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AbslracL The usual construction of mherent slates allows a wider interpretation in 
which the number of distinguishing slate labels is no longer minimal; the label measure 
determining the required m l u t i o n  of unity is then no longer unique and may even be 
concentrated on manifolds with positive mdimension. Paying particular attention to the 
residual restrictions on the measure, we choose to capitalize on this inherent freedom 
and in formally distinct ways, systematically mnslruct suitable sets of mended mherent 
states which, in a minimal sense, are characterized by auxilialy labels. Inlemtingly, 
we find these states lead to path integral constructions containing auxilialy (asentially 
unconstrained) pathapace variabla The impact of both standard and mended  coherent 
state formulations on the content of classical theories is briefly aamined. the latter 
showing lhe sistence of new, and generally constrained, clwical variables. Some 
implications for the handling of mnstrained classical systems are given, with a complete 
analysis awaiting further study. 

1. Intduct ion 

'Ifaditionally, coherent-state path integrals have been constructed using a minimum 
number of quantum operators and classical variables. But many problems in classical 
physics are often described in terms of more variables than a minimal formulation 
would entail. In particular, we have in mind constraint variables and gauge degrees of 
freedom. Although such additional variables are frequently convenient in a classical 
description, they invariably become a nuisance in quantization. In this paper we 
introduce auxiliary quantum operators in order to create extended coherent states 
bearing additional labels, and incorporate them into new path integrals. We note 
especially the subsequent emergence of classical constraints, and are able to comment 
an their elimination as part of some general quantization scheme. 

Of course, there exist in the literature several widely accepted methods for path 
integral quantization subject to constraints [l-31, especially for systems with purely 
gauge degrees of freedom [4]. In addition, there seems to be in the physics community 
a certain measure of ambivalence towards genuine (i.e. second class-in the language 
of Dirac) constraints, ranging from not treating them, to eliminating them completely 
in principle, to turning them into first class constraints and then proceeding by one 
of the methods referred to above. From the most general point of view these various 
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methods all have one feature in common which is less than satisfactory, namely they 
tw liberally allow rather unrestricted canonical tranformations within formal phase- 
space path integrals, where the validity of their use often cannot be substantiated 

In this paper we imagine beginning with the purely quantum description of 
a physical system, from which we extract a coherent-state path inregral for the 
propagator as a step en mule to the classical description. By this procedure we 
can assess the characteristics of a classical theory deduced in this way and the role 
of auxiliary variables, both in modifying the realization of the path integral without 
changing its value, and then in allowing an extension of the coherent-state description 
of the entire quantum system. Finally, we are able to investigate the impact of 
extended coherent states at the purely classical level, and the subsequent appearance 
of constraints. 

Section 2 contains a formal treatment of coherent states for auxiliary variables. 
TJ provide a concrete demonstration of the features emerging from this exposition, 
section 3 presents a number of simple examples in which we construct a variety of 
extended coherent states from canonical and affine coherent states for one degree of 
freedom. Armed with these examples, and having identified an appropriate expression 
to play the role of a ‘classical’ action, we then consider, in section 4, the properties of 
classical theories stemming from specific quantum Hamiltonians. We examine when 
and how auxiliary variables lead to classical constraints, as well as the nature of other 
effects they have at the classical level. 

Readers who, by reason of interest or inclination, would prefer to avoid a 
somewhat formal treatment of extended coherent states, could skip ahead to section 
3 without serious loss on first reading. 

J R klauder and B F whiting 

151. 

2. General case of extended coherent states 

Although much of the following lies scattered or implied throughout a very wide 
literature, for the convenience of the reader we gather and present it here in a way 
unified with our approach. This also enables us to incorporate it into a single cohesive 
development of extended coherent states, and path integrals with auxiliary variables, 
as new objects of study. 

21. Background 

A quantum action principle can be derived as follows. (Wc normally set h = 1 
although occassionally we also discuss explicit dependence on A, including the limit 
where h -* 0.) First write 

in which I+)  represents the quantum state of a system as a vector in an abstract 
Hilbert space, and ‘H is the quantum Hamiltonian operator, which generates the time 
evolution of the quantum state by its action in the Hilbert space. Variation of this 
quantum action leads to the familiar Schrodinger equation. For concrete purposes it 
is necessary to introduce some specific representation of the abstract Hilbert space; 
e.g. the Schrodinger (coordinate) representation or, as we employ throughout this 
paper, a coherent-state representation. We now pass to a description of coherent 
states from a general viewpoint [6]. 



