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Extended corresponding-states behavior for particles
with variable range attractions

Massimo G. Noroa) and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 3 April 2000; accepted 19 June 2000!

We propose an extension of the law of corresponding states that can be applied to systems—such
as colloidal suspensions—that have widely different ranges of attractive interactions. We argue that
the ‘‘reduced’’ second virial coefficient is a convenient parameter to quantify the effective range of
attraction. Knowledge of the pair-potential alone allows one to estimate the relative location of the
liquid–vapor and solid–fluid coexistence curves. ©2000 American Institute of Physics.
@S0021-9606~00!52432-5#
s
m
at
qu

he
r
ic
n

er
te

w
t

e

s

he

le
ia
th
a
in
rm
ve

me
. At

ice

ular

g-
ical
of

y
oi-
trac-
ur

that
r on
to
al-

we

of
-
er
a

or

ies
d

le
tal

the
van der Waals’s law of corresponding states expres
the fact that there are basic similarities in the thermodyna
properties of all simple gases. Its essential feature is th
we scale the thermodynamic variables that describe an e
tion of state~temperature, pressure, and volume! with respect
to their values at the critical point, all simple fluids obey t
same reduced equation of state. Pitzer1 has given a molecula
interpretation of the law of corresponding states for class
monoatomic systems using statistical mechanical argume
This proof is restricted to systems for which the total int
molecular potential can be written as a sum over pair po
tials in the form

U5(
i j

ev~r i , j /s! ~1!

where e is as an energy parameter ands a characteristic
length. The law of corresponding states follows when
assume that the pair potentials of all substances to which
law applies areconformal, i.e., when their plots can be mad
to superimpose by adjusting the values ofe and s. With
these assumptions, the partition function is of the form

Q~N,V,T!5F s3

L3 g~T* ,r* !G , ~2!

whereg is thesame functionfor all molecules and depend
only on T* 5kBT/e, the reduced temperature, andr*
5N/Vs3 the reduced density.2 It then follows that many
other thermodynamic properties—in particular t
pressure—are functions ofT* andr* only.

Unfortunately the interactions between real molecu
are never truly pairwise additive, nor are the pair potent
of different molecules conformal. Even for inert gases
conformality of pair potentials is only fair. While only
small family of substances can be described by the orig
form of the law of corresponding states, many fluids confo
quite accurately to extended equations-of-state that invol
third parameter. Thus, the compressibility factorz can be
expressed as

a!Electronic mail: massimo@amolf.nl
2940021-9606/2000/113(8)/2941/4/$17.00

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
es
ic
if
a-

al
ts.
-
n-

e
he

s
ls
e

al

a

z5bP/r5 f ~T* ,r* ,x!, ~3!

wherex is a third parameter that is usually related to so
characteristic feature of the phase diagram of a substance
first3 the critical compression factorzc was used forx, but zc

is hard to determine with high accuracy, and a better cho
was sought. The slope of the vapor pressure curve~at a re-
duced temperature ofTr50.7!, v, turned out to be a more
convenient choice forx.4,5 Various equations of the form
z(T* ,r* ,v) have been presented,6 that agree well with the
thermodynamic properties for several classes of molec
fluids.

In this communication we focus on the effect of chan
ing the range of attractive forces in suspensions of spher
colloids. As the range of attraction varies independently
the hard-core radiuss, the effective interactions are clearl
not conformal. It is known that the phase behavior of coll
dal suspensions depends strongly on the range of the at
tive interactions. However, at present, there is—to o
knowledge—no extended law of corresponding states
allows us to make predictions about the phase behavio
the basis of the effective pair potential alone. It is our aim
formulate an extended law of corresponding states that
lows us to compare different pair potentials. In particular,
have considered the square-well model,7 attractive Yukawa
potentials,8,9 2n-n Lennard-Jones type potentials,10 the
a-Lennard-Jones potential used in the description
protein–protein interactions,11,12an effective potential repro
ducing the depletion attractive forces in colloid–polym
mixtures,13 and more complex potentials, which include
repulsive barrier, i.e., the effective two-body potential f
mixtures of additive asymmetric hard spheres.14 At this stage
we limit our analysis to the phase behavioraround the criti-
cal point, but our findings should be generalized to densit
away from the critical region, in the spirit of the extende
law of corresponding states.

We proceed to calculate the scaling parameters~e, s,
and x!, which stem from the knowledge of the interpartic
potential alone, without any need for further experimen
measurement. An obvious choice for the length scales is the
effectivehard core diameter. Some care has to be taken in
1 © 2000 American Institute of Physics
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calculation of seff for continuous potentials~such as the
Lennard-Jones 2n-n!. According to the Weeks–Chandler
Andersen~WCA! method, we separate the potential into
tractive vatt and repulsivev rep parts,15 and calculate the
‘‘equivalent’’ hard-core diameter for the repulsive part of t
potential using the expression suggested by Barker:16

seff5E
0

`

dr@12e2vrep~r !/kBT#. ~4!

