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The extended coupled-cluster method (ECCM) of quantum many-body theory, which has been
studied and developed in earlier papers in this series, is now applied to condensed Bose systems.
The formalism is seen to provide a concise and convenient description of quite general nonstatic
states of such systems with arbitrary spatial inhomogeneity. The entire ECCM description is
based on the equations of motion for the set of linked-cluster amplitudes which, we have shown,
completely characterize an arbitrary quantum system with a Schrédinger dynamics. Since all such
amplitudes obey the cluster property, and hence may be regarded as a set of quasilocal, many-
body, classical order parameters, the formalism is in principle perfectly capable of describing
phase transitions and states of topological excitation or deformation and broken symmetry. At the
lowest (mean-field) level of truncation, the formalism degenerates to the well-known Gross-
Pitaevskii description of the condensate wave function or one-body order parameter. The treat-
ment is developed in a fully gauge-invariant fashion, and is thereby shown to provide a complete
hydrodynamical description, valid in the zero-temperature limit. In particular, by studying the
off-diagonal one- and two-body density matrices in terms of the basic ECCM amplitudes, we
derive balance (or local conservation) equations for such local observables as the number density,
momentum density, and energy density. These are shown to be obeyed not only by the exact un-
truncated formalism but also by most practical truncation schemes in the ECCM configuration
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space.

1. INTRODUCTION

In two previous papers,”'? henceforth referred to as I
and II, respectively, we have discussed the extended
coupled-cluster method (ECCM) of quantum many-body
theory in considerable detail. We showed that the for-
malism could be formulated in such a fashion as to be
applicable to any many-body system for which a
Schrodinger dynamics is defined. Furthermore, we
demonstrated how the ECCM provides an extremely
convenient parametrization of the entire Hilbert space
appropriate to any such system.

The discussion in I largely focused on general proper-
ties of the formalism, and was centered on the calcula-
tion of ground-state expectation values of arbitrary
operators. We showed how such average values could
be expressed entirely in terms of the basic linked-cluster
amplitudes {o,,&,] which serve as a complete parame-
trization of the many-body system within the ECCM.
Although the presentation in I proceeded from the start-
ing point of a dynamic variational principle, and was
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couched in the language of a formally exact set of non-
linear coupled equations of motion for the basic ampli-
tudes {o,,5,}, the ECCM is nevertheless still deeply
rooted in perturbation theory, in a fashion similar to the
more well-known normal coupled-cluster method [or
exp(S) method] of Coester and Kiimmel,>~® from which
it derives.’

It has been shown’ that the ECCM may be viewed as
a particular complete summation scheme for the entire
class of Goldstone diagrams of time-independent pertur-
bation theory, defined with respect to some particular
model state. One very useful feature®’ is that the
ECCM naturally groups these diagrams as generalized
time-ordered (GTO) tree diagrams, where the GTO
property runs both forwards and backwards in time.
Furthermore, at each level of approximation the average
value { A4) of an arbitrary operator 4 is obtainable
within the ECCM from precisely the same set of Gold-
stone diagrams as the energy, by replacing each Hamil-
tonian interaction in turn by the operator A.

The capability of interpreting the ECCM in terms of
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Goldstone perturbation theory can be very useful for
comparisons with other methods, ‘and for purposes of in-
terpretation of the physical content of various approxi-
mations. However, we stress that such comparisons or
interpretations are never actually necessary. We were at
pains in our earlier papers to stress that the ECCM now
undoubtedly so far transcends its perturbation-theoretic
origins as to be (at least potentially) capable of describ-
ing such intrinsically nonperturbative phenomena as
spontaneous symmetry breaking, phase transitions, topo-
logical excitations and deformations, and nonequilibrium
processes. In perturbation-theory terms, this is achieved
by the natural groupings of diagrams which the method
imposes. Thus, every low-order perturbation-theoretic
diagram is always associated with an infinite class of
higher-order diagrams in such a way that the basic am-
plitudes always obey the cluster property—namely, that
they become zero in the limit that any subset of the par-
ticles described by the amplitude becomes far removed
from the remainder. Such a strict observance of the
cluster property is vital for a proper description of many
nonperturbative phenomena. For example, it is clearly
necessary for a proper imposition of the topological
boundary conditions which characterize such objects as
a vortex line in liquid helium, or quite general soliton ex-
citations in condensed matter systems.

We showed in particular in I how the ECCM served
to map an arbitrary quantum many-body theory onto a
classical Hamiltonian mechanics of the classical, many-
body, quasilocal fields {o,,5,}. Further, we showed
how the ECCM could also be interpreted as an exact
generalized mean-field theory of the original quantal sys-
tem. Indeed, at its lowest level of truncation (which
keeps only the one-body amplitudes o, and &), the
ECCM degenerates into the usual mean-field theory or
semiclassical approximation.

The ground-state formalism of I was extended in II to
deal with excited states, and in particular the role of the
basic amplitudes {o,,&,} as a set of generalized collec-
tive coordinates for the system was thereby further
clarified. We showed also how the excitation spectrum
could be obtained by considering small oscillations
around the equilibrium configuration. The effective
Hamiltonian that describes this situation was shown to
have the structure of an exact generalization of the
well-known random-phase approximation of Bohm and
Pines.! We diagonalized this effective Hamiltonian and
thereby were able to express arbitrary behavior of the
system in terms of these small oscillation normal coordi-
nates. As an example, we showed how the energy of the
system, calculated as the exact average-value functional
of the Hamiltonian, has a structure quite comparable to
that in the phenomenological Ginzburg-Landau theory.

In the present paper we intend to apply the general
formalism of the earlier papers to the special case of a
condensed Bose system. Formally, such systems are
among the simplest and cleanest quantal many-body sys-
tems available for study; although one knows that in
practice such systems as liquid *He are among the most
difficult to describe quantitatively for even such basic
quantities as the ground-state energy as a function of
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density. The reason for this ultimately lies in the
difficulty of designing suitable truncation or approxima-
tion schemes. In this respect one would ideally like the
same approximation to be applicable to all quantities of
interest, and the aforementioned property of the ECCM
that the expectation value ( A4 ) for an arbitrary operator
A is completely compatible with the energy expectation
value now assumes particular significance.

Also of historical importance in developing new ap-
proximation schemes has been the preservation or other-
wise of various exact conservation laws and sum rules.
One of the main motivations of the present paper has
similarly stemmed from such considerations. Our inten-
tion is to show how the ECCM may be applied to a gen-
eral, spatially nonuniform and nonstatic system. In par-
ticular, the formalism is developed to provide a com-
pletely gauge-invariant description of such systems and,
thence, also a complete hydrodynamical description,
applicable in the zero-temperature limit. Our aim here
is less to design specific approximations for particular
systems, than to investigate how the various hydro-
dynamical balance equations or local conservation laws
can be formulated both in the exact formalism as well as
in quite general classes of approximation schemes.

The plan of the remainder of the paper is as follows.
The basic ECCM formalism is first reviewed in Sec. II
insofar as it is necessary for present purposes. We de-
scribe in Sec. III how the standard Bogoliubov prescrip-
tion® 12 for the macroscopic occupation of the conden-
sate is imbedded within the present ECCM formalism by
explicitly breaking the underlying gauge symmetry
which arises from particle-number conservation. This is
achieved by choosing the particle vacuum as the model
(uncorrelated) state, so that the subsequent ECCM wave
functions describe states of indefinite particle number.
The number conservation must, however, be taken prop-
erly into account when coupling the system to external
scalar and vector gauge fields ¢(r,t) and A(r,z). We
show that these fields can be interpreted as providing
differential or local Galilean transformations which vary
with position in the system. A proper hydrodynamical
description must then be able to distinguish in a gauge-
invariant fashion between, for example, the local hydro-
dynamical kinetic energy density of translation from the
intrinsic kinetic energy density in the local rest frame.

In Sec. IV we derive the equations of motion for the
basic linked-cluster amplitudes {0 ,,5,}, and from these
also the equation of motion for the general off-diagonal
elements p(r,r') of the one-body density operator. We
describe how the set of coupled equations for the basic
amplitudes {o,,5,] may be regarded as an exact gen-
eralization of the approximate Gross-Pitaevskii'’~!
nonlinear equations appropriate to weakly interacting
condensed Bose systems. The transformation properties
of the one-body density matrix under gauge transforma-
tions are then investigated in Sec. V, and the equation of
motion for p(r,r’') is thereby expanded in gauge-
invariant quantities up to second-order terms in the
difference £=r—r’ as this quantity approaches zero.

The physical content of these equations is then ana-
lyzed in Sec. VI. In particular, we show how the local
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conservation equations for such local observables as the
number density, momentum density, and energy density
can thereby be formulated and shown to be satisfied not
only for the untruncated (and hence exact) formalism,
but also for various practical truncation schemes in the
ECCM configuration space. In this way we show that
the ECCM provides a complete hydrodynamical descrip-
tion of the zero-temperature condensed Bose fluid. The
formalism is powerful enough to be able to describe such
phenomena as topological excitations and nonequilibri-
um processes. Finally, in Sec. VII we present a sum-
mary and discussion of our results.

II. THE BASIC ECCM FORMALISM

As we have seen in I and II, and as summarized again
below, one of the fundamental underlying themes of the
ECCM is the double similarity transformation generated
by the basic operators which are used in the formalism
to parametrize the many-body states. The basic similari-
ty transformation is not unitary, and hence the ECCM is
not a manifestly Hermitian theory. Of course, in an ex-
act formulation of the ECCM in which no approxima-
tions were made to implement it, all expectation values
of Hermitian operators belonging to physically observ-
able quantities would remain real. We showed in II how
the method may be viewed as a biorthogonal formula-
tion of the quantum many-body problem. In any case, it
is best from the outset not to restrict ourselves to many-
body Hamiltonians or their relevant subsequent trans-
forms that are necessarily Hermitian.