mended coherent statales and pa1h integrals with auxiliaty variables 1699 

22. General coherent-state review 

Coherent states are a set of non-zero vectors { / E )  : E = (@, E 2 , .  . . , E L )  E L) that are 
continuously labelled, so that (fie') is jointly continuous, and which admit a resolution 
of unity in the form 

I = J le)(eise (2.2) 

integrated over L, where 6E denotes a positive measure. Usually, the labels E are 
chosen to be a minimal set for the problem at hand. With ( E l E )  > 0 for all E we 
can, without loss of generality, rescale 6E so that (Elf) = 1 for all E. Although not 
mandatory, it is often especially convenient to choose le) = U (e) IQ), where the 
operators U(E)  form a (not necessarily irreducible) unitary representation of some 
continuous group, and where 17) is a k e d ,  nomalized fiducial vector. In the group 
case, the measure 6e is typically a suitably normalized left-invariant group measure. 
Even when the U ( [ )  do not form a group it is useful to embed them, at least 
conceptually, in the group they would generate. For convenience we suppose that the 
E variables are real. A great variety of different kinds of coherent states have been 
defined over the years, and we refer the reader to the literature for many examples 

Every set of coherent states leads to a representation of abstract Hilbert space by 
[GI. 
bounded, continuous functions + ( E )  (E l+)  in which the inner product reads 

(2.3) 

Each such function satisfies the integral equation 

I,!J (E')  = / X  (E'; E )  + (E )6E  0.4) 

where x: (e'; E )  = ( P I E )  denotes the reproducing kernel. In turn, X ( P ;  C)' = X (C E') 
and 

demonstrating that IC is the representation of a projection operator on Lz ( 6 0 .  
In the context of coherent states, operators, such as 71, generally act through 

integral kernels defined by ( E ' ( 7 i l e ) .  However, two 'symbols' associated with 71 are 
important to identify. One, the upper symbol, on which we shall concentrate mainly 
for convenience, is defined by 

H ( E )  = ( e l w )  (2.6) 

the other, the lower symbol, is defined through the equation 

71 = h(E)lE)(El6E J 
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and is of some advantage particularly in alternative constructions of the path integral. 
The upper symbol, H, exists (modulo domain issues) quite generally and is unique; 
the lower symbol, h, may exist and be unique, may exist but not be unique, or may 
not exist at all, depending on the operator in question and the specific set of coherent 
states [6]. If both symbols exist they are related by the integral equation 

J R Mauder and B F Whiling 

H ( t ' )  = Jh(t)l(t1tf)1'6t. (2.8) 

As we shall see, each of them might be regarded as a candidate for the classical 
Hamiltonian. 

Two alternative formulations of coherent-" path integrals are standard [6]. In 
the first definition, repeated application of the resolution of unity is used to re-express 
the integral kernel 

e - " W  ( p l e - i T X l p )  = (ple-ieXe-icX.. , 

(2.11) 

It is customary to interchange the order of the limit and the integration in a 
formal way, and to write for the integral the form it assumes for continuous and 
differentiable paths. Since 

it follows that the propagator admits the formal path integral representation 

an expression that involves the upper symbol H ( C )  = (el7flP). Here and elsewhere, 
formal expressions such as that represented by this path integral do not admit a 
rigorous mathematical formulation, but they may be expected to inherit a well defined 
meaning in terms of a lattice limit such as that used here in this construction. 
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The second coherent-state path integral makes use of the lower symbol associated 
with the Hamiltonian, Le. h ( t ) ,  which, for the present, we assume exists. It follows 
that 

X - k X  = [l-i€h(t)]le)(ll6e J 
and therefore that 

e-k'K = J e-ish(l) le)(el6e+ O(e2). 

Repeated use of this expression leads to 

which is a perfectly acceptable prescription. When the integrations and the limit 
are interchanged, we arrive at an alternative formal path integral expression for the 
propagator 

which now involves the lower symbol. 

to have 
Generally H ( e )  $ h( t ) .  Ib make fum contact with classical physics it is desirable 

lim H ( t )  = lim h ( e )  He(!?) fi-a h-0 

in which the limit is what normally becomes identified as fhe classical Hamiltonian. 
When appropriate, the coincidence of these limits can be achieved by choosing le) 
(and especially 111)) so that, roughly speaking, 

l i  I(tle')120: 6 ( t - t ' ) .  (2.19) 

(When such a l i t  is inappropriate because H, vanishes, e.g. as in the case of a 
spin s system, s < CO, then we might choose either H or It .  to act as the classical 
Hamiltonian. That case is not of particular interest in this paper.) 

