we can write the 2-D

TOPS SAR imaging model without down-sampling as

Y = AX (27)

where Y ∈ C
Nη×Nτ is the 2-D echo data; X ∈ C

NP×NQ is

the backscattered coefficient of the surveillance region; and A

is the TOPS SAR radar system observation matrix constructed

based on (1) and TOPS imaging geometry. After performing

down-sampling of Y, and considering the existing of noise

N0, down-sampled 2-D echo data Yd can be expressed as

Yd = Ξ ◦Y = Ξ ◦ (AX) + N0 (28)

where operation ◦ is the Hadamard product, Ξ ∈ R
Nη×Nτ is

the binary down-sampling matrix, which represents the sparse

sampling strategy of Y.

B. Principle of L1-ECS-BAS-CAMP

According to the model in (28), we can achieve the L1

regularization reconstruction of considered scene by solving

the optimization problem

X̂ = argmin
X

{

1

2
‖Yd − Ξ ◦ (AX)‖

2
F + γ ‖X‖1

}

(29)

where X̂ is the L1 regularization recovered backscattered

coefficient of 2-D considered scene, ‖·‖F is the Frobenius

norm of a matrix, and γ is the regularization parameter.

It should be noted that, since TOPS SAR imaging obser-

vation matrix A could not be constructed directly based on

the relationship between 2-D echo data Y and backscattered

coefficient X, thus we can not achieve the regularization

reconstruction of considered scene by solving the optimization

problem (29). An alterative method is introduced in Section III.

However, its computational cost is unacceptable in the practi-

cal processing of huge raw data. Therefore, if we want to use

regularization technique to recover the large-scale surveillance

region, azimuth-range decouple is essential so as to reduce the

computational complexity and memory occupation efficiently.

In TOPS, conventional MF based imaging procedure R (·),
e.g., ECS-BAS introduced in Section II, can be expressed as

XMF = R (Y) . (30)

After introducing the exact observation model (27) to (30), the

relationship between backscattered coefficient of considered
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scene X and MF recovered image XMF can be written as

XMF = R (Y) = R (AX) . (31)

It is known that XMF is always the approximation of X

because of the existing of artifacts, e.g., sidelobes, noise.

Therefore, for the relationship shown in (31), if RA ≈ I,

then we can use the inverse of R, i.e., R−1 to approximate

A. Based on this, the basic idea of azimuth-range decouple is

replacing the radar observation matrix A with an approximated

observation operator, or called echo simulation operator, which

performs the transformation from complex reflectivity image

to original echo data, This principle can be generalized as

M (X) = R−1 (X) ≈ AX (32)

with M (·) being the echo simulation operator, which is an

approximation of radar observation matrix A.

After above replacement, we can rewrite the optimization

problem in (29) of L1 regularization TOPS SAR imaging as

X̂ = min
X

{

1

2
‖Yd − Ξa ◦ M (X) ◦ Ξr‖

2
F + γ ‖X‖1

}

(33)

where Ξa ∈ R
Nr×Nτ and Ξτ ∈ R

Nη×Nτ are the binary matrix

which denote the down-sampling strategy in azimuth and range

directions, respectively.

C. Iterative Recovery of L1-ECS-BAS-CAMP

As shown in Fig. 2, the ECS-BAS TOPS SAR imaging

procedure R (·) can be expressed as

R (Y) = F−1
a

(

FaΓsum

[

F−1
a (FaΓsub [Y] ◦Θ1Fr

◦ Θ2F
−1
r ◦Θ3 ◦Θ4

)

◦Θ5

]

◦Θ6

)

. (34)

As above discussion, we know that echo simulation operator

M (·) is the inverse of R (·). Thus, according to the procedure

shown in (34), we can write M (·) as (see Fig. 2)

M (X) = Γsub

[

F−1
a

(

FaΓsum

[

F−1
a

(

FaX ◦ΘH
6

)

◦ΘH
5

]

◦ ΘH
4 ◦ΘH

3 Fr ◦Θ
H
2 F

−1
r ◦ΘH

1

)]