Hence, with complete generality we may denote the
equilibrium ground-state bra and ket states of the exact
many-body Hamiltonian H as {(¥;| and |W¥,), respec-
tively, where

H W) =E,|¥,), (Vo H=E¥;| , @.1)

corresponding to the ground-state energy E,. Similarly,
if the system is not in equilibrium (or if the Hamiltonian
itself is time dependent), we must use the time-dependent
Schrodinger equations instead of Eq. (2.1). These may
themselves be formulated as a dynamic variational prin-
ciple based on an actionlike functional,

A=A[WW]= [ di{¥(2)](d/3t—H)|¥(1)) . (2.2)

Stationarity of A with respect to small variations in the
independent states | ¥(z)) and (W¥'(¢)|, subject only to
the vanishing of |8W(z)) and (8¥'(t)| at the implied
end points of the time integral in Eq. (2.2) (usually
t—t ), then gives the correct Schrodinger equations
of motion,

8A /8W' =0=i(d/0¢t) | W(t))=H | ¥(¢)) , 2.3)
8A /8W=0=—i(3/3t)(W'(t)| =(W'(t)|H .

The ECCM may now be formulated as a particular
parametrization of the states |W¥(¢)) and (¥'(z)| in
terms of a set of fully linked configuration-space ampli-
tudes, each of which obeys the very important cluster
property that it tends to zero as any subset of the parti-
cles, described by the particular configuration, becomes

far removed from the remainder. As is typical of a large
class of quantum-mechanical calculations, the ECCM
employs a construction of an arbitrary state in the full
Hilbert space 7, which is based on some suitable initial
or model state |®). This is often, but by no means
necessarily, chosen to be some suitable state in which the
system would otherwise be when (some part of) the in-
teractions are turned off. Within the ECCM, the only
assumption placed on |®) is that it is a cyclic vector.
We assume furthermore that the algebra of all operators
in 7 is spanned by the two Abelian subalgebras of the
many-body configuration-space creation and destruction
operators, defined with respect to the given state | ®).
The basic assumption is therefore that all of the ket
states in #f can be constructed from linear combinations
of the states reached by operating on | ®) with the ele-
ments of the many-body configuration-space creation-
operator subalgebra; and similarly for the bra states with
respect to {® | and the destruction-operator subalgebra.

In the above context, we discussed in detail in I the
very considerable merits of the ECCM parametrization
of the states,

‘\I/(t)>=e¢(t)eS(t) [ q))___enb(t)esh)e —S8"(1) I (b> ,

(W'(t)| :e—é(t)<(bieS”(t)e —-S(0) .

(2.4a)
(2.4b)

The important content of Egs. (2.4) is that the operators
S(t) and S'(¢) are built, respectively, only of creation

and destruction operators (defined, as above, with
respect to the cyclic vector | ®)), namely,
S$"(t) | P)=0=(P|S(2), (2.5)

whence follows the second equality in Eq. (2.4a), and
with amplitudes that in both cases are linked-cluster
quantities. The factor ¢(z) in Egs. (2.4) is some, largely
irrelevant, appropriate c-number scale factor. It follows
immediately from Egs. (2.4) that the normalization con-
dition,

(W(t) | W(t)) =1, (2.6)

is preserved for all times. It follows that the average-
value or expectation-value functional of an arbitrary
operator A

(AY=A)=(V(t)]| 4|¥(2)), 2.7

may also be written as a model-state expectation value of
the doubly similarity-transformed operator A4(z) already
alluded to above, and now defined as

(A)=(D|A(t)| D),

A(t)=eS W =S 4oSNg—5"1) 2.8)

In the remainder of the present work we shall hence-
forth choose the cyclic state | ®) to be the bare vacuum
state. Accordingly, we shall be working in a number-
nonconserving formulation, as introduced by Bogo-
liubov.® The many-body configuration space will be
parametrized by real-space coordinate indices. We as-
sume for ease that the bosons are spinless, but it would
be a trivial matter to add spin indices if required. The
basic single-boson creation and destruction operators a,
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and a,, which respectively, create and destroy a particle
at the three-space point x =(x!,x%x%), obey the usualy

canonical commutation relations,

[ax,a;]zﬁm(x—y)zﬁ(x—y) ) (2.9)

For notational simplicity, we denote three vectors in
coordinate space as r,r’,x;,x,,... and corresponding
volume elements as dr,dr',dx,,dx,,... . In the many-
body Hilbert space 7, with fixed particle number N, the
identity operator I then has the following resolution in
this coordinate-space representation:

I:néownl—!fdxl-" fa’x,la;l ~“a:

x{®la, *a,, (2.10)

in which the n=0 term is simply a shorthand notation
for the term |®){(®|. Similarly, the basic ECCM
operators S(z) and S”(t) have the representations

= 1
S(t)zz = [ax, - [dx,S,(x, ..., x,30)
xal ---al
. (2.11)
S (t)= n§‘ P f dx, - f dx, S, (X1, ..., x,;t)
Xax" PR a.x] s
in which the linked-cluster amplitudes S, (x;,...,x,;?)

and S,'(xy,...,x,;t) may, with no loss of generality, be
assumed symmetric under the interchange of any two
coordinate-space arguments, and which hence have the
explicit form

Splxy, ... ,x,l;t)=(<l>faxn . '~axlS(t)[(I)) R

(2.12)
X, =(®|S"(t)a] -“a:n | D) .

X

2
Sxq, ...

It has also been pointed out in [ that it is more con-
venient to use an equivalent pair of operators Z(¢) and
2(t)=8"(¢t), rather than the above operators S(¢) and
S"(t), and in terms of which most of the resulting equa-
tions have a more symmetric form. They are defined as
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in terms of matrix elements given as

T Xy, ... ,x,,;t)z(dl']ax" . 'axleS”‘”S(t)ld)) ,
Fulxps ooy x,30)=(@|S"(t)ay -+ a) | ®) 214
=8"(x,...,x,:t) .

The matrix elements o {xy,. .., x,;t) and
o,(xy,...,x,;t) are again completely symmetric with

respect to arbitrary permutations of the coordinate-space
vectors x,,...,x,. A comparison of Egs. (2.12)-(2.14),
together with the resolution (2.10) of the identity, shows
that

()| @) =[eS"S()— (@ |5 US() | D)) | D),

(2.15)

which in turn, together with use of Eq. (2.5), gives the
inverse transformation as

[S(t)—{D |5 S(t) [ ®)] |®)=e " 23(1) | D),
(2.16a)

or, by making use of Eq. (2.12), equivalently as

S,(xy,. .. ,x,,;t):((b[ax” . ~-axle“z“)2(t) [®) .

(2.16b)

The entire ECCM formalism may now be fully formu-
lated in terms of the set of amplitudes
(o (Xqy ... x,5t), Tu(xy,...,x,;t)}, which play the
role of a complete set of (c-number) dynamic variables.
For example, an arbitrary average-value functional as
defined in Egs. (2.7) and (2.8) is now specified as
(A)=A=4[0,,5,]. It is also straightforward to
show that the action functional of Eq. (2.2) can be ex-
pressed as

S)=3 lefdx, o [ dxgo, (%3t
" , . A= [di[i{®|2(DZ1)|®)—H] (2.17a)
Xa, "*-a
X X, b4 N = —
213 = [ @ —i(®|2(0)z() | @) —-H], (2.17b)
s _ < 1 DY - M
2(t)= ngl " f dx, f dx, 0y (%15 - Xn50) where we have employed an integration by parts. In
B Xa. ---a terms of the parametrizations of Egs. (2.13), the action
*n 1 becomes
J
. o« _ . 5 -
A =i f dt n§l ) f dxy - f dX, Ty (X1, oo X380 (X, oo, X, 50)— f dtHlo,,0,] (2.18a)
, - 1 : —
=i fdt > 1 f dx; - f dx, 0, (x, ..., x ;)0 (X, ... ,x,t)— fdtH[an,ﬁn] . (2.18b)
n=1 '
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The requirement that A be stationary with respect to
variations in each of the amplitudes &,(x,,...,x,;t)

and o,(x,...,x,;t) then leads, respectively, to the
equations of motion

iG, (X, ., X3 t)=8H /85 ,(x,,...,x,5t),  (2.19a)
i (Xyy X3 t)=8H /80 (X, . .. x,5t) . (2.19b)

At the stationary point, the equilibrium values of each of
the amplitudes o, and &, then represent the contribu-
tions from a definite set of linked Goldstone diagrams.
It has been noted in I, and explained in more detail else-
where,’ how these sets can be conveniently classified in
terms of extended, generalized time-ordered tree dia-
grams, which branch both forwards and backwards in
time.

We now take this opportunity to note that the nor-
malization of the real-space amplitudes {S,,S,’} and
{0,,0,] implied by Egs. (2.11)-(2.14), is chosen purely
for convenience for present purposes. A comparison of
the present equations with their formal and general
counterparts in I should be made with great care for this
reason. In particular, using Eq. (2.4b) of I, a comparison
of Egs. (3.11)-(3.16) of I with Egs. (2.11)~(2.14) of the
present paper, shows that each of the amplitudes
{S,,S,} and {o,,5,} used in the present paper is a fac-

—
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tor (n!)!/? greater than its counterpart in 1. Neverthe-
less, many of the resulting equations appear identical in
form here to their counterparts in I, despite this different
normalization. This will arise in general due to the fact
that each of the real-space amplitudes used in the
present paper exhibits complete symmetry under permu-
tation of its arguments. It is this symmetry which, for
example, leads to the disappearance of the factor (n!)~!
in Egs. (2.19a) and (2.19b) as compared with its appear-
ance in Egs. (2.18a) and (2.18b) whence they were de-
rived, and which ultimately makes Eqgs. (2.19a) and
(2.19b) here appear identical to their general counter-
parts, Eqgs. (5.3) and (5.4) of I.