Two parameters are needed to properly describe the rol
attractions: an energy scale and a second quantity relate
the range of attraction. At low temperatures, the poten
energy per particle in the crystalline phase is given by
value of the pair potential at the nearest-neighbor separa
multiplied by the number of neighbors~and divided by two,
to correct for double counting!. This is independent of the
functional form of the potential. This makesv(r min), the
depth of the potential well, our natural choice for the ene
scalee. The third parameter is the reduced second virial
efficient, i.e., the second virial coefficientB2 divided by the
second virial coefficient of hard spheres with a diameterseff .
The second virial coefficientB2 can be easily calculate
once the functional form of the potential has been specifi

B252pE
0

`

dr r 2@12e2v~r !/kBT#, ~5!

and the reduced second virial coefficientB2* is defined as

B2/ 2
3 pseff

3 . Note that all three parameters~seff , e, and B2* !
can be computed directly from the pair potentialv(r ). In this
sense, our approach differs from those extended corresp
ing states laws that use experimental data to define appr
ate scaling parameters. This is particularly useful for the
scription of colloidal systems where the topology of t
phase diagram changes as the range of the attraction is
creased. For instance, it would not be feasible to use
properties at the critical point as scaling parameters, as
critical point may be experimentally inaccessible for su

FIG. 1. Stickyness parametert plotted vs the reduced temperatureT*
5kBT/e for different potentials.~—s—! attractive Yukawa,~---h---! 2n-2
Lennard-Jones,~•••n•••! a-Lennard-Jones.
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ciently short-ranged attractions. Our working hypothesis
that for a wide range of colloidal materials, the compressib
ity factor z is a function of only three parameters, viz. th
reduced temperatureT* 5kBT/e, the reduced densityr*
5N/V(seff)

3, and the reduced second-virial coefficientB2*

z5 f ~T* ,r* ,B2* !. ~6!

It is conventional to express the reduced second-virial co
ficient in terms of a parametert that is defined in the follow-
ing way:17 B2* [121/4t. t is a measure for the
temperature—low~high! T corresponds to low~high! t.
However,t is not a linear function ofT.

In Fig. 1 we plot the stickyness parametert as a function
of the reduced temperature for some of the cases liste
Table I. In the temperature range studied, the stickyness
rameter increases almost linearly with the reduc
temperature.18 The figure shows another important feature:
thet2T* curves for two different potentials are close at a
particular temperature, they tend to be close forall tempera-
tures studied. Such behavior is an indication that the pre
scheme to compare nonconformal potentials is reasona
As can be seen from the figure~and from Table I!, the value
of t—and therefore that of the reduced second vir
coefficient—at the critical point is remarkably consta
~around t'0.1!. This fact had been noted earlier b
Vliegenthart and Lekkerkerker.19 In fact, t hardly varies be-
tween the limit of extremely narrow attractive wells~Bax-
ter’s adhesive hard-sphere model!17 and the~van der Waals!
limit of infinitely long-ranged attractive wells, as also i
mixtures of the two models.20

We mentioned above that the reduced second virial
efficient is a measure for the range of the attractive par
the potential. To make this statement more precise, we h
to specify what we mean by the ‘‘range’’ of a potentia

TABLE I. Values ofT* , r* , t and the range of the equivalent square w
systemR for different potentials, and for different ranges, calculated at
liquid–gas critical point.

Tc* rc* t R

SW ~Ref. 7! 2.61 0.27~3! 0.0765 1.000
1.79 0.27~3! 0.0766 0.750
1.27 0.31~3! 0.0942 0.500
1.01 0.34~2! 0.0924 0.375
0.78 0.42~2! 0.1007 0.250

Yuk ~Refs. 8 and 9! 1.170 0.31~1! 0.0969 0.427
0.715 0.37~3! 0.1044 0.227
0.576 0.38~2! 0.1009 0.153
0.412 0.50~2! 0.1020 0.070

2n-n ~Ref. 10! 1.316 0.30~5! 0.0990 0.476
0.997 0.32~5! 0.0983 0.353
0.831 0.33~5! 0.0987 0.278
0.730 0.35~5! 0.0996 0.229
0.603 0.37~4! 0.1001 0.167
0.560 0.38~5! 0.0997 0.146
0.425 0.42~5! 0.0986 0.082

a-LJ ~Ref. 11! 0.418 0.44~3! 0.1073 0.073
Coll ~Ref. 13! 0.712 0.37~5! 0.0970 0.225

0.562 0.41~5! 0.1023 0.144
HS-mix ~Ref. 14! 0.186 not avail. 0.0744 0.005

0.173 0.5~2! 0.0758 0.003
0.164 0.5~2! 0.0788 0.002
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Here, we take the following route: there is one system
which the range of the attractive potential is defined una
biguously, namely hard spheres with a square-well attrac

u~r !5H ` r<s

2e s,r<ls

0 ls,r

. ~7!