&-U 

In one of the above formulations, it will be seen that the expression 

(2.20) 

enters in the Same way that the classical action does in the standard representation of 
the path integral. However it is important to realize that here h has not been set to 
zero. Thus, we will wish to use the adjective 'classical' in two distinct senses, for which 
the meaning will generally be clear from the context. In particular, H(P) = ( r l H l f ) ,  
where li # 0, will frequently be referred to as the classical Hamiltonian, as will 
H,(e) = lim H ( t ) ,  which we will generally try to distinguish as the strictly classical 
Hamiltonian. A similar, potentially ambiguous, use of classical will apply to action 
functionals as well. 

h-0 
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23. Case of &ended coherent states 
Extended coherent states are coherent states for which the measure associated with 
the resolution of unity is not unique, including examples where the measure is 
concentrated on manifolds of codimension one or higher. Thus, in principle, all 
their properties and consequences may be obtained from the foregoing simply by 
treating cases where 6e has the proper non-uniqueness and support. However, we 
prefer to use a less implicit scheme and instead will assume that extended coherent 
states, denoted by vectors such as 10; A), where e E L, X E A, have the property that 

J R klauder and E F Whiting 

I = l&A)(t;  A161 (2.21) J 

J I 
holds for all A. In consequence, we will have 

I = l0;A)(t;Xl6Edu(X) = lt;A)(0;Xldp(0;A) (2.2-2) 

for any U such that l d o ( A )  = 1. There is no restriction on the X dependence of 
the states (0; A) in this construction, although our primary interest lies in cases where 
each value of (e; A )  labels a distinct ray. The measure dp(E; A )  is not unique because 
of the freedom in du(A). 

For the sake of definiteness we now consider in detail two generally distinct 
prescriptions to define extended coherent states. 

2.4. Outer extended coherent states 

As a starting point, we assume that 

in which, for purposes of exposition, 6E is now definitely taken to be unique, and we 
introduce a family of unitary operators V(X), where X = ( X I ,  Xz, . . . , A * )  E A, so 
that 

I = V(X)IVt(X) = le;A)(e;xlso (2.24) 

holds for any A, where It; A) V(X)le). Suppasing that 16‘) = U ( t ) l q )  as in the 
previous consideration, we now call the states V(X)U(E) lq )  outer extended coherent 
states. Consequently, 

J 

I =  I0;A)(0;A(6Edu(X) = l0;X)(e;Xldp(e;X) (2.25) I J 
for any U such that J’du(A) = 1. In addition we introduce the upper symbol by 

H(E;  A )  = (& AlXle; A). (2.26) 

For the lower symbol we first define 

(2.27) 
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from which it follows that 

x = h(e;A)le;A)(e;Alae. (228) J 
These two symbols are then related by 

H ( ~ ’ ; A ‘ )  = h(e;x)l(e; Ale’; x’)126t (2.29) J 
or when A‘ = A, by 

H ( ~ ’ ; A )  = Jh(e;x)l(ejey2se (230) 

just as before. 
Equipped with the quantities defined above, it follows that we can then wite 

I >  (g”;A”le-’”Tlt’;A‘) = Jexp{iJ [i(e;Al-l&A) d - H(e;A) dt ’Dp(e ;A)  (2.31) 
dt 

where it must be emphasized that the formal measure ?Jp(e;X) may depend on 
time in an essentially free manner, so long as the paths are pinned to the desired 
boundary conditions t (0);  A(0) = P; A’ and E(T); A(T) = E“; A”. A similar formal 
path integral expression exists, just as before, with h(&A) replacing H ( P ; A ) .  

When it does not vanish, we may adopt 

(2.32) 

as the classical action appropriate to the system under consideration. 

25. Inner euended coherent states 

We next proceed to introduce a potentially different form of extended coherent states 
which, as will become evident, have virtues of their own. Let { U (  e ) ]  denote a set of 
unitary operators that have the property that 

I = J ~ ( W ( E l ~ t ( W ~  (233) 

holds for a wide class of unit vectors I(). Next assume that the vectors 

IM = V(A)lV) (234) 

for a k e d  unit vector 111) and a set of unitary transformations { V( A ) ]  are all vectors 
of the form I[) for which equation (2.33) holds. In that case we find that 

(2.35) 
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holds for all A, where, adopting the same notation, we now set 

We call the vectors in equation (2.36) inner extended coherent states (V is inside) 
in contrast to the vectors appearing in equation (2.25), the ouler extended coherent 
states (V is outside). Of course, even these two cases are hy no means exhaustive. 