Finally, we note that it was shown in detail in I how
to express, within the ECCM, the average-value func-
tional of an arbitrary product of operators, in terms of
the average-value functionals of the individual operators
and their functional derivatives with respect to the basic
amplitudes {o0,,5,]}. In particular, we recall the espe-
cially important result for the expectation value of the
commutator of an arbitrary pair of operators 4 and B,

(Wy|[4,B]|VY,)=i{4,B}, (2.20)
where the generalized Poisson bracket { A,B} is defined
in our present normalization scheme as

8B

84
(4.8 s

y ooy

2 n'fdxl...

n=1

84

Xp3t) 88, (xy, . ..

» Xpst)

8B

8 (x ...

We stressed in I how Eq. (2.21) characterizes the fact
that the ECCM may be viewed as an exact mapping of
an arbitrary quantum many-body theory into the classi-

cal Hamiltonian mechanics for the many-body,
classical (c-number) configuration-space amplitudes
0,(Xyy ... X,;t) and &,(xy,...,X%,;t). In turn, these

may be mapped onto a set of generalized, classical
many-body fields ¢, =2""%¢,+&,) and their canoni-
cally conjugate generalized momentum densities
m,=2""%(&,—0,). Of course, the ECCM is not the
only mapping that achieves such a decomposition of a
quantum many-body theory into a set of interacting non-
local classical fields. Where it does seem to be unique is
that the underlying amplitudes {o,,&,}—a knowledge
of which suffices to determine all physical quantities for
the system—are all linked-cluster quantities, and hence
are quasilocal in the sense of obeying the cluster proper-
ty. This property is quite vital for later applications in-
volving topological deformations, or where topological
boundary conditions are imposed.

For ease of further notation, we shall henceforth usu-
ally suppress the time argument of our basic dynamical
variables {o,,5,}, which now completely characterize
the system. Indeed, the time dependence of all dynamic
variables will henceforth mostly be left implicit.

,X,5t) 8o, (xy, ..

(2.21)
2y Xp3t)

III. GAUGE INVARIANCE AND THE GAUGE FIELDS

We turn our attention now to an application of the
ECCM techniques discussed above to a Bose liquid, with
the basic aim of deriving the appropriate gauge-invariant
hydrodynamical balance equations for such local observ-
ables as the number density, the current density, and the
energy density. As usual, we seek to employ the stan-
dard Bogoliubov prescription®~!? for the macroscopic
occupation of the condensate by an explicit breaking of
the underlying gauge symmetry which arises from the
conservation of particle number. Technically, this is
achieved by using the boson vacuum as our model state
| @), in which case the ECCM states of Egs. (2.4a) and
(2.4b) are not states of definite particle number.
Particle-number conservation is then imposed by work-
ing not with the original many-body Hamiltonian 4 g,
for the fully interacting system but rather with the
grand-canonical Hamiltonian H o, =h g, —uN, where p
is the chemical potential and N the number operator. In
the present case we consider a system of identical bo-
sons, each of mass m and interacting via pairwise poten-
tials,

E Vit 2 3 vix;—x;), 3.1

)—1 i=1j<i

h(0)=-‘
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in units with fi=1.

The ECCM formulation as outlined in Sec. II immedi-
ately provides a theory capable of dealing with the gen-
eral case of a spatially nonuniform and time-varying
condensate, {(a, )={(W¥(¢)|a, | ¥(zr)). Indeed this con-
densate wave function (a,) is precisely the one-body
ECCM amplitude o (x), as follows from the definitions

of Egs. (2.4a) and (2.4b),
(a,)=(D|eSe Sae’|®), (3.2)

together with the definition of Eq. (2.11), which shows
that

e Sa.eS=a, +[a,,S]. (3.3)
Finally, use of the relation a, | ®) =0 shows that
(a,)=(®|ea,S|P)=0,x), (3.4)

where the last equality follows from the definition of Eq.
(2.14).

Due to the underlying number conservation of the
original Hamiltonian A, we ultimately wish to con-
struct the theory in a gauge-invariant fashion. In this
way we are led to consider'® from the outset the cou-
pling of the system to the external gauge fields ¢ and A
(the scalar and vector potentials), and their transforma-
tion properties under local gauge transformations. Just
as in standard electrodynamics we therefore study the
Hamiltonian H 4,— H, where

N 1 . N
H= zlﬁ[—zv,_Mx,)]ujzl [$(x;)—ul
j= =

N
+ 3 3 vlx—x;).

i=1j<i

(3.5)

The gauge fields are both space and time dependent, but
in keeping with our notation the explicit time argument
will usually be suppressed. In the notation of second
quantization the Hamiltonian may be rewritten as

-1 ).
== [ar(V,a])(V,a,)

+=1 [ dr Ar)[a}(9,0,)—(V,a))a,]
2m

1. | t
+ [ ar|¢(r)—p+ 5~ AXr) |aa,

+1 f dr f dr'v(r—r'alala,a, . (3.6)
Alternatively, we can display the explicit coupling of the
external gauge fields to the system via the particle num-
ber density and canonical current density operators p(r)
and j(r), respectively,

pri=aa, ,

(V= fim—— (V. -V ala. 3.7
J<r)_3,§2m<v, V,a,a, ,

by writing the Hamiltonian of Eq. (3.6) in the equivalent
form,
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H=Hq+ [dr ¢(r)+5:—n—A2(r) p(r)

— A(r)jir) (3.8)

In the case of charged bosons (which we do not con-
sider here), the necessity of the gauge-field description is
apparent, since the charges couple to the electromagnet-
ic fields through the Lorentz force. We wish to point
out that the gauge-field description is also extremely use-
ful in the case of neutral particles, since it allows a
unified treatment of certain physically important coordi-
nate transformations. We shall illustrate this immediate-
ly by considering pure displacements and pure rotations
of the observer or of the system. If, in the original
frame of some observer (0) a quantum-mechanical sys-
tem is in some state |sg), it is well known!” that in the
frame of another observer (1), who is simply displaced by
a constant vector a with respect to observer (0), the sys-
tem will be described by the transformed wave function

|s)=e@P|s,), (3.9a)

where P is the total momentum operator which is the
generator of space translations. Similarly if the observer
(1) is simply rotated by an angle ¢ about an axis defined
by the unit vector fi with respect to observer (0), the sys-
tem will be described by the transformed wave function

|s)=eLs)), (3.9b)

where L is the total angular momentum operator which
is the generator of rotations in space. If, to cover both
cases, we use 7 to indicate the transformation operator,
|s)=T|sg), it is clear that if in the frame of the origi-
nal observer (0), the system is governed by a Hamiltoni-
an H ),

.93,
H, |50)=1_ iSo> >

ar (3.10a)
then we may write for observer (1),
His)=i2|s), (3.10b)
dat

where the effective Hamiltonian for observer (1) is given
by

H=TH,T '+iTT™". 3.11)

Two particularly important examples are the cases of (a)
uniform motion, a=Vyt in Eq. (3.9a), and (b) uniform
rotation, fig = Q¢ in Eq. (3.9b), between observers (0) and
(1). If the system has a Hamiltonian H, which is
translationally invariant and rotationally invariant, so
that TH o, T ~'=H g, in both cases, these two cases are
described, respectively, as

H:H(O}"—VO‘P (3.123)
and
H=Hyg QL. (3.12b)

In our own gauge-field description these two cases are
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duplicated, respectively, by the choices

A(r)=mV,, ¢(r)=—imV}, (3.13a)

and

Alr)=mQXxr, ¢(r)=—1m|Qxr|?. (3.13b)

In the electromagnetic case, the second example of Eq.
(3.13b) would just correspond to the well-known com-
bination of crossed electric and magnetic fields that pro-
duces uniform rotational motion.

The real value of the gauge-invariant description be-
comes apparent where the observer (or, equivalently, the
system) is neither in uniform translational motion nor in
uniform rotation, but rather in a completely general
state of motion. The use of general gauge fields can then
be interpreted, in the light of the above examples, as
providing differential or local Galilean transformations,
where the (gauge-invariant) physical forces try to create
local translational motions which vary from place to
place within the system. It is clear that a proper hydro-
dynamical description of such systems must, for exam-
ple, be able to distinguish the local hydrodynamical
translational kinetic energy density from the intrinsic ki-
netic energy density in the local rest frame in a gauge-
invariant fashion. In the remainder of this paper we
shall show how such a complete hydrodynamical
description of a condensed Bose system is provided by
the ECCM whose framework we have already discussed.

IV. EQUATIONS OF MOTION FOR THE ECCM
AMPLITUDES AND THE DENSITY MATRIX

In order to derive the explicit equations of motion for
the basic ECCM amplitudes {o,,5,} from the formal
relations of Eq. (2.19), it is convenient to introduce the
one- and two-body density matrices. The one-body den-
sity matrix is defined as usual by

plr,r)y=plr,r’;t)=(¥') | pr,r')| W(t)),

4.1)
p(r,r')-z'a:ra,. .
By substituting from Eq. (2.4), it may be written as
plr,r)=(®|e5e5a]a,e5| ®)
=(®|eale5eS"eSa,e5| @), (4.2)

where we have made use of Eq. (2.11). By making use of
Eq. (3.3) and its counterpart,

eS"aleS"=al+[5",a]1, (4.3)

together with the relations {(®|af=0=a, |®), Eq.
(4.2) is readily rewritten as

plr,r)=(®|8"al1e5"a,s | ®)

=(®| 3a/Ia,Z| D), 4.4)

where we have also used Eq. (2.15). Finally, inserting a
resolution of the identity I of the form of Eq. (2.10) in
the place so marked in Eq. (4.4) gives the explicit rela-
tion

1071
o < 1 ~
plr,r')= "éomfdx,-“ fdxnan+1(r,x1,...,xn)
XO, rhx, . 00,x,),
(4.5)

where we have used Eq. (2.14). Due to the cluster prop-
erty which is obeyed by each of the amplitudes {o,,5,},
the one-body density matrix behaves simply in the limit
of large separations as

plr,r'y—&,(rio(r') as|r—r'|—>w, (4.6)

thereby exhibiting the well-known behavior of off-
diagonal long-range order,'®!® typical of superfluid sys-
tems.
The two-body density matrix is similarly defined in the
notation of Egs. (2.7) and (2.8) as
(alala,a,)=(0|ala] 123, |®),

s

4.7)

which can again be rewritten, after a resolution of the
identity I of the form of Eq. (2.10) as

t,t
(a’la'za'aa’4>

- |
- 2 Ffdx] T fdxﬂ¢n+2(rhr2;x1,...,xn)
n=0 *

XXy 2Pl X o0y %,)

(4.8)

in terms of the reduced subsystem amplitudes,>’ defined.
as

G par,rixy, ... ,xn)z(d)]ﬁzfi:r'a:‘ . 'a;r" | @),

(4.9a)

X, olrrixy, ... ,x,,):—:(<1>{axl ra, 2,4, D).