(35)

where symbol (·)
H

is the conjugate transpose operation. Due

to R (·) and M (·) in (34) and (35) are reversible operators

for each other, thus for the considered scene X, we have

X = R (M (X)) . (36)

Similar to 1-D reconstruction shown in Table I, in the

following, we will derive the 2-D matrix operation based

CAMP iterative recovery algorithm to solve the optimization

problem (33). Firstly, we initialize the reconstructed sparse

and non-sparse estimations of considered scene as X̂(0) = 0

and X̃(0) = 0, respectively; and the echo data matrix as

W(0) = Yd. For t th step, non-sparse image is estimated as

X̃(t+1) = R
(

ΞT
a ◦W(t) ◦ΞT

r

)

+ X̂(t). (37)

After adaptively setting σt+1 as σt+1 =
∣

∣

∣X̃(t+1)
∣

∣

∣

k+1
, we will

update the echo data by using

W(t+1) = Yd − Ξa ◦M
(

X̂(t)
)

◦Ξr + W(t) 1

2δ

·

(〈

∂βR

∂xR

(

X̃(t+1);µσt+1

)

〉

+

〈

∂βI

∂xI

(

X̃(t+1);µσt+1

)

〉)

(38)

and then recover the sparse image X̂(t+1) by means of

X̂(t+1) = β
(

X̃(t+1);µσt+1

)

. (39)

If condition

∥

∥

∥X̂(t+1) − X̂(t)
∥

∥

∥

F

/∥

∥

∥X̂(t)
∥

∥

∥

F
6 ε or t = Tmax

satisfies, with ε being a constant error parameter, above

iteration will be stopped, and outputs the final reconstructed

sparse and non-sparse images of considered scene as

X̂ = X̂(t+1)

X̃ = X̃(t+1). (40)

Otherwise, let t = t+ 1, the iteration will be continued.

After above regularization recovery, operation matrix Θ7

will be used to perform phase compensation as

X̂ = X̂ ◦ Θ7

X̃ = X̃ ◦ Θ7. (41)

D. Parameter Employed

The meaning of several components in the proposed L1-

ECS-BAS-CAMP method are shown as following.

1) The “noise” matrix, Z(t) is defined as

Z(t) ∆
= X̃(t) − X. (42)

2) σt is the standard deviation of Z(t), and σ∗ = lim
t→∞

σt.

In practical TOPS SAR imaging, the noise and clutter

distributions are unknown, so we use σt =
∣

∣

∣
X̃(t)

∣

∣

∣

k+1
as

an estimation of σt in this paper.

3) Regularization parameter, γ, should be chosen to satisfy

0 < γ ≤ ‖XMF ‖1 (43)
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where XMF is the recovered image of MF based TOPS

SAR imaging algorithm.

4) The set of iterative parameter µ relies on σ∗ and γ.

CAMP algorithm and Lasso problem are connected

through the relationship between µ and γ. According

to the analysis in [36], if µ satisfies

γ , µσ∗

(

1−
1

2δ
E

(〈

∂βR

∂xR
(XMF ;µσ∗)

〉

+

〈

∂βI

∂xI
(XMF ;µσ∗)

〉))

(44)

then CAMP with iterative parameter µ can be used

to solve the Lasso problem with regularization pa-

rameter γ. Where E (·) is the expectation operator. In

L1-ECS-BAS-CAMP, we set σ∗ = |XMF |k+1, and

γmax=‖XMF ‖1, to estimate the upper bound of µ as

µmax through (44).

E. Computational Cost

Let I denote the required iterative steps of accurate recovery,

M = Nη ×Nτ and N = NP ×NQ. Then the compu-

tational complexity of conventional ECS-BAS algorithm is

CECS−BAS = O (M log (M)). For each iteration of the

proposed method, its computation includes two main parts,

the calculations of an inverse ECS-BAS and a ECS-BAS

procedure, which has complexity of O (M log (M)), and a

decouple thresholding operation with complexity O (N). Thus

the total computational complexity of L1-ECS-BAS-CAMP is

of the order CPro = O (IM log (M)). For conventional L1

regularization method, as discussed in Section III, it needs to

transfer the 2-D echo data into a vector and reconstruct the

considered scene via 2-D matrix operations for every image

point in turn, which complexity reaches CL1 = O (IMN).
This is unacceptable for large-scale TOPS SAR imaging.