Whichever the prescription, inner or outer, the same expansion of the resolution 
of unity applies: 

J R Mauder and B F Whiling 

le ;A)  = U(t)V(A)I1I) .  (236) 

I = l&A)(&A16edu(A) = l&A)(e;Aldp(&A) (237) 1 s 
where do( A) = 1; and in either case, equation (2.26) gives the upper symbol while 
equation (231) corresponds to the representation of the formal extended coherent- 
state path integral. 

What is the advantage of inner compared with outer extended coherent states? If 
U(t)V(A) make an L + A parameter continuous group there is no real difference 
between the inner and outer states, only a coordinate change. A difference is 
apparent, however, when the operators U(O)V(A) taken together do nor form a 
group. 

For the rest of this section we focus on inner extended coherent states. Consider 
the case where {V(A)} form an Abelian set of transformations. Then it is 
straightforward to see that the kinematical one-form has the structure 

i(e; Aldl& A) = ye(& A)dP + dC( A )  

y,(&A) = i (q lv+(A)U+(e)~~ ' (e )v (x ) lo ) .  

(238) 
(summation convention implied) where 191 

(2.39) 

No matter how many As, the maximum number of independent ys is determined 
by the number, L, of labels occurring in U(e). Examples in section 4 will show a 
case where this maximum is realized, as well as cases where it is not. It is clear that 
whenever A > L there will effectively be fewer variables represented in the one-form 
with components denoted by equation (2.39) than occur in the extended coherent 
states, and this will eventuate in there being constraints among the classical equations 
of motion. Of course, if not all the ys are independent as functions of the As (or 
equivalently, if some are constant), there will be additional constraints. 

B 

Up to surface terms the classical action now reads 

I = [y,(kA)@ - H(C;A)]dt. (2.40) J 
For convenience let us assume that the operators {U( e ) )  generate a group, and let 
{ X b }  denote generators of that group. Furthermore, let us assume that the quantum 
Hamiltonian 'H = 'H(X, ,  X,, . . . , X,) = 7i (Xb) .  In that case 

H ( C A )  = (e;A1x(Xb)le:A) = (VIx(A;(t)Xc(A))IV) 
= (dWAZfi)oc(AY + A K ~ ) % ( A ) ) I v )  (241) 

in which the A;(C) are determined entirely by the group generated by the [ ] ( e ) ,  and 
where XJA) = Vt(A)X,V(A) and .,(A) = (q1SC(A)lq). The quantum corrections 
are all contained in 6Xc(A) z X,(A)-u,(A)iT, but the auxiliary variables also appear 
tangled up in the classical Hamiltonian in a quite complicated way. 
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3. Basic examples d extended eoherent states 

3.1. Canonical coherent stales 

We start with conventional canonical coherent states based on an irreducible, self- 
adjoint representation of a Heisenberg pair of variables Q and P that satisfy 
[Q, P]  = if. If 17) denotes an arbitrary, normalized fiducial vector, then 

Id ( 3 4  l P  ) - -i9PeipQ ,q  = e  

defined for all (p,  q )  E RZ, constitute the set of canonical coherent states. For any 
117) these states satisfy 

I = JlP,q)(P,qldPdqPT ( 3 4  

yielding a resolution of unity in terms of an equally weighted integral of the one- 
dimensional projection operators these states make. If 71 = 71( P, Q) denotes the 
self-adjoint Hamiltonian for some quantum mechanical system then, following section 
2, the propagator expressed in a canonical coherent-state representation admits a 
formal path integral expression in the form 

(p//, qffle-i71T lp',q') = M J e x p ( i J  [ i ( p , q l ~ l ~ , ~ ) - ( p , ~ / 7 1 l ~ , ~ )  d dt DpDq 

0.3) 
I >  

where p(O),q(O) = p',q' and p(T) ,q(T)  = p".q". This prescription certainly 
suggests the interpretation of 

d 
(3.4) I = J [i(p, ~IZIP, 4) - (P, W I P ,  9) ]  dt 

as a classical action for this system. Indeed, if (qIP(v)  = 0 = (qlQlq), then 

I = - H(P, q)Idf (3.5) 

where 

H(P,q)E ( P , ~ I ~ ( P , Q ) l p , q ) = ( ~ I ~ H ( P + ~ ~ Q + 9 ) 1 ~ ) .  0.6) 
Whenever the dispersions (qIPzIq) and (qIQ'lq), and the higher moments, vanish 
as h --t 0, it then follows that 

H ( p , q ) =  H,(P,q)+O(R;P,q) (3.7) 

showing, as previously indicated, that apart from hdependent corrections H(p,  q )  = 
H , ( p , q )  the strictly classical Hamiltonian for theories with tl = 0. We often 
encounter situations for which both dispersion terms depend on ta in the same way 
(to leading order). These will be of particular interest to us in what follows. 
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3.2. Dilation ertended canonical coherent states 