(4.9b)

Explicit evaluations of Eqs. (4.9a) and (4.9b) for the re-
duced subsystem amplitudes in terms of the basic ECCM
amplitudes {o,,5,] are given in Appendix A. The final
results are given by Egs. (A7), (A18), and (A19). An al-
ternative exact representation of the two-body density
matrix is given in Appendix B using the functional
derivative technique for the expectation value of the
product of two one-body operators, as discussed in I.
In terms of the diagonal elements of the two-body
density operator,
D(r,r')=D(r,r';t)=(a/a}a,a,) , (4.10)

we can evaluate the average potential energy of the sys-
tem as
V=V00o,6,1=+ [dr [ drvir—rD(r,r).  (411)

Now, using the explicit Hamiltonian of Eq. (3.6) and
the one-body density matrix of Eq. (4.5), we have
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H:ni;ogll—fdrfdxl o [ dx,

i
+ =0, (r,x, ..

2m

i
——"*—0‘"+1(r,x,,...

2m

+

o
-Z—;I—V,a,,ﬂ(r,x,, ce

¢(r)—u+-2~:;A2(r) T
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X, ) V0, lrxy, o0, X))
X )Ar)V,o, (r,xy, ... ,x,)
X, VA(r )V, &, ((r,xg, ... ,x,)

X )0, Xy, x,) [V

By straightforward partial integration, Eq. (4.12) may be expressed equivalently in either of the forms

H= ioﬁfdrfdx, fdx,,ﬁ,,+1(r,x,,...,x,,)[h(r)o,,+,(r,xl,...,x,,)]+l7

= § 7’1—'— fdrfdx, fdx”an+1(r,xl,...,xn)[ﬁ(r)6n+1(r,xl,...,x,,)]+V
n =0 *

in terms of the reduced one-body Hamiltonians defined
as

I S e ) o
h(r)=— 3=Vt L AV, + 2 [V, Alr)]

1
+2mA(r)+¢(r) n (4.14a)
and
For—=_ Lt g2 L vl v
hir)= 2mV’, mA(r)V, 2m[V,, A(r)]
= AN+ br)—p (4.14b)

2m

Using Egs. (2.19) and (4.13), it is then straightforward to
derive the exact equations of motion for the ECCM am-
plitudes as

n
i:i"—a,,(xl,...,x,,).: S h(x)o,(xp, . . . x,)
t ot
L4 . @1sa)
63, (xy, ... ,x,)
—i-d—-&,,(x,, ces Xy )= Y l?(xj)é‘r,,(x,, ceesXy,)
t =1
8V
+50,,(x,,...,x,,) » @15

at

+—2%n~[{v,- AP} +{V,.- Ar')} 1p(r,r" ) +iC(r,r") ,

where the function C(r,r’) is defined as

(4.13)

where we have made use of the complete symmetry of
the amplitudes {o,,5,} under permutations of their ar-
guments, as in the discussion below Egs. (2.19a) and
(2.19b). For the purposes of the remainder of this paper
we shall not need the explicit expressions for the func-
tional derivatives of the average-value functional V in
Eqgs. (4.15a) and (4.15b). We point out, however, that
they could be found quite straightforwardly using the ex-
plicit expressions obtained in either of the Appendixes.
Finally, we also note that Egs. (4.14) and (4.15) may be
regarded as an exact coupled hierarchy of nonlinear
equations which generalize the approximate Gross-
Pitaevskii'>'* nonlinear equations for weakly interacting
condensed Bose liquids. In fact, the Gross-Pitaevskii
equations are precisely obtained as our SUB1 approxi-
mation, in which all of the amplitudes o, and &, with
n>1 are set to zero. This results in self-consistent
time-dependent Hartree equations for the amplitudes
or) and &,(r). The Gross-Pitaevskii equations are
then just the equilibrium (in time) counterparts of these
equations, in which the interparticle potential is further
replaced by a repulsive 8-function potential.

The basic equations of motion (4.14) and (4.15) can
now be used to construct the equations of motion for
average values of arbitrary operators. Of particular in-
terest is the one-body density matrix, for which we can
use the representation of Eq. (4.5). A few straightfor-
ward integrations by parts and some rearrangements of
terms easily leads to the result

PN 2 w2y, prya L . % oy s N ) 200 J=py
plr,r')= Im (V5 —=Voplr,r')+ m[A(r) V,+ A(r')V, 15(r,r')+i |d(r)—d(r')+ 5m { A“(r)— A%(r")} |plr,r")

(4.16)
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| 5V
Clr,r')= — | dx, -+ | dx, IR I
(r,r') ngo”!f X f x 80,,+1(r,x1,...,x,,)0 A1(rxy X,)
— 8V G, lrxy, . .0,x,) (4.17)
85n+,(r',x,, e ,x,,)
By making use of the relations
n
8plr, k') /88 (xq, ..., x,)=3 0,(xq, X _ 1, X gy e, X, 08X —1)
Q=1
n (4.18)
aﬁ(r’rl)/aan(xh AR ?xn)z 2 &n(xly v yx[_[,r,x[+1, PPN ,xn )S(Xi——r') ,
i=1
which follow quite straightforwardly from Eq. (4.5), it is not difficult to show that Eq. (4.17) may be rewritten as
> 1 4 8p(r,r') 4 8pir,r’)
Clr,r')= — | dx, -+ | dx 2 — ’
?___",n! f 1 f T80, Xy, X)) B8F (X, ., x,) BT, (X, ..., X,) 80, (X, uX,)
(4.19)
|
A comparison of Eq. (4.19) with Eq. (2.21) shows that tion on the basic linked-cluster amplitudes,
the function C(r,r’) may be expressed in terms of a gen-
eralized Poisson bracket as
Clr,r")=i{V,p(r,r"}, 420 TnFuvee @)ool xy)
which is important for later purposes. =exp |—i 3 Alx;) |o,(xy,...,x,),
j=1
V. THE ONE-BODY DENSITY MATRIX , (5.3)
AND GAUGE TRANSFORMATIONS TnlXps ooy X, )28 5%y, .05 X,)
We now turn our attention to the basic reason for the < ~
. - =e Alx;) (X, 05x,).
introduction of the gauge fields ¢(r) and A(r). Thus, *p |+ j§1 i Xn)

we know that under a local gauge transformation the
Schrodinger wave function of an N-body system changes
as

Wi(xy, ..., xy)—=>Wi(x,...,xy)
N

—i ¥ Alx;,t)
j=1

= exp Wi(xy,...,xy), (5.1)

in such a way that it simply acquires a space-
time-dependent phase factor via a phase-function
A(r,t)=A(r), where the time dependence, as usual, will
be left implicit. The time evolution of the transformed
field W' is then readily seen from Egs. (2.3) and (3.5) to
follow a Hamiltonian of precisely the same form but
with correspondingly transformed gauge fields,

A->A'=A—-VA,
d—¢'=¢+0A/t .

(5.2

Within the ECCM the local gauge transformation may
equivalently be completely specified by its mode of ac-

8V
fdx,, S0, (x,..

. = ]
7= 3 L [ax,

Pt e Xy,)

50n(x1,. .

It is immediately clear that the diagonal terms of the
one-body density matrix g(r,r)=p(r) and of the two-
body density matrix D(r,r’), and hence also the
average-value functional V[0 ,,5,] of the potential ener-
gy, are invariant under gauge transformations of the
form of Eq. (5.3). The basic reason for this is that in the
expressions (4.5) and (4.8)-(4.10) for these quantities,
every amplitude &, or ¢,, respectively, that appears, is
always multiplied by a corresponding amplitude o, or
X,, respectively, with exactly the same arguments. Each
phase factor introduced by the gauge transformation is
then immediately matched with its complex conjugate to
produce a null change. An immediate consequence of
this is that the change in ¥ must identically vanish in
any gauge transformation, and in particular we have
8V =0 for an arbitrary infinitesimal gauge transforma-
tion with phase function 8A. By the usual rules of par-
tial differentiation, and again using the complete symme-
try under permutations of the arguments of the basic
amplitudes {o,,5,}, an infinitesimal 8% may be ex-
pressed as

8V
66 ,(xy, ...

y Xy )+
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Indeed, this may be viewed as the definition of the func-
tional derivatives which is consistent with the earlier dis-
cussion in Secs. I and IV. For an infinitesimal gauge
transformation with phase function 8A(r), Eq. (5.3)
gives

. ,xn) 2 SA(XI) N

j=1

So,(xy,...,x,)=—io, (x4, ..

8G,(xy, ..., x )=+iT,(x,,...

Substituting Eq. (5.5) into Eq. (5.4), and again using the
permutation symmetry of the amplitudes {o,,7,}, then
readily gives the result

8V=—i [ dr C(r,r)sA(r), (5.6)

where we have used the definition (4.17) of the function
C(r,r'). Since 8V =0 for all §A(r), we then immediate-
ly have

C(r,r)=0. (5.7

We shall subsequently also require the detailed behav-
ior of the function C(r,r’) as the two arguments r,r’ be-
come close to each other. This is most readily obtained
from Eq. (4.20) and the general results of Egs. (2.20) and
(2.21) which relate the generalized Poisson brackets to
the expectation values of the corresponding operator
commutator. We thus have

C(r,r’)=%fdx fdy v(x —y)X[alafa,a,,ala,])
= fdx[v(r~x)~v(r’—x)](a:a,*a,,ax), (5.8)

where in the second equality we have used the basic bo-
son commutation relations (2.9) and the implicit rota-
tional invariance of the two-body potential,
vir—r')=v({r—r'| )=v(r'—r). We note that the spe-
cial result (5.7) also follows immediately from the gen-
eral relation of Eq. (5.8).