Compared to conventional L1 regularization approach, the

accelerated rate of the proposed method is approximately

rC =
CL1

CPro

= O

(

N

log (M)

)

. (45)

In memory occupation, since L1-ECS-BAS-CAMP only

needs to storage the input, output and several matrices shown

in Fig. 2, its memory requirement is only around MPro =
O (N) bytes which at the same order as ECS-BAS. In compar-

ison, since conventional L1 regularization method performs the

sparse reconstruction based on a measurement matrix which

size is M×N , and hence its memory occupation is extremely

large, approximately ML1 = O (MN) bytes.

Above analysis shows that compared to conventional L1

regularization approach, the proposed method reduces the

computational complexity and memory occupation to the same

order as ECS-BAS based TOPS SAR imaging algorithm,

and hence makes regularization reconstruction of large-scale

considered scene in TOPS become possible.
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Fig. 3. Surveillance region in the simulation (in dB).

TABLE II
SIMULATION PARAMETERS

Parameter Value

Carrier frequency 9.65 GHz

Azimuth beamwidth (3 dB) 0.36o

Platform effective velocity 7200.00 m/s

Platform height 500.00 km

Mean lookangle 30.00o

System PRF 3456.00 Hz

Antenna length 5.00 m

Azimuth beam rotation rate 5.00o/s

Burst duration 0.40 s

Transmitted pulse duration 5.00 µs

Transmitted pulse bandwidth 15.00 MHz

Sampling frequency 20.00 MHz

V. EXPERIMENTAL RESULT AND DISCUSSION VIA

SIMULATED DATA

In this section, we perform several experiments based on

the simulated data along with a discussion to validate the

proposed method. As shown in Fig. 3, ten point targets located

on the different positions are set as surveillance region. The

size of surveillance region is (3890 m (Range) × 23080 m

(Azimuth)). Simulation parameters are listed in Table II. All

experiments will be conducted on a workstation of 8-core

2.20-GHz Inter Core i5-5200U CPU with 16 GB memory.

The algorithms are implemented in Matlab 2013a. Since the

restriction of memory requirement and computational time, in

the experiments, we only use the ECS-BAS recovered images

as comparison to illustrate the validity of L1-ECS-BAS-CAMP

in the image performance improvement. To demonstrate the

experimental results intuitively and clearly, three point targets,

called T1, T2, and T3 (see Fig. 3), are chosen as the example to

validate L1-ECS-BAS-CAMP. The relative location (reference

is the center of surveillance region) of T1, T2, and T3 are (-

1125 m (Range) × -7700 m (Azimuth)), (0 m (Range) × 0 m

(Azimuth)), and (1125 m (Range) × 7700 m (Azimuth)).
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Fig. 4. Contour plots of three point targets (in dB). (a) T1 (ECS-BAS). (b)
T1 (L1-ECS-BAS-CAMP (Sparse image)). (c) T2 (ECS-BAS). (d) T2 (L1-
ECS-BAS-CAMP (Sparse image)). (e) T3 (ECS-BAS). (f) T3 (L1-ECS-BAS-
CAMP (Sparse image)).

A. Sidelobe Suppression

Fig. 4 is the contour plots of T1, T2, and T3 reconstructed

by ECS-BAS (Left column) and the proposed L1-ECS-BAS-

CAMP (sparse image) (Right column) algorithms, respective-

ly. In order to validate the effect of sidelobe suppression of

L1-ECS-BAS-CAMP clearly, we didn’t add any noise and

clutter to the simulated echo data of point targets. Fig. 4 shows

that both methods can recover three point targets accurately,

while L1-ECS-BAS-CAMP can reduce sidelobes efficiently,

regardless of azimuth or range direction, even remove side-

lobes completely (range direction in Fig. 4(f)). However, it

should be noted that these results were obtained in an ideal

condition, i.e., signal to clutter and noise ratio SCNR = ∞. In

practical TOPS SAR imaging, we could not expect to achieve

such perfect suppression.