For our first example of extension, let D = ( Q P  + P Q ) / 2  denote the self-adjoint 
dilation generator that satisfies [Q ,O]  = iQ and [P,D]  = -iP. ?&)gether with 
[ Q , P ]  = i l ,  it follows that P, Q and D make a three-parameter Lie algebra in 
the same sense that P and Q make a two-parameter Lie algebra (namely, as factor 
representations of groups). Define 

.I R Mauder and B F Whiling 

T > o  ( 3 4  v(?) = ei(ln+ 

and observe that 

= V(PYVt(4  = JV(r)lP,4)(P,4lVt(r)d~dq/27r 
(3.9) 

= JlP,4;r)(P,(I ; r IdPd4/2~ 

holds for any r, where 

Ip,q;r) f V(r)lp,q) (3.10) 

denotes an (outer) extended coherent state. If U is a measure on T such that 
J d a ( r )  = 1, then it also follows that 

1 = I~,q; r ) (~,q; r ld~dcldu(rP) /2~.  (3.11) 

Among such possible measures we mention du ( r )  = 6(r-<) d r ,  even with different 
in every time slice which arises in the construction of a path integral. 

This particular example serves to illustrate an additional feature of certain types of 
extended coherent states: the same set of extended coherent states may be obtained 
by the extension of several inequivalent sets of coherent states. For suppose we 
consider the set of states 

I 

I ~ , ~ )  Eei~Qeiln14Dn ( 1117) (3.12) 

defined for all p E R and r E R" E R\{O}. Here 

rqr) E ecry + e(-r)rr (3.13) 

where ll denotes thepurify operator. Then provided cq 5 (171 1&1-'1q) < 00, these 
states also lead to a resolution of unity in thc form (see appendix) 

H = /p , r ) (p , r l r -2dpdr/2nc,  (3.14) 

which is one form of the well known resolutions of unity associated with the affine 
coherent Stales [10,11]. In analogy with the previous discussion we Observe that 

J 

4 = JIp,r; 4)(p,r;qlr-2d~drda(g)/2?rc,  (3.15) 
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where Jdu(q) = 1 and where 

IP, r; 4)  E e- iq P I P ,  4 (3.16) 

denotes an element of an 'alternative' set of extended coherent states. ks a matter of 
fact the Ip, r; Q) states are closely related to the Ip,  q; r)  states thanks to the group 
structure involved; specifically 

Ip, r;q) = I v ,  +q; 1.1) 
a relation that holds for aU T E R'. 

Additionally, we may introduce the states 

r)l4 -iqPei lo IrIDn ( 
lq, 4 e 

defined for all p E R and r E R', for which (see appendk) 

I = lq, 4 ( q ,  TI drdq/2nE, J 
where 5, = ( Q ~ ~ F ' ~ - ' ~ ~ )  < 00 restricts the choice of IQ). As before 

= /Iq, c p ) ( q ,  r;pl drdpdo(p)/2nE, 

provided Jdu(p)  = 1, where 

Iq,p;p) -eiPQlq,r). 

These states are phase related to the others by 

Iq,r;p) = eiPqIp,r;q). 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

3.3. Generalualion 

Now, from the more general point of new adopted in the fust part of section 2, we 
may equally well consider the extended coherent states 

Ip,q,r) Ip,r;q) (3.23) 

as a set of coherent states in their own right (where (p ,  q,  T )  E Rz x R') for which 
a resolution of unity exisa in the form 

(3.24) 

for any of an infinite class of suitable measures p [12]. "his measure may even 
just pick out certain seclions of the coherent states, signifying that only two of the 
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variables are required, the remaining one being auxiliary. Based on our previous 
discussion three such sectional measures are given by 

J R Mauder and B F Whiting 

d&p, 9, r )  = S(r  - 0 d p d q d r P n  

d p p ( p r q r r )  = 6(q-€)r-2d~dqdr/27rcn (3.25) 

dp,(p, q, = S(P - 0 dpdqdrPn5 ,  

clearly demonstrating the non-uniqueness, and the support on a manifold of co- 
dimension one, as discussed in section 2 Alternatively, fi  may be a non-sectional 
measure, such as 

where f ( r )  2 0 and j" f ( r ) d r  = 1; for example, f ( r )  = x(r ) ,  where x(r)  = 1 if 
2 < r < 3 and x = 0 othewise. Observe that a restriction or weighting of some 
sort must apply to the measure dpdqdr  or dpdqdrlr ' ,  since a totally unrestricted 
integration over Rz x R' necessarily leads to a divergence. 