We note at this point that the result of Eq. (5.8) could
have been obtained much more directly by starting from
the Heisenberg equation of motion for the density opera-
tor p(r,r’). Then, upon taking the average value we
would obtain the equation of motion (4.16) for the densi-
ty matrix g(r,r’) but with the term C(r,r’) directly in
the form of Eq. (5.8). In the present context this ex-
tremely convenient property can be viewed as providing
a double check both on the derivation of Eq. (4.16) from
the equations of motion (4.15) of the basic ECCM ampli-
tudes {o,,7,] and indeed on the consistency of the gen-
eral theory presented in I and reviewed here in Sec. II.
We take pains to stress, however, that the result of Eq.
(5.8) is itself completely derivable from the defining rela-
tion of Eq. (4.17). We would simply need to use the rela-
tionship (4.11) for ¥ and the expression for the diagonal
terms of the two-body density matrix D(r,r’) from Egs.
(4.8) and (4.10), together with the explicit results in Ap-
pendix A for the reduced subsystem amplitudes X and ¢
in terms of the linked-cluster amplitudes {o,,&,].
Equivalent results could also be obtained using the
decomposition in Appendix B. In these cases, however,
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the direct method is rather cumbersome [but the dedi-
cated reader may persuade himself that these derivations
also lead to Eq. (5.8)]. As seen here, one can use the
freedom to exploit either method, to great advantage.
We return now to the equation of motion (4.16) for
plr,r'). Since we are ultimately interested in deriving
the hydrodynamical balance (or local conservation) equa-
tions for the various local observables of interest, we
shall need to take the limit as r'—>r. Equation (5.8) will
enable us to do this for the term C(r,r’), but in light of
the derivative terms in Eq. (4.16) we still need to investi-
gate the nondiagonal terms p(r,r’) in the vicinity of the
diagonal r'—r. For these purposes it is convenient to
change to relative and center-of-mass coordinates,

R=4(r+r), &=r—r1', (5.9)

in terms of which the spatial derivatives in Eq. (4.16) be-
come

V,=%VR+V5=, V,r=—;—VR-V§. (510)

In this work we shall be interested in expanding Eq.
(4.16) to include terms up to second order in &, and it
will therefore turn out to be necessary to expand the
density matrix up to third-order terms. We define the
coefficients in this Taylor expansion by the relation

plr,r')=p(R | §)
=p(R)+B*R)E +Ly®(R)EE

+ 1894 R )EEPEC+ O(EY) (5.11)

where p(R)=p(R,R) is just the number density at R,
and the superscripts a,b,c, etc., are Cartesian three-
vector indices. The convention of summation over re-
peated indices is implied in Eq. (5.11) and is used con-
sistently henceforth. We note that the tensor coefficients
y,8%¢, ... are all completely symmetric under arbi-
trary permutations of their indices.

From the Taylor theorem, the first-order coefficient
B%R ) may be written as

d
a&?

BYR)=——p(R | §)

£=0
(5.12)

where we have used Eq. (5.10) and where j(R ) is just the
local canonical current density [cf. Eq. (3.7)]. It should
be quite apparent that just as the canonical current den-
sity, and hence the vector 3%, is not gauge invariant, so
nor are the higher tensor coefficients ¥%,6%,... . In
order to find the most convenient invariant combinations
of each order, we use the transformation property of the
density matrix under the gauge transformation (5.3),

=et’[A(r)—A(r‘ (5.13)

plr,r')—p'(r,r") ey,
which follows immediately from Eq. (4.5); and hence
Ing (R | £)=Inp(R | E)+iE3°A)

+ a%g"g”gc(a“a"amw 0(&%), (5.14)
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where 3°A=0A/dR?, as usual. In anticipation of the
final result we expand Ing in powers of &, up to the third,
in the following specific form:

In[p(R | £)/p(R)]
=—iff A“—{—ﬂj" __m_z_gaé-brab
p 2%
+_§_ga§b§c [~§%(aaabAc+abacAa+acaaAb)
2
+ A% L o(gh) . (5.15)
p
A straightforward comparison between Egs. (5.14) and
(5.15) of terms of comparable order shows
A+ — Myraz A+ — J"—a"A (5.16a)
P P
rreb=peb (5.16b)
2
__2_x4(aaabAlc+abacA/a_+_acaaA;b)+_n1__A:abc
p

__le(aaabAc_’_abacAa_i_acaaAb)

2
+ T A% 139903°A
p
A combination of Egs. (5.16) with the transformation
rule of Eq. (5.2) for the vector potential then readily
shows that the tensors JR), I'“’(R), and A®*(R)
defined by Eq. (5.15) are gauge invariant, namely,

J! a__.Ja’ ' ab__—rab’ A abc___Aabc .

(5.16¢)

(5.17)

Finally, a comparison of Egs. (5.11) and (5.15) shows the
connections between the various expansion coefficients,

Ji=j -J% , (5.184)
1

rao—_ Lyao_Ljap (5.18b)
m?p

1 1
Aabc= — 8abc+ (]a,},bc+jbyca+10,},ab)
2im 2mp

+;:—’2~j"j1 +—2{—(a"a”Ac +3%3° 4% +3%9°4°) .

(5.18¢)

We remind the reader that all of the coefficients in Egs.
(5.18a)~(5.18¢) are functions of position and of time.
We also note that Eq. (5.18a) expresses the true particle
J

current density J in terms of the canonical current densi-
ty j in the usual fashion.

After these preliminaries we are now ready to expand
the equation of motion (4.16) for p(R | £) up to second-
order terms. The various terms not involving the poten-
tial ¥ are rather straightforwardly expanded, using Eqgs.
(5.9)-(5.12), as
2= E im0 o),

(5.19a)
ﬁtva—vnﬁtr,r')

z_aa-a___#.ga(ab,yab)_ 2;" é—aé—b(acaabC)+0(§3) ,
(5.19b)

-:T[A(r)-V,—e- AGF)V,15(r, 7))

=L 48%)— i A% +(8° 4°))°]
m

gg“gb——[A (3% ) + L(3°9° A °)(dp)
C),ybC+(abAC),yaC]+O(§-3) ;
(5.19¢)

+(3°4

1 —_ ’ _._].'._. 2 — 200 -
thﬁ(r) ¢(r)+2m[A(r) A(r))] |ptr,r')

=ig%

a"¢+%A”(a"Ab)

+ 1€ Im 3%+ A9 4]
+J'mdp+ 443" 4°)]} +O(£%)

(5.194d)
—2—1’;1—{[V,- (P)]+[V,- A(r)]1}ptr,r’)
R L)
+1gegt ly“b(afA”)Jrz%a“a”a‘A‘ +0(&% .

(5.19¢)

The final term in Eq. (4.16), which involves the two-body
forces, is best evaluated, up to the terms of same order
in &, from Eq. (5.8). We thus find

Clr,r')= fdx[v(R —x+1&)—v(R —x—%é’)](afa;+§/2a,(_§/zax)

—§“fdx[a“ (R—x)Kala}aga, )—tmg"gbfdx[a“v(R —x)Na]j

%ria,)+0(&%) , (5.20)

where j%(R) is simply the canonical current density operator of Eq. (3.7). This expression is most conveniently reex-

pressed in terms of the following defined quantities,

Fim(r)z——s_(ir; fdx[V,v(r—x)]D(r,x) ,

(5.21)
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where D(r,x) is the diagonal piece of the two-body density matrix as specified previously in Eq. (4.10); and

wor)=——— [ dx a”("‘")(a*ﬂ’(r)a Y+

p(r)

av(r

(aTJ (ria,) (5.22)

where J(r) is the gauge-invariant total current density operator, given by analogy with Eqgs. (3.7) and (5.18a) as

Jr)= —-—i—[a,T(V,wa,)—(V,a:")a,]—i A(r)a/a,
2m m

(5.23)

From our earlier discussion it is clear that both F, () and W(r) are gauge-invariant entities, in terms of which the
remaining term in the equation of motion (4.16) for p(r,r’') may be expanded as

iC(r,r")= —1E%FY,

— LEE Bl AFL, + AFG +mW?1+0(8%) .

(5.24)

Finally, after insertion of Egs. (5.192)—(5.19¢) and (5.24) into Eq. (4.16), a comparison of the coefficients of the terms

of zeroth, first and second order in &, yields, respectively,

99 _ _aaia, 1 ganasy e g 5.25
5 Of e+~ AP+ —p(3° 4, (5.25)
—%Zt—z——l—ab'y"b-}— [(874%)j5+ A%3%j*)]— [a“¢+;l1~A (394° )]+ a3 4 )+f’—F,m, (5.26)
m
and
ab :
§L=--l—acﬁ“bc-f——L[y“‘(abA“)+y"”(a”AC)+y""<a‘A‘)+A”(G‘y“”)]
at m m
+jImd’p+ A3 A°) ]+ Mm%+ A(°4A°)]+ a°(pa“ab Y—pl AFS, + A°FL +mW®] . (527
|
In Sec. VI we shall show that Egs. (5.25)-(5.27) —B—+V 1=0, 6.1)
represent the hydrodynamical balance equations for the ot )

most important local quantities of physical interest. Be-
fore doing so, however, it is worthwhile to discuss the
physical meaning of the gauge-invariant coefficients in-
troduced above in connection with the terms in the
equation of motion involving the two-body interactions.
From the definition of Eq. (5.21), it is clear that F; (r) is
the average force per particle at space point r due to the
(internal) interparticle pairwise forces in the presence of
correlations. Similarly, from the definition of Eq. (5.22)
we recognize the gauge-invariant velocity field u(r),

u(r)=J¥r)/plr) . (5.28)

The coefficient W?(r) thus represents the (symmetrized)
velocity-force correlation function. The trace W?(r)
thus represents the average increase of the internal ki-
netic energy per particle and per unit time at space point
r, due to the pairwise interparticle forces.