B. Noise and Clutter Suppression

In this simulation, to perform meaningful comparisons, we

artificially introduced some noise and clutter to the simulated

echo data of surveillance region. Real part of the simulated

(a) (b)

Fig. 5. Real part of the simulated echo data (a) before and (b) after adding
noise and clutter.
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Fig. 6. Contour plots of point targets based on the simulated echo data with
noise and clutter (in dB). (a) T1 (ECS-BAS). (b) T1 (L1-ECS-BAS-CAMP
(Sparse image)). (c) T2 (ECS-BAS). (d) T2 (L1-ECS-BAS-CAMP (Sparse
image)). (e) T3 (ECS-BAS). (f) T3 (L1-ECS-BAS-CAMP (Sparse image)).

TOPS SAR echo data before and after adding noise and

clutter is shown in Fig. 5. Fig. 6 is the contour plots of three

selected point targets recovered by ECS-BAS (Left column)

and L1-ECS-BAS-CAMP (sparse image) (Right column) via

the echo data with noise and clutter. Compared to ECS-

BAS, we can see that the proposed method suppresses noise

and clutter efficiently and recovers the position of all point

targets accurately. To evaluate the noise and clutter suppression

ability of L1-ECS-BAS-CAMP quantitatively, we introduce
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Fig. 7. Contour plots of three point targets based on 50% and 25% random down-sampled simulated echo data (in dB). From left to right: ECS-BAS with 50%
echo data, L1-ECS-BAS-CAMP with 50% echo data, ECS-BAS with 25% echo data, L1-ECS-BAS-CAMP with 25% echo data. (Upper row) T1. (Middle
row) T2. (Lower row) T3.

the target-to-background ratio (TBR) [41]

TBR (X)
∆
= 20 log10





max(p,q)∈T

∣

∣

∣(X)(p,q)

∣

∣

∣

(1/NB)
∑

(p,q)∈B

∣

∣

∣(X)(p,q)

∣

∣

∣





(46)

where T indicates the target area, which is surrounded by

the background region, B whose number of pixels is NB.

Quantitative analysis of noise and clutter suppression with

TBR is shown in Table III. Its result accords with the visual

representation in Fig. 6, i.e., L1-ECS-BAS-CAMP significant-

ly outclasses ECS-BAS in noise and clutter suppression, and

reduces TBR approximately 40 dB, which means that nearly

all noise and clutter are removed.

C. Down-sampling Recovery

An advantage of CS is that it can recover the original

sparse signal from far less samples than the sampling theory

requires. Thus, in practical data collection of SAR system, we

can achieve larger swath by reducing the number of sampling

TABLE III
TBR IN THE IMAGES RECONSTRUCTED BY DIFFERENT METHODS

Target Target 1 Target 2 Target 3

ECS-BAS 30.16 dB 30.55 dB 30.85 dB

L1-ECS-BAS-CAMP 70.38 dB 67.86 dB 68.85 dB

points. To demonstrate the validity of our proposed algorithm

in down-sampled echo data based TOPS SAR imaging, we per-

form 50% and 25% random down-sampling for full-sampled

echo data shown in Fig. 5(a), and reconstruct the considered

scene by ECS-BAS and L1-ECS-BAS-CAMP, respectively

(see Fig. 7). Fig. 7 depicts that since the lack of samples,

ECS-BAS could not recover the point targets successfully with

obvious ambiguities and energy dispersion. While L1-ECS-

BAS-CAMP also can reconstruct the considered scene well

with lower sidelobes even only using 25% samples.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Normalized reconstructed images of three point targets (in dB). (a) T1
(ECS-BAS). (b) T1 (L1-ECS-BAS-CAMP (Non-sparse image)). (c) T2 (ECS-
BAS). (d) T2 (L1-ECS-BAS-CAMP (Non-sparse image)). (e) T3 (ECS-BAS).
(f) T3 (L1-ECS-BAS-CAMP (Non-sparse image)).