Let us choose p as any of the suitable measures appropriate to the coherent 
states {lp,q,r)}. In that case +(p,q,r)  = (p,q7r1q6) leads to a (pindependent) 
representation of Hilbert space in the usual way. Additionally, a formal path integlal 
expression for the propagator exists in the form (see section 2) 

dfi(p,q,r)  = f ( r ) d p d q d r P a  (3.26) 

Ip',q',~') ,$I, ,.trle-iXT 

- (p,q, rl'% q , r )  dt 'WP, q,  r )  (3.27) 

where, we emphasize, the choice of p(p,  q ,  r )  can depend on time. 'lb illustrate just 
one case covered by this general formulation we observe that 
(p",  q", r"le-inTlp', q', r') 

I >  

x 6{7-(.) - € ( . ) P p % D r  (3.Y 
where E ( t )  is any smooth path that connects t(0) = r' and E(T) = r". Thus, here 
is a formal path integral representation for a propagator where r( t )  can assume any 
smooth path one chooses consistent with the boundary data, yet the propagator in no 
way depends on the chosen path. Alternatively, similar &measures on q or p could 
equally be chosen. 

As we have seen on several occasions now, from a path integral point of view the 
expression 

(3.29) 

assumes the role of the classical action, and it is clearly different from the expression 
considered previously in equation (3.4), where, in effect, r ( t )  1. In this new 
expression for the action there is no trace of which variables are 'fundamental' and 
which are 'auxiliary'; this division-artificial but nevertheless necessary-is embodied 
in the choice of p and arises only in the path integral quantization as we have 
described it. 
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3.4. Additional atensions of canonical coherent states 

The example we have just introduced is of particular interest since elimination of 
any one of the three generators P, Q or D will still lead to a closed subalgebra. In 
the next set of examples we consider, this will not be the case. For each further 
example we will specify the (inner) unitary operator chosen for the extension, and 
from it obtain the resultant path integral action. And we will see that, in general, it is 
judicious to introduce some new classical variables, shifted from the original canonical 
label values hy amounts which depend on tb In what follows the basic generators are 
P and Q supplemented by those arising from the inner extension. 

TO deal collectively with the various particular cases we are about to consider, it 
will be helpful to introduce some additional convenient notation. Thus, let 

V(v) =exp(iv'K)exp(iv2Y,) . . .  exp(ivkYk) ... exp(ivAYA) (3.30) 

where the Yk have been included as further generators of the extended Lie algebra. 
We will consider only the case where all Y, commute among themselves. Then with 
(.) = (?I .  17) we define 

P ( v )  = V t ( v ) P V ( v )  & ( U )  = V t ( v ) Q V ( v )  
~ P ( v )  = P-H(P(v) )  6Q(v)  = Q -X(Q(u))  
- 
P = P + (P(v)) q = n'+ (&(VI).  

Expressed in these variables the path integral action becomes 

(3.31) 

A 

I = J [Fe- (p (Q(v ) ) ) ' -  (P (v ) ) (Q(u)y -  c ( y k ) c k  - H(i i ,? .v ) ]  dt (3.32) 

in which ' after a quantity represents the time derivative of that preceding quantity, 
and where 

k = l  

W F , % v )  = (dWY + ~ P ( u ) , $  + 6 Q ( u ) ) l ~ )  (3.33) 

which depends on the labels { v k }  through the implicit dependence of 6P(v ) ,6Q(v ) .  
We now choose two distinct classes of extended coherent states for further 

consideration: (i) Yk = Qk+' and (ii) Yk = Dk; and we select two particular 
examples for examination in the next section. For V 8 -  - ei@Q2ei7Q1 (i.e. 0 = vI,  
y = v2) we find 

Q ( P , Y ) = Q  P ( P , r ) = P + 2 P Q + 3 r Q 2  

with a straightfonvard generalization. It follows that ( Q ( B , y ) )  = 0 in this case, 
which will lead to constraints in the classical theory, even when both 0 and y are 
considered time dependent. Alternatively, for V, = ei'n~r~DeiuD*il(t-), we have 

Q ( T , u )  = r-lei"Qe-2"D P( T ,  U) = reiU pe2un (3.34) 

with generalization being not so straightfonvard. It is clear that, for r and U 
independent, ( P ( r , u ) ) ( Q  (.,U))' is not a total derivative (unless U or r is some 
tixed constant). Thus there will be no classical constrains here in general. 
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As a final remark in this section we note first that, quite generally, there will be 
no constraints when the rank of the totally antisymmetric matrix Ma& given by 

(3.35) 

is equal to its dimension, A. In examples based on canonical coherent states for one 
degree of beedom, this is never possible unless A = 2. Our example with tb k 
one such Occurrence bom which constraints are absent, while for ‘6 all additional 
classical equations will be constraints. 