VI. HYDRODYNAMICAL BALANCE EQUATIONS

We are now ready to analyze the physical content of
Egs. (5.25)-(5.27), and to show thereby that our ECCM
description based on the equations of motion for the am-
plitudes {o,,&,] provides a complete and concise hy-
drodynamics for the zero-temperature interacting con-
densed Bose liquid.

A. The current continuity equation

Expressing Eq. (5.25) in terms of the (gauge-invariant)
true current density J(r,t), we find the familiar form,

of the current continuity equation. Equation (6.1) is
simply the local form of the global conservation law,
dN /dt =0, for particle number, the correct imposition
of which has been our main motivation for the introduc-
tion of the external gauge fields ¢(r,t) and A(r,t). Itis
particularly important to point out that not only is Eq.
(6.1) valid, as it must be, in the exact untruncated for-
malism, but is is also true in the usual approximation
schemes. Of course, to put the ECCM to practical use
such approximations are always necessary. A typical
truncation scheme is the so-called SUBn scheme in
which the linked-cluster amplitudes {o,,7,} with
m >n are set to zero, and the remaining coupled equa-
tions of motion (2.19a) and (2.19b) for {o,,5;} withi<n
are solved. It should be immediately clear from our
derivation of Eq. (5.25), which was based on Eq. (4.16)
and the relation (4.5), that the current continuity equa-
tion also holds at every SUBn level of approximation.

B. Equation of motion for the momentum density

We turn now to the first-order (in £°) equation (5.26),
and reexpress it in terms of the gauge-invariant quanti-
ties J9 and I'*® from Egs. (5.18a) and (5.18b) rather than
the noninvariant quantities j° and y?. Making use of
the current continuity equation (6.1) to rewrite the term
dp/d¢t that arises from this procedure, it is then not
difficult to show that Eq. (5.26) may be equivalently writ-
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ten as
7 gp | Lyage| o Bpa 6.2)
ot p m

where F4(R) has the interpretation as the total average
force per particle at point R, composed of three pieces,

FYR)=F% (R)+F% (R)+F§,(R) . 6.3)

The term F§, has already been explained to be the aver-
age force per particle due to the internal interparticle
forces. Similarly F¢,, is the external force per particle
due to the gauge fields, and it has the familiar Lorentz

form
F..=E+uxB, (6.4)

where u is the velocity field of Eq. (5.28) and the fields E
and B are defined in terms of the gauge fields ¢ and A
as

B=Vx A,
=-Vé—3A/0t,

(6.5)

exactly as in electrodynamics. Again, just as in electro-
dynamics, the fields E and B so defined are invariant un-
der gauge transformations of the type defined in Eq.
(5.2). Finally, the term Fy;, in Eq. (6.3) is defined as

(o= — -3 (6.6)
p

and is hence proportional to the divergence of the kinet-
ic stress tensor I'®®, which is itself proportional to the
gauge-invariant second-order cumulant coefficient in the
expansion of the logarithm of the one-body distribution
function,

rab(R Y= — M_). _.L
m? 35°98"
PR+3ER 30 | || 6.7)
A(R) | '

X In

U
it
o

using Eq. (5.15).
The physical meaning of Eq. (6.2) is best understood
by rewriting it in the form

Lal | e@uty=—LFe, 6.8)
pdt m
using the definition (5.28), and where the convective
derivative d /dt is defined as usual by

d d bab

— . 6.9

o= ar +u’0 (6.9)
Finally, by combining Eq. (6.8) with the continuity equa-
tion (6.1), we arrive at Newton’s equation of motion,

m——=F . (6.10)

dt
Just as for the current continuity equation, it is also
again clear that the Newtonian equation of motion
(6.10), or equivalently Eq. (6.2) for the momentum densi-

ty, is true also at an arbitrary SUB#n level of truncation.
Even more important is the fact that these conservation
laws are also valid when more drastic subapproximations
are made which entail dropping extra terms from: the
evaluation of the expectation value ¥ of the potential en-
ergy. Such subapproximations are often made in such
realistic applications of the ECCM as to systems with
hard-core interparticle forces. The reason for the con-
tinuing validity of the conservation laws even in these
cases is that each term in ¥ transforms in exactly the
same way under the gauge transformation. That is, the
symmetry is obeyed by each term separately.

Before proceeding to the second-order (in £9) equation
(5.27), we take this opportunity to emphasize the general
nature of the above results, by making contact with the
well-known f-sum rule. To this end, we specialize to the
linearized regime close to the equilibrium point, and
consider the effect of an external scalar field of an
infinitesimal impulsive type,

8o(r,t)=1(r)d(1) . (6.11)

From Egs. (6.1)-(6.5) it is immediately apparent that the
infinitesimal change in the number density §p(r,t) is
continuous over the time =0, but its time derivative
changes discontinuously by an amount,

aﬁ(r,m):—r-i—v-[ﬁu)vw(r)} . (6.12)
In terms of the density-density response function

X(r,r';t —t') defined as usual'® with the aid of the
Heisenberg picture operators, as

X(ror'st—t")=2i00t —t X" (r,r'st —1')
(6.13)
X'yt —1") = plr,0),p(r',t)])
the change in the number density can be expressed as
oplr,t)=— fdr’fdt’X(r,r’;t—t’)Sd)(r’,t') , (6.14)

where the minus sign in Eq. (6.14) is consistent with the
sign convention for ¢ introduced in Eq. (3.6). In terms
of Fourier transforms, defined as usual by

X' (r,r'it)= fjx %e"‘.“”)("(r,r’;w) , (6.15)
we trivially find the relation,
v ] -+ 1 *x 113 ’
Xrrit=0")=— [ " dooX"(r,rie).  (6.16)
w —

On the other hand, use of the Heisenberg equation of
motion gives the relation

X(r,r'5t=0")={{[p(r),H]p(r] . (6.17)

A straightforward evaluation of the double commutator
in Eq. (6.17), and a comparison with Eq. (6.16), then
leads immediately to the f-sum rule in the usual form,

[ iiﬂm)("(r,r';w)zJ—v,-v,,[,su)a(r—r')].
2m

— 27

(6.18)
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Returning to Eq. (6.14), and specializing to the impul-
sive perturbation of Eq. (6.11), it will be immediately ob-
vious on the basis of Egs. (6.16) and (6.18) that the result
from the linear-response theory for 8p(r,0%) is precisely
as given in Eq. (6.12) from our general formalism. In
this spirit, the conservation law of Eq. (6.2) may be
viewed as a natural generalization of the f-sum rule
away from the linearized regime.

C. Equation of motion for the energy density

Finally, we turn our attention to the second-order (in
£9) equation (5.27), and reexpress it also in terms of the
gauge-invariant quantities of Eqgs. (5.18a)—(5.18¢). Rath-
er than express it directly as an equation of motion for
the kinetic stress tensor, proportional to I'®%, it turns out
to be more convenient to give the equation of motion for
the tensor K (R ), defined as,

K®R)=im[T®R)+p(Ru*RW R)], (6.19)

which, as we shall see below, is related to the kinetic en-
ergy density. By making use of the previous equation of
motion (6.2), we can show, after a straightforward but
very laborious calculation, that K obeys the equation
of motion,

aK b

Y +0° Aabc+uaKbc+ubKac__‘_ucKab__mﬁuaubuc

+ —-B_——z—(e”“‘a"Bd+e“°dabB d)
24m

=1p(W*+uE*+uE*)

+_’i:(ebchac+6achbC)Bd ,

(6.20)
where E and B are the “external force fields” defined in
Eq. (6.5), and where € is the Levi-Civita symbol or
antisymmetric unit tensor of third rank.

Just as Eq. (6.2) was used to study the conservation
law of total momentum, we now show how Eq. (6.20)
can be similarly used to study a comparable local form
of the corresponding conservation law of total energy.
In this way we may identify the energy current density
and investigate possible local forms for the energy source
density, particularly in the case that the external poten-
tials are time dependent. The Hamiltonian of Eq. (3.6)
breaks naturally into the sum H =H [+ V of a one-body
piece H, and the two-body piece ¥ due to the pairwise
interactions. The one-body piece leads to a contribution
(H,)=H, to the energy-expectation value which may
be written in terms of a local energy density functional
€,(r) as

ﬁlz fdrel(r),

el(r)=<-2—:;(V,a:)~(vra,)—j(r)- Alr)

+p(r) [Br)—pt 5= AX)

) , 6.21)
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with p(r) and j(r) the operators defined in Eq. (3.7).
This expression is readily evaluated. In particular, by
writing the first term in the form

2
(-21"-’-(\7,‘:,*)-<v,a,)>=L lim —2——5(r,r") |

2m r—r 3roor” 6.22)

and by employing Egs. (5.10)-(5.12) and (5.18a), we find
€R)=5—VAp(R )+ tmT*(R)+4mp(R W(R)

+p(R[SR)—p], (6.23)

where u(R) is the gauge-invariant velocity field of Eq.
(5.28). The third term, %mﬁuz, in Eq. (6.23) is simply
the hydrodynamical kinetic energy density of the aver-
age translational motion, whereas the second term
4m tr(T), together with the first term, may be interpret-
ed as the kinetic energy density in the local rest frame.
Since the first term in Eq. (6.23) is a perfect divergence,
its contribution to H 1 vanishes, and hence it is, strictly
speaking, redundant. However, its inclusion guarantees
the positivity of the kinetic energy density. Other forms
for the kinetic energy in the Hamiltonian of Eq. (3.6)
which differ only by surface terms, but which do not
guarantee this positivity, have also been considered.?’
We note that each of the terms in Eq. (6.23) is separately
gauge invariant except for the potential energy term p¢
in the external field.