D. Non-sparse Reconstruction of Surveillance Region

As above discussion of CAMP in Section III and Section

IV, compared to other L1 regularization recovery algorithms,

the superiority of CAMP is that it can obtain both sparse

and non-sparse estimations simultaneously of original signal.

In above simulations, to validate the effectiveness of the

proposed method in performance improvement, the sparse

images recovered by L1-ECS-BAS-CAMP are enough. In this

experiment, Fig. 8 shows the reconstructed non-sparse image

of three point targets (Right column) by the proposed method

along with the results of ECS-BAS (Left column) based on

the simulated echo data shown in Fig. 5(a). Note that the non-

sparse images not only protrude the target as recovered sparse

images, but also retain the background distribution as ECS-

BAS results only with amplitude decreased approximately

50 dB. This characteristic will be very helpful in CFAR [37].

E. Dependence on Iterative Parameter µ

In the proposed method, µ is a parameter controls the con-

vergence speed of iterative algorithm, which should satisfy

0 < µ−1
max ≤ µ−1 ≤ 1. (47)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1

R
M

S
E

µ−1

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

C
o

m
p

u
ti

o
n

a
l 

ti
m

e 
[s

]
µ−1

(b)

Fig. 9. (a) Recovered precision based on RMSE, and (b) computational time
of the proposed method as a function of iterative parameter µ−1.

When µ−1 moves from 0 to 1, the convergence speed of

L1-ECS-BAS-CAMP will increase, while the precision of

recovered solution will decrease. In the experiments of this

subsection, using MF recovered image XMF of considered

scene shown in Fig. 3, we can calculate the maximum value of

γ as γmax = ‖XMF ‖1 = 35.45, and then estimate the upper

bound of µ based on the relationship in (44) as µ−1
max ≈ 0.05.

To give an impression about the impact of iterative parameter

µ on the performance of the proposed method, Fig. 9 shows

the recovered precision and convergence speed of L1-ECS-

BAS-CAMP as a function of µ−1. In Fig. 9(a), we use

relative mean square error (RMSE) as the judging criterion

of recovered precision. It says that the reconstructed accuracy

of L1-ECS-BAS-CAMP is inversely proportional to the value

of µ−1. While the computational time will decrease when

µ−1 moves from 0 to 1 (see Fig. 9(b)). This experimental

result accords with above theoretical analysis. Based on this,

in practical TOPS SAR imaging, the value of µ should be

selected as a compromise between convergence speed and

recovered precision. In this paper, after considering above two

factors, we set µ−1 = 0.5.

VI. PERFORMANCE ANALYSIS

In above theoretical analysis, we know that a main ad-

vantage of L1-ECS-BAS-CAMP is less computational time

and lower memory requirement compared with conventional

L1 regularization based TOPS SAR imaging method, and at

the same order of ECS-BAS algorithm. While it also can

achieve similar performance improvement of SAR images as

L1 regularization technique shown in Table I. In section V,
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Fig. 10. Normalized reconstructed images of simulated point targets (in dB) by (Left column) ECS-BAS, (Middle column) L1-CAMP (Non-sparse image),
and (Right colum) L1-ECS-BAS-CAMP (Non-sparse image), respectively. The size of considered scene is (Upper row) 38 (Range) × 106 (Azimuth) samples
(304 × 848 after interpolation), (Middle row) 126 (Range) × 188 (Azimuth) samples (1008 × 1504 after interpolation), (Lower row) 156 (Range) × 420
(Azimuth) samples (1248 × 3340 after interpolation).

we have validated the effectiveness of the proposed method in

image performance improvement and down-sampling imaging.

In this section, to quantitatively evaluate the proposed method

especially in the decrease of computational cost, we perform

several experiments based on the smaller considered scenes,

and obtain the images by not only ECS-BAS and the proposed

L1-ECS-BAS-CAMP methods, but also the conventional L1

regularization algorithm which has a higher requirement of

computer performance. The simulation parameters are nearly

identical to Table II except for the platform height Hr. In

the experiments, we change the size of considered scene

through setting different value of platform height. For clarity,

the conventional CAMP based L1 regularization TOPS SAR

imaging method shown in Table I is denoted as L1-CAMP.