The motivation behind the development in section 2 was that auxiliary variables 
can lead to a more complete description of a quantum state than is afforded by 
the standard coherent states constructed with a minimal label set. The introduction 
of extended coherent states also leaves its imprint on the extended version of the 
classical equations of motion which they generate. Just such equations and their 
interpretation are the subject of the following section. 

4 Quantum to classical h i t  

Simple examples are enough to demonstrate several of the various situations which 
arise. We shall use the free particle, the harmonic oscillator and the quartic potential, 
each of which yields non-trivial results. The following list relates individual terms in 7i 
to their corresponding contributions in H (D is added to this list for later reference): 

It is worth realizing to begin with that even for canonical coherent states quantum 
corrections to the path integral action already arise. Thus, for 27i = Pz t Q’, we 
find 

2 H  =ij’+q’ t ((Ap)’)+((AQ)’) ( 4 4  

where A Q  = Q - (Q) and A P  = P - (P). In the case of the extended coherent 
states generated by P, Q and D, the classical Hamiltonian satisfies 

2 H  =F’ + v’ t rZ((AP)’) + T-’((AQ)’) (4.3) 

and since r enters into the first-order (path integral derived) Lagrangian density only 
through H and as part of a total derivative, it k clear that stationary variation of the 
action with respect to T will lead to a constraint, 

(4.4) 
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Now, although the quantum corrections are proportional to h (since we assume this 
property of the two dispersion terms) and, in fact, the whole constraint is thus an 
equation of nominal order h, neVertheleSS its solution for r from 

r4 = KAQ)’)/((AP)’) (4.5) 

will be some number effectively independent of h, which will exist and equally could 
be required to hold even in the limit h -+ 0. Had we considered just the kee particle, 
it would have been impossible to impose the constraint without going to the classical 
limit so that the dispersion could vanish (recall r # 0 from equation (3.8)). 

With extended coherent states generated by P, Q and Q’, we find 
( V t ( p ) P V ( p ) )  = (P) + 2p(Q), so that 6 P ( p )  becomes A P  + 2 p A Q  while 6 Q  
remains simply AQ. Then the harmonic oscillator Hamiltonian becomes 

2 H  = F’ +Fz  + ((AP)’) + ((AQ)’) + 2 p ( A P A Q  t A Q A P )  + 4P2((AQ)’) 

(4.6) 

and there similarly arises the constraint (of order h )  

(4.7) 
L3H -={APAQ+AQAP)+4P( (AQ)*)=O 

with its classical solution (which, again, will remain well defined, even for h - 0) 

For both of these examples, and in a number of specific respccts, the h i  0 limit has 
an effect somewhat resembling that of the m - 0 limit in classical electromagnetism. 
Specifically, we have an analogue of the decoupling of the longitudinal degree of 
freedom but, of course, we are without an analogue of the covariant conservation of 
sources. 

As explained in the previous section, the addition of a Q3 generator leads to an 
additional constraint. Wth this extension, 6P(P,-7) becomes AP+2pAQ+3pAQZ,  
in which AQZ = Qz - (Q’), and the constraint equations which follow give 

which generally will have non-trivial solutions. A solution in which y is also 
independent of i? to leading order will coincide with a contribution in the next- 
to-leading order dependence of p on h. We note that in all these cases considered 
so far, we could satisfy the constraints within the path integral by a suitable choice 
of the measure, p ,  in the resolution of unity, simply because the constraints for r,  or 
p, or p and y were constants. 

In the last example we shall consider related to the harmonic oscillator, we use 
the full extension given by V,. It will be convenient to introduce 

= e- iuD2peiuDf and Q(u) = e-’U”zQei”Dz (4.10) 
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and to define a new quantity: 

b D ( u )  E D - (P(u))(Q(u))Z (4.1 1) 

while 6 P ( u )  and 6Q(u) are defined analogously to equation (3.31). The r, U degrees 
of freedom again decouple from the p, ii degrees of freedom, and the equations of 
motion they satisfy are now dynamical: 

We thus have two new classical variables with no constraints. 

operator 
The final example we consider is obtained from the quantum Hamiltonian 

2X = P2 + Q4 (4.13) 

and we use the P, Q and D extended coherent states, for which the classical 
Hamiltonian becomes 

In this case there is again a constraint, aH/ar = 0, with solution r = r@), 
where now the auxiliary and the original (shifted) canonical variables are completely 
intercoupled. Elimination of this constraint will not change the classical dynamics, 
but it will clearly break contact with the original quantum theory, because there is 
no reason to suppose that any measure exists which can preserve the resolution of 
unity (heavily used in the construction of the path integral, hence the classical action), 
while being compatible with the constraint. This is perhaps a very simple, yet striking, 
example of how elimination of classical constraints can affect the transition back to a 
quantum theory. 