By comparison with the one-body energy, the two-
body energy ¥V of Eq. (4.11) cannot be simply expressed
as the volume integral, ¥ = f dr €,(r), of a local energy
density functional €,(r). However, we show below that
its time rate of change 3V /3¢ does allow a convenient
local expression. To this end we calculate the time
derivative of the diagonal elements D(r,r’) of the two-
particle density matrix, via the usual Heisenberg equa-
tion of motion,

a . +
-é—t—(aja,ta,,a, Y=—i{la)ala,a, H])

=-V,(al¥r)a,)—V,{a¥r"a,) ,
(6.24)

where we have used the Hamiltonian from Eq. (3.6), and
have employed the definition (5.23) of the total current
density operator J(r). Using Egs. (4.10) and (4.11), we
may thus write the time rate of change of the two-body
energy as

B_V_J_ ’ Y i t 1
FYa fdrfdr v(r—r )at(a,a,la,:a,)

3
=5 [aran, (6.25)
where from Eq. (6.24) we have defined €,(r) as
3e,(r)
= [dror—rV,(alX(r)a,) . (626
ot

By making use of the definition (5.22), it is trivial to
show that Eq. (6.26) may be rewritten as
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afz(r) | = aa
= AP =V, B(r) 6.27)
with the local vector field P(r) defined as
P(r)= [ drv(r—r')a}3(ria,) . (6.28)

It is clear that the field P(r) represents an energy flux
due to the internal forces in which the interaction energy
of any pair of particles one of which is at the space point
r is associated in an asymmetric fashion wholly to the
particle at the point r. Finally, we notice that by con-
trast with the one-body energy €,(r), Eq. (6.26) does not
lead to any simple expression for €,(r) itself.

A combination of Egs. (6.21) and (6.27) enables us to
write a local form for the energy balance,

aél(r) afz(r)
ot + ot

—QE:fdr

Je(r)
ar — = [ar

ot

] ,  (6.29)

where the energy density e(r) satisfies a continuity equa-
tion, which is readily found by employing our earlier re-
suit of Eqgs. (6.19) and (6.20), together with Eq. (6.1). In
this way, we find the energy-density continuity equation
in the form

%%+V'Je:56 ; (6.30)
with the energy flux vector J, given by
J=1dn=vit LT+ imul+¢—p |3

€—"Y€ — 8m 2ﬁ 3
+(A””b+mu”F”b)’f”—~E-—;VxB+P ,
12m 6.31)

where T2 is a unit vector in the b direction, and with the

energy source density given by
S.=S.(r )_:_—EQ ———."9—1l

P ot ot
=ﬁidf— +J-E, (6.32)

where in the second form above we have employed the
convective derivative of Eq. (6.9) and the external field E
of Eq. (6.5).

Finally, we note that due to the presence of the terms
involving the scalar field ¢, none of the quantities e(r),
J(r) and S (r) is gauge invariant. It is however, a trivi-
al matter to rewrite Eq. (6.30) as a gauge-invariant bal-
ance equation of the form

9
ot
by combining it with the current continuity equation
(6.1). We now see explicitly from Egs. (6.23) and (6.31)
that the subtracted energy density (e—¢p) and energy

flux (J,—@J) are gauge invariant, as is the source term
J-E in Eq. (6.33).

(e—¢p)+V-(J,—¢))=T-E, (6.33)

VII. DISCUSSION

The earlier papers, I and II, of this series gave a
comprehensive account of how the extended coupled-
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cluster amplitudes {o,,5,] can be used to parametrize
the Hilbert space for an arbitrary many-body problem.
A complete specification of the numerical values of these
amplitudes corresponds to the specification of the
representative point of the state of the system in the
ECCM phase space. The phase space is a complex
differentiable manifold with a symplectic structure in-
duced by a classical Poisson bracket form. The equa-
tions of motion for the amplitudes {o,,&,] have the
usual classical canonical form. The temporal behavior
of the system is described by a trajectory in the phase
space, along which the representative point moves. Ac-
cording to a modern view of statistical mechanics®"* it
is the entire phase portrait, i.e., the totality of all trajec-
tories, which is of interest to statistical physics and
which leads to a proper qualitative description of the
system. The more traditional approach to statistical
mechanics at finite temperatures, T >0, is based on the
ensemble approach of Gibbs and the use of the statistical
density operator. One might easily imagine the present
ECCM approach being extended along similar lines by a
more complete investigation of the geometrical proper-
ties of the ECCM phase space.

The present paper describes an application of the
ECCM formalism to the case of a condensed Bose fluid.
We have been mainly interested in the properties of a
single trajectory instead of the whole phase portrait, and
in this sense the present treatment forms only a modest
beginning of a more comprehensive statistical theory.
Nevertheless, we have been able to show that the indivi-
dual trajectories in the ECCM phase space fully comply
with the pertinent gauge symmetries and the local hy-
drodynamical conservation laws.

The hydrodynamically relevant variables are the local
densities, such as the number density, current, and ener-
gy density. In forming the expressions for these quanti-
ties in terms of the phase-space coordinates {o,,5,] we
have taken full advantage of the local U(1) gauge sym-
metry following from the particle-number conservation.
From the equations of motion for the amplitudes
{0,,5,] we derived the balance equations for the
particle-number density, current density, and energy
density, and showed their connection to the cumulant
expansion of the one-particle density matrix. All the hy-
drodynamical continuity equations so obtained are exact
and expressed in a gauge-invariant form. The gauge in-
variance can be interpreted as the differential or local
Galilean invariance. Hence our description is able, for
example, to separate correctly the average translational
(hydrodynamical) kinetic energy from the average kinet-
ic energy in the local rest frame, a feature which has not
usually been easy to carry through in a microscopic
treatment (see, e.g., the discussion in Sec. 8 of Ref. 23 ).

As a technical remark it is worth mentioning that in
order to get the continuity equations for the current and
energy densities we have used the exact procedure and
avoided making the conventional spatial smoothing ap-
proximation.’>?* 1In the case of the energy density this is
made possible by the fact that although the interparticle
interaction energy cannot be expressed as a volume ener-
gy of any simple local density, its time derivative allows
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such a local representation. Thus, even without the as-
sumption of slow spatial variations, the time derivative
of the energy density is given by a perfect divergence of
the energy current, in addition to the local sources due
to the external forces. On the other hand, the equation
of motion for the particle-current density will be ex-
pressed in the conventional form in terms of a perfect
divergence of the stress tensor only if the term arising
from the interparticle interactions is subjected to the
smoothing approximation.

The earlier-mentioned SUBr truncation schemes for
the infinite hierarchy of the ECCM equations form a
particular and natural set of approximations. It is an
easy matter to show that all of the above continuity
equations hold also in the SUB# approximations. As a
matter of fact, the continuity equations will be satisfied
by even more drastic approximations in which part of
the terms contributing to the two-body density matrix
are dropped away. This derives from the fact that each
of the terms is separately fully gauge invariant. It was
also shown that the correctness of the hydrodynamical
equation of motion for the current density directly
guarantees that the f-sum rule will be satisfied in the
linearized regime. This, again, is true also for the SUBn
truncations and the other approximations described
above.

Baym and Kadanoff*>?° have studied the conditions
under which general diagram summations within the
Green’s-function formalism lead to the conservation of
the hydrodynamical densities. Their result can be for-
mulated in terms of a functional ®[{G] of the Green’s
function G by requiring the self-energy X to be given as
the functional derivative of ® with respect to G. A typi-
cal feature for such ®-derivable approximations is that
the perturbation series cannot be taken into account in
such a way that all diagrams up to a certain power of in-
teraction are included. Rather, the diagrams necessarily
have to be rearranged differently in the summation, in a
way where from each power only a chosen subset of dia-
grams is taken into account. This result is indeed quali-
tatively similar to our SUBn approximation schemes,
which also have the property of extending to infinite or-
der in the interaction, but summing only a subset in each
order.

In conclusion, we emphasize again, however, that the
ECCM approach has left its origins in perturbation
theory far behind. We view the present paper as a first
step towards the ultimate goal of expressing all physical
observables and processes in terms of the geometrical
properties of the underlying ECCM phase space. One of
the next steps in this procedure will be the development

]

¢n+2(r’r’;x11 ,Xn)
=&, Jr,r'x,, 2 Xy )
< 1 o 1 m
@2 3 —= 3 [dy, - [dy,a,0,

Using the fact that the amplitude &,,(y, . . .

.,ym)ayl cra, a
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of new approximation schemes based entirely on this
geometrical approach, and which, conversely, go beyond
such schemes as the SUBn scheme which still have some
links with perturbation theory. The approach in I was
based on a dynamic variational principle for the action
and its potentially exact parametrization in terms of gen-
eral ECCM states. Such time-evolution equations as our
ECCM equations of motion for the basic amplitudes
{g,,7,}, which have an underlying symplectic structure
and which hence also have the possibility of being asso-
ciated with suitably defined generalized Poisson brack-
ets, have been discussed in other contexts by other au-
thors. For example, a rather general account of the
geometry of the time-dependent variational principle in
quantum mechanics has been given by Kramer and Sara-
ceno.”” It may well be that further progress in our own
geometrical approach to the ECCM will be made by ex-
ploring more deeply its connections to other such similar
structures.
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR THE REDUCED SUBSYSTEM AMPLITUDES

In this appendix we evaluate the reduced subsystem
amplitudes defined in Egs. (4.9a) and (4.9b). The ¢ am-
plitudes are defined as

Gnarrixy, . x)=(®|ala]a) --a:n |®) .

1
(A1)

Using the definition of the doubly similarity-transformed
operators from Eq. (2.8) and the definitions contained in
Egs. (2.11)-(2.14), we have

al=elafe 2 =a]+(3,a]]. (A2)

Using Eq. (A2) in Eq. (A1), together with the relation
(@ | a] =0, yields the relation

S AP Xy, o, x,)

=(¢|3a/{a) +[5,a/Na] ---a] |®). (A3

With the aid of Eqgs. (2.13) and (2.14) and the basic com-
mutation relations (2.9), Eq. {A3) may be immediately
rewritten as

.. AV R |
. a, 8(y;—r'a, a; |®) .