It should be noted that the images shown in this paper are

plotted after eight times interpolation of recovered results both

in azimuth and range directions. In addition, all quantitative

analysis are performed based on the non-sparse solutions of

L1-CAMP and L1-ECS-BAS-CAMP in this section.

A. Compare with L1-CAMP

Fig. 10 shows the image reconstructed by ECS-BAS, along

with the L1-CAMP and L1-ECS-BAS-CAMP recovered non-

sparse estimations of considered scenes with different sizes

by using full-sampled simulated echo data without any noise

and clutter. From Fig. 10, we can see that no matter what

size of considered scene is set, both L1-CAMP and L1-ECS-

BAS-CAMP algorithms all can suppress sidelobes efficiently

compared with MF based method, ECS-BAS, regardless of

in azimuth or range direction. While L1-ECS-BAS-CAMP

shows a similar ability in image performance improvement as

conventional L1 regularization TOPS SAR imaging technique.
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Fig. 11. Computational cost of ECS-BAS, L1-CAMP, and L1-ECS-BAS-CAMP as a function of scene size. (a) Computational time. (b) Memory occupation.
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Fig. 12. (a) TBR and (b) RMSE of the images reconstructed by L1-CAMP and L1-ECS-BAS-CAMP methods as a function of iterative step t.

B. Analysis of Computational Cost

Fig. 11 depicts the computational cost of ECS-BAS, L1-

CAMP, and L1-ECS-BAS-CAMP methods under different

sizes of considered scene. Fig. 11(a) shows that even if the

scene size is just 242× 1086 ≈ 2.62× 105, we still need 103

seconds to recover the considered scene by using L1-CAMP

algorithm. However, in practical SAR imaging including TOP-

S, the scene size is usually larger than 1024×8192, this means

that L1-CAMP needs more than 12 days to achieve the regular-

ization reconstruction of surveillance region with the working

computer having at least 64 TB memory. This is unacceptable

for the real-time processing. L1-ECS-BAS-CAMP relieves this

pressure well, which reduces the computational time to the

same order as MF algorithm (see Fig. 11(a)). Fig. 11(b) gives

the memory requirement of L1-CAMP and L1-ECS-BAS-

CAMP in TOPS SAR focusing. This result accords with above

theoretical analysis, i.e., the proposed method can reduce the

memory occupation dramatically compared with L1-CAMP. In

addition, we find that no matter for computed time or memory

requirement, the difference between L1-CAMP and L1-ECS-

BAS-CAMP will gradually enlarge as the scene size increases.

C. Recovery Accuracy and Convergence Speed Versus SCNR

In this subsection, we only set one point target located

on the scene center as surveillance region whose size is 138

(Range) × 118 (Azimuth) samples, then artificially introduced

some noise and clutter with SCNR = −5 dB, 0 dB, 5 dB
to the simulated echo data, and reconstructed the consid-

ered scene by L1-CAMP and L1-ECS-BAS-CAMP via full-

sampled echo data, respectively. The definition of SCNR is

SCNR
∆
= 10 log10

(

Pt

Pc

)

(48)

where Pt and Pc are the power of target and the power of

noise and clutter, respectively.

Fig. 12 shows the TBR and RMSE of the recovered

results as a function of iterative step t. We can see that

no matter for TBR or RMSE, all curves of L1-CAMP and

L1-ECS-BAS-CAMP with different SCNRs have a similar

variation tendency, and will be converged to a fixed value

after about 10 iterations. This convergent value is depend-

ed on the value of SCNR. It says that if less noise and
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TABLE IV
PERFORMANCE OF THE RECONSTRUCTED IMAGES UNDER DIFFERENT COMBINATION OF SCNR AND DOWN-SAMPLING RATIO [dB]