5. Discussion and conclusions 

The formalism surrounding the general theory of coherent states is exceptionally 
rich. Not only does it provide a bridge between the quantum action principle of 
equation (2.1) and a classical action principle such as equation (35) that arises for 
canonical classical variables, but, by allowing for suitably supported measures in the 
resolution of unity, equation (2.2), it also encompasses a description of extended 
coherent states containing auxiliary variables which are accompanied by new path 
integral representations of the propagator, for example equation (2.31). These same 
path integrals identify classical actions with additional, and often constraincd, degrees 
of freedom. Thus, the choice of coherent-state extension can strongly affect what 
becomes the classical theory. One thing which has become evident in our examination 
of specific examples in sections 3 and 4, and which we would like to stress, is that the 
relation between the resultant classical theories and the initial quantum theories is 
far from being trivially transparent. This is especially so when the classical equations 
contain new dynamical degrees of freedom, but is still the case when constrained 
variables couple to the genuinely dynamical variables. In particular, only when 
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constraint variables completely decouple does there generally exist a measure for 
which elimination of the constraint will remain compatible with a coherent state 
resolution of unity. 

In some elementary examples, which we did not discuss above at all, such as 

?f = aP+ bQ+ c D  (5.1) 

with extended coherent states generated by P, Q and D, the classical action does not 
contain any reference to the auxiliary variable (up to a total time derivative). This 
behaviour is reminiscent of a gauge variable, which should normally be accommodated 
by maps for which (e A) is many-to-one onto rays rather than one-to-one as we have 
exclusively used in section 3. In the few examples we have considered in section 4 it is 
clear that the constraints were always second class. We have not yet shown a general 
method of relating the existence of constraints of a particular class to the presence 
of identifiable structures in the representative of the quantum theory. However, 
it is certainly clear that the process of eliminating the constraints by hand at the 
classical level may be actually further separating the resultant classical theory from 
its quantum parent. Although elimination of constraints is a widespread practice, it 
does not appear to present itself as a way of narrowing the gap between classical and 
quantum physics. 

In this paper we have incorporated a coherent-state representation of quantum 
systems into a wider description based on extended coherent states. In this context 
we have examined the impact of auxiliary variables both on the path integral 
representation of the quantum propagator and on the subsequent equations of motion 
for purely classical variables. Constraints have emerged as a frequent but non- 
mandatory outcome of the introduction of auxiliary variables. 
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Appendix 

Here we give additional facts regarding the group(s) discussed in section 3 as well as 
demonstrate the relevant resolutions of unity needed there. 

Choose P, Q and D = ( Q P t  PQ) /2  as self-adjoint operators, and introduce II, 
the panty operator, which satisfies llz =B, IIt = II, and FIQn = -Q, II PII = -P. 
We then set 

~ ( p , q , r )  = e-”Pe’PQei”lrIDn(v) 

where (p, q )  E R2 and r E R\{O}, and with O(r) = (1 t r / I r l ) /Z ,  

I I ( T + ) = O ( T ) B + O ( - T ) ~ .  

It follows that U is a unitary operator for all p, q and r, and that the combination 
law reads 
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Subgroups of interest are those defined by 
U , . ( p , q ) =  u(p,q,1) Up(q,r)  = u(O,q,r) Uq(p7r )  = U ( p , O . r )  
which satisfy combination laws that follow directly from the combination law for 
the unrestricted U operators. We note further that the operators { U v ( p , q ) }  are 
irreducible by assumption, and, in addition, the operators {Up(q, r)} and {Uq(p,r)} 
are also irreducible. (If we had omitted the reflections by restricting r to be positive, 
T > 0, then neither {Up} nor { U q }  would have been irreducible. Although this case 
could be treated satisfactorily we omit it from our discussion.) 

We next take up the question of the resolution of unity expressed in terms of 
projection operators onto the extended coherent states. As in section 3 we define 

which assumes the form 

when expressed in the z-representation (91.) = rlcc)) where Jlq(z)12dz = 1. 

Ip,q,r)  = e-'qPeipQeiinIPIDn(r)I,) 

(ZIP, q, .) = f i e ' P ( = - q ) d r ( z  - q)) 

First, we examine 
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