A logical choice for a dimensionless measure for t
range of the attractive part of the potential isR[l21. In the
spirit of our extended corresponding states approach, we
define the range of an arbitrary attractive potential to
equal to the range of that square-well potential that yields
same reduced second virial coefficient at the same redu
temperature. The stickyness parametert for a square-well
potential is given by

t5
1

4@l321#~e1/T* 21!
. ~8!

Using this mapping onto the square-well system, we h
computed the effective range of the attractive part of
potential for a number of different potential functions th
have been used to describe colloidal suspensions or glob
protein solutions~see Table I!. In general, the effective rang
of attraction is temperature dependent.

In Fig. 2, we show the relation betweenTc* , the reduced
critical temperature, andR, the range of the attractive poten
tial. In the temperature range studied, the relation betweeR
andTc* is surprisingly linear—although, again, we know th
this linear relation cannot hold for values ofR very close to
zero—and obeys the simple relation:

Tc* '0.2612.1R. ~9!

FIG. 2. The reduced temperature at the liquid–gas critical pointTc*
5kBTc /e plotted vs the range of attractionsR5l21 of the equivalent
square well system. As the range becomes shorter than the threshold
'0.14, the liquid–gas transition becomes metastable.~d! attractive
Yukawa, ~j! Lennard-Jones 2n-n,~m! a-Lennard-Jones,~h! square well,
~s! effective colloid–colloid interaction.Inset: The reduced critical density
plotted vs the reciprocal range 1/R; the arrow indicates the van der Waa
limit.
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The range of the attractive part of the potential determi
whether a given system can exhibit a stable liquid–va
transition or whether this transition is preempted by freezi
The disappearance of the liquid–vapor transition in syste
with short-ranged attraction was first noted in theoreti
work by Gast, Russel, and Hall.21 This work has subse
quently been placed on a firmer theoretical footing by Le
kerkerker et al.22 Evidence for the disappearing of th
liquid–vapor critical point comes from both simulation,9,11

and experiment.23 All authors agree that the liquid–vapo
transition disappears for sufficiently short-ranged attracti
However, estimates differ for the value ofR where this
change in the phase diagram takes place. Estimates fR
vary from 0.1 to almost 0.4. Part of the reason why t
different estimates for the critical value ofR appear incon-
sistent is that the various authors have studied systems
nonconformal interaction potentials and, more importan
have used different definitions for the range. The advant
of the present approach is that we have a unique way
define the range of the attractive potential for widely diffe
ent interaction potentials. When we consider the availa
data for the 2n-n Lennard-Jones potentials, thea-Lennard-
Jones potential, and the attractive Yukawa system, we
that in every case the boundary between stable and m
stable liquid–vapor transitions is located within a narro
band betweenR50.13 and 0.15~see Fig. 2!. To date no
simulation has computed the threshold value for the squ
well model itself. A rough estimate ofR'0.25 has been
calculated using a simple van der Waals model for both
fluid and the solid phase24 and from a simple cell model with
some phenomenological character.25 For R50.85, theoretical
estimates suggest that in this case the critical point
stable.26

The available numerical data for the reduced critic
density are less accurate, but they show a definite trend:R
increases the critical density decreases, from the~estimated!
sticky-sphere limitrc* 50.611, to the van der Waals limi
rc* 50.159.

The predictive power of our approach based on pair
tentials is expected to break down when three-body inte
tions become important. We have also tested our theory
more complex pair potentials, which included a repuls
barrier.14 Here too we have found deviations from extend
corresponding states behavior: in several cases the calcu
t parameter, at the critical point, lies much below the co
stant value of 0.10, and the mapping onto the equiva
square-well system yields unphysically small attracti
rangesR.

In summary, we have formulated a simple extended c
responding states principle that allows us to make pre
tions about the topology of the phase diagram of suspens
of spherical colloids with variable range attraction. The sc
ing parameters, e, andB2* can all be derived directly from
knowledge of the pair potential. Moreover, this procedu
allows us to give an unambiguous definition for the range
the attractive part of the potential. By analyzing a number
simulation data for different model systems, we find that
liquid–vapor transition becomes metastable with respec

lue
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the freezing transition when the range of the attraction
comes less than approximately 0.14.
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