SCNR = 10dB δ= 100% δ= 50% δ= 25%

TBR PSLR ISLR TBR PSLR ISLR TBR PSLR ISLR

ECS-BAS 57.01 -13.22 -09.67 43.86 -11.89 -06.03 39.12 -11.17 -03.43

L1-CAMP 80.15 -61.16 -57.03 79.58 -59.91 -53.51 78.28 -59.15 -50.79

L1-ECS-BAS-CAMP 79.73 -61.67 -57.66 78.48 -60.41 -54.12 77.36 -59.62 -51.43

SCNR = 0dB δ= 100% δ= 50% δ= 25%

TBR PSLR ISLR TBR PSLR ISLR TBR PSLR ISLR

ECS-BAS 43.31 -13.27 -09.34 38.05 -14.62 -07.04 34.24 -09.17 -03.01

L1-CAMP 79.47 -61.22 -56.70 77.91 -62.49 -54.28 76.62 -57.74 -50.48

L1-ECS-BAS-CAMP 78.35 -61.72 -57.32 76.92 -62.98 -54.92 75.86 -58.26 -51.15

SCNR = −10dB δ= 100% δ= 50% δ= 25%

TBR PSLR ISLR TBR PSLR ISLR TBR PSLR ISLR

ECS-BAS 24.78 -14.67 -01.73 20.43 -08.42 03.30 19.28 -08.26 03.76

L1-CAMP 70.60 -62.39 -48.62 67.57 -56.39 -44.07 66.64 -56.21 -43.52

L1-ECS-BAS-CAMP 70.46 -62.87 -49.26 67.47 -56.72 -44.53 66.67 -56.45 -43.85

clutter are added to the simulated echo data, higher TBR

and lower RMSE, i.e., a better image performance will be

obtained by means of both L1-CAMP and L1-ECS-BAS-

CAMP methods. In addition, similar to the plots shown in

Fig. 10, the proposed method also suppresses the noise and

clutter efficiently compared to MF based algorithm with T-

BR being 34.02 dB (SCNR = −5 dB), 43.38 dB (SCNR =
0 dB), 51.10 dB (SCNR = 5 dB), while has a similar effect

of image performance improvement as L1-CAMP. In Fig. 12,

we find that when SCNR ≥ −5 dB, considered scene will be

recovered successfully, and the value of SCNR will not influ-

ence the required iterative steps (about 10 in this experiment)

for the convergence of our proposed method. Since each circle

in L1-ECS-BAS-CAMP has a similar computational time, thus

there are nearly no difference in convergence speed of L1-

ECS-BAS-CAMP under different SCNRs. This means that the

existing noise and clutter will not affect the convergent time

of our proposed method. Certainly, above analysis between

SCNR and computational time is also adapt for L1-CAMP.

D. Performance Versus Down-sampling Ratio and SCNR

To comprehensively compare ECS-BAS, L1-CAMP, and our

proposed L1-ECS-BAS-CAMP methods in image performance

improvement, we made several experiments based on the

different combination of down-sampling ratio δ and SCNR,

and use TBR, PSLR, and ISLR as the evaluation criterion of

the reconstructed image quality. Simulated scene is identical

to the last subsection. In order to illustrate our purpose easily

and clearly, without lose of generality, we only performed the

random down-sampling along the azimuth direction based on

the value of δ, and exploited azimuth PSLR and ISLR to

gauge the image quality quantitatively. Table IV shows the

value of TBR, PSLR, and ISLR in the ECS-BAS, L1-CAMP,

and L1-ECS-BAS-CAMP recovered images under different

combination of SCNR and down-sampling ratio. We know that

the down-sampling of echo data will cause the azimuth energy

dispersion in MF results. This phenomenon corresponds to the

increase of ISLR in ECS-BAS recovered images as shown

in Table IV, and finally result in the failed reconstruction.

While regularization based algorithms also can recover the

considered scene accurately even only with 25 % azimuth data

and SCNR = −10 dB. In Table IV, we can see that compared

with ECS-BAS, the proposed method suppresses the noise and

clutter efficiently with decreasing TBR at least 25 dB, reduces

sidelobes dramatically with debasing ISLR more than 45 dB,

and also shows a better robustness. In addition, Table IV

depicts that L1-ECS-BAS-CAMP has a similar effect in image

performance improvement as conventional L1 regularization

imaging technique, no matter what kind of combination of δ
and SCNR is set, which is accorded with the results in Fig. 10.

VII. RECONSTRUCTION OF COMPLICATED SCENE

It is known that conventional L1 regularization SAR imag-

ing technique only can be applied to the recovery of sparse

scene because of the restriction of RIP condition and is not

appropriate for the non-sparse region, e.g., urban area. How-

ever, our proposed azimuth-range decouple L1 regularization

TOPS SAR imaging mechanism introduces a novel idea in the

regularization-based reconstruction of non-sparse surveillance

region via full-sampled echo data, while does not need to
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Fig. 13. Reconstructed image of non-sparse considered scene by different methods. (a) ECS. (b) L1-ECS-BAS-CAMP (Sparse image). (c) L1-ECS-BAS-CAMP
(Non-sparse image).
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Fig. 14. Reconstructed image of non-sparse considered scene by different methods. (a) ECS. (b) L1-ECS-BAS-CAMP (Sparse image). (c) L1-ECS-BAS-CAMP
(Non-sparse image).

TABLE V
TBR IN THE RECOVERED IMAGE OF NON-SPARSE CONSIDERED SCENE

Region Region 1 Region 2 Region 3

ECS-BAS 27.90 dB 29.32 dB 26.31 dB

L1-ECS-BAS-CAMP (Sparse image) 36.00 dB 35.04 dB 34.63 dB

L1-ECS-BAS-CAMP (Non-sparse image) 35.95 dB 35.02 dB 34.57 dB

consider the scene sparsity. To validate this, in this section,

we set two complicated scenes as the simulated observed

regions which points’ position and amplitude are set based on

the real TerraSAR-X Spotlight SAR image data. Simulation

parameters are identical to Table I.

Fig. 13 and Fig. 14 show the recovered image of two

simulated non-sparse scenes (urban area) by using ECS and

L1-ECS-BAS-CAMP algorithms, respectively. Fig. 13(b) and

Fig. 14(b) are the sparse estimations, while Fig. 13(c) and

Fig. 14(c) are the non-sparse solutions of our proposed

method. Experimental results depict that the proposed method

also recovers the non-sparse urban surveillance region well,

and suppresses sidelobes and clutter efficiently. In addition,

it can be seen that the sparse and non-sparse solutions of

L1-ECS-BAS-CAMP have a similar image features. Let us

consider three regions indicated by the cyan rectangles in

Fig. 13. TBR of these regions are shown in Table V, which

results validate the effectiveness of L1-ECS-BAS-CAMP in

noise and clutter suppression not only for sparse scenes as

above discussion, but also for non-sparse surveillance regions.

VIII. CONCLUSION

This paper proposed a novel azimuth-range decouple based

L1 regularization TOPS SAR imaging mechanism, and suc-

cessfully applied it to the sparse reconstruction of large-scale

considered scene from raw data. In the proposed method, we

first exploit the echo simulation operator constructed based

on ECS-BAS to replace the exact observation matrix in

conventional L1 regularization based TOPS SAR imaging so

as to decouple the azimuth-range couple in raw data, and then

reconstruct the considered scene by means of CAMP algo-

rithm. Compared to MF based TOPS SAR imaging technique,

e.g., ECS-BAS, L1-ECS-BAS-CAMP provides the improved

image performance like significant sidelobes and clutter sup-

pression, and shows a better down-sampled data based imaging

ability. Compared with conventional L1 regularization tech-

nique, since it decouples azimuth-range couple well, L1-ECS-

BAS-CAMP significantly reduces the computational time and

memory occupation in image reconstruction, while providing

the similar image features. Furthermore, compared to other

recovery algorithms for solving the L1 regularization problem,
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CAMP based algorithm provides the sparse image of the

considered scene as well as a non-sparse estimation with

similar background statistical properties as MF based result,

which is very helpful for the further image statistical properties

based applications.

In addition, it should be noted that this method makes

large-scale sparse TOPS SAR imaging become possible, and

also can be used to the recovery of non-sparse surveillance

region. Furthermore, in practical TOPS system design, we can

increase the swath width through reducing PRF, and use our

presented mechanism to achieve the image focusing.
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