(Ad)

»Vm ) is completely symmetric under permutations of its arguments, the
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m terms in the i summation of Eq. (A4) are easily seen to be identical by suitably relabeling the dummy integration
variables. Hence

IR U TS )=c*r,,+2(r,r',x,, e Xy)
+ 2 1)1 fdyl . fdymhlam(r,ayl’---;ym‘ﬂ
m=1
X((Dliaflayl---aym‘la:l ---a:n [®) . (AS)

Finally, inserting a resolution of the identity I of the form of Eq. (2.10) at the place so indicated in Eq. (AS5), and rela-
beling the summation index m =k + 1, we get

R O S PR BT, SN UL PR
oc 1 o0 1 _ , _
+k§07(—!—1§0—l—!- fdyl cee fdyk fdz, S fdz,ok+1(r Vi W T rzy, oo, 2p)
L ,
X<¢ja21 Ty, @y, 4, x, ICD)
(A6)

where we have made use of Eq. (2.14) again. The trivial evaluation of the remaining matrix element in Eq. (A6) then
gives the desired result,

Gn o x X ) =T W X, Xy)
< 1
—~ -~ !
P> In —1) Stxy [T (X X0y g (P2 )] (A7)
Izo . - .

where the mode of action of the symmetrization operator é’m is to sum over all n! permutations of the argu-

ments x, . . ., X, of the function on which it operates. For example,
QSD(xl,xz)[f(xlw“z)]zf(xhxzH’f(xzyxl) . (A8)
We now turn our attention to the X amplitudes, defined in Eq. (4.9b) as
X olrsrsxy, .., x,)=(®| ay, *a, a,a,| D)
=(®la, - ax"es"e”sa,a,:ese =571 @)
={(P | es"a_,cl e axne“sa,e ~SeSa,eS|®) (A9)

where we have used Eq. (2.11) and the fact that a, | ®) =0. We may now use the relation

e_Sa,esza,+[a,,S] , (A10)
and the equivalent relation for a,., together with the relation a,. | ®) =0, to write Eq. (A10) as
{a,+[a,,S]}a,S|®)

. 5"
Xpolrr'sxy, oo, x, )=(@ e a, a,

=0, A xy, X, )+ (P eS"aX) s ax"[a,,S]e ~5"1eS"a, S | ®) , (A1D)

where we have used the definition (2.14), and have inserted a unit operator of the form (e ~5"1e%") in the last term, as
shown. If we now insert a resolution of this last identity I of the form of Eq. (2.10), we have

Xy podrrsxy, oo o,x, =0, Hr,r'xy,...,x,)
s ! s _st t
+I§O~I—!fdzl"' fdz,((b{e a, " a,la,Sle azl'-'azlld>>

x{(®la, - 'azla,'eS”S [®) . (A12)

The / =0 term in the above summation may now profitably be split off the remainder of the sum. Equation (A12) may
then be written, using e ™5 |®)= | ®) and @, | ) =0, as
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Xnomrsxys ooy xg =0, Arr',xy, .o, x,) 40, ((nx), ..., x,)o(r")
| . "
+3 T f dz, -+ f dz{®|eS a, axn[a,,S]Ie”S a;l cee azt |®Yo; 4(Fhzy, ... uz))
I=1*

(A13)

where we have used Eq. (2.14). We now insert again a resolution of the identity of the form of Eq. (2.10) in the place
indicated by the unit operator 7 in Eq. (A13). Hence,

Xo2rr'sxy, oo, x,)

=0, nrxy, o x0 0, nxg, o, x, o (r')

< | < 1 ” t ¥
+1§1—ﬁfdzl"' fdz,jgoﬁfdu, fduj((Dies ay - a le,,Sla, oy | ®)

>((<I>[a,,| cee a,‘je_suaj1 . -aj[ [ D)o, ((rlzy, ... ,z;) .

(A14)

From Eq. (2.11) it is clear that the commutator [a,,S] in Eq. (A14) is composed of no destruction operators, and

hence may be commuted through the product a: T a:j. We may then use the relation a, | ®) =0 again to write

Eq. (A14) as

Xy orr'sxq, oo 0,x,)

=0, nrxy, . x)) o, (nxy, L, x )0 (r)
& 1 hd 1 ’" T g "
+1§1—ﬁj§07? fdz, fdzl fdul fduj<<l>1es ay ot aca, 'a,fie S'1eS"a,S | @)
—s" % .
x{®|a, - a,e o ajl rag [Py 2y, z))

(A15)

wherein we have inserted the identity factor e ~S"IeS” as shown in the first matrix element of the last term. A further
resolution of this identity I of the form of Eq. (2.10) then gives

Xopdrr'sxq, oo, x,)
=0, nr' X, x ) o, nxg, oL, x, o)
-« !l &1 & 1 ,
+1§1_l—?j§()ﬁk§0_];fdzl ct fdz,fdul A fdujfdyl ot fdyk(71+1(r ,Z],...,Z])
" t t, st
X{D|eS a caga) cccale Say1 ...a;(k | D)

x(®|a, ---a,eas|®)
X(@{aul"'auje“sua;’l el @) (A16)

The k =0 term in the k summation of Eq. (A16) may now, again, profitably be separated from the remainder of the
sum. Using e =" | ®)= | @), the j summation may be reperformed in this k =0 term, to give

Xy ior'sx oo ,x,)
=0, N\ X, X ) o, (hxy, o x o)

s ! " -5 1 t
+]§l—ﬁ Jdzy - [dzo; (2, .z (D €S oy, ageSal al [®)oyn)

o 1 &1 ,
+k§'1;?1§17!—fdy1.” fd)’k fdzl fdz,ak+1(r,yl,...,yk)a,H(r,z,,...,z,)

-« 1 " "
X3 ;deul--~fduj(<l>]esax1~-'axa,f] cralre=5"al - al (@)
j=0 /" n j

V1 Yi

x{®|a, ~--a,e5"a) - a |®), (A17)
u‘ uj

Z] ZI



37 EXTENDED COUPLED-CLUSTER METHOD. III. ... 1083

where we have used the definition (2.14) again. In conclusion, insertion of a last resolution of the identity of the form
of Eq. (2.10} in the place marked I in Eq. (A17) leads to the final result

Xp ok rt'sxqy oo Xy =0, onr',x, oo, x, )40, lnx, . o,x)o(r ) o (P, (rx, o0, x, (1—=8,0)
s 1 &1 ,
+kE]—k—?12!—l—!— fdyl te fdyk fdzl e fdzlak+1(r’yla‘ --)yk)01+1(r 721’-~-,zl)
XLHX oo 3 Xy 1Yy e e s VkZ0 - - - 521)
(A18)
where the coefficient L[; is defined as
Lh(xy,...,x, [yl, s VK20 e e s 2y)
_”L“’ S viig gt gt gt
=;§01' fdu1 fduj fdvl fdum(CD[e a,, a8, 8,8, " | D)

X(dﬂe*suau‘ - -'auja;‘ -"az‘: |(I>)<<l)!e_3”¢zv1 : --avma* "'a;k [®), (A19)

¥y

and is precisely the same coefficient as defined in I, written now in the real-space coordinate representation employed
here.

APPENDIX B: ALTERNATIVE FORM OF THE TWO-BODY DENSITY MATRIX

The two-body density matrix (a a ,0r,4r ) is given in Eq. (4.8) in terms of the reduced subsystem amphtudes ¢ and
X, which are evaluated in detail in Appendlx A. Here we present an alternative decomposition of (a a ,4r,4 ) with
the aid of functional derivatives of the one-body density matrices (a a, ). We begin by writing

(afafa,a)=(0|ala,ala, |®)—(®|a]a, |®)6(r,—ry

=(P(rl,r4)p(r2,r3))—ﬁ(”l,r3)8(r7_—‘r4) » (B1)

where we have used the definitions in Egs. (4.7}, (4.1), and (4.2). The general functional derivative techniques of I can
now be applied to evaluate the first term on the right-hand side of Eq. (B1). To this effect, we first insert the resolu-
tion of the identity of the form of Eq. (2.10) between the two operators p, which then yields the relation

Cplri,ralplry,ry)) =plr ,ra)ptry,ry)

+3 -2 [ax - [ax(@|ptryraal, - al [ON@ay e a, flryry) [0, (B2)

n=1

where the n =0 term of Eq. (2.10) has been split off to produce the term p(r,,r)p(r,,73).

The two matrix elements in the remaining sum in Eq. (B2) can conveniently be expressed as functional derivatives
of the respective one-body operator averages p(r,,r,) and p(r,,r;) with respect to the ECCM amplitudes {o,,&,}.
This was shown in detail in I for the case of the product of two arbitrary operators. Following that treatment, we can
write for the second matrix element in Eq. (B2)

<<I>|axn S axlﬁ(rz,r3)l<b)=<¢[axn s axles e“SaTa eS|<I>)

=— 5 (‘D{esﬂe a ,4r es|<l>)15
88, (xy, ..., x,)

&piry,ry)
C8S (x5 %y) s

(B3)

As was pointed out earlier in the main text, it is more convenient to formulate the ECCM theory in terms of the am-
plitudes {o,,&,}, and thus we express the functional derivative in Eq. (B3) as



1084 ARPONEN, BISHOP, PAJANNE, AND ROBINSON 37

&plry,ry)
88, (xy,...,x,) |g
_ i —l—fdy ‘ fdy 8 (Vs v s Vm) 8p(rs,ry) 80, (¥iseo s Vm) 8p(ry,ry)
= m! ! MBS (X sy Xy) 8T, Wy V) BSE(Xy, X)) 80, (V)
dplra,ry) z 8p(ry,ry)
Zéc‘in(xl,...,x,, 2__ ~—fdy, 'fdy,,,o,,+m(x1,...,x,,,y,,...,ym 87, (Vis- - sVm) (B4)

Here we have employed Eqs. (2.13) and (2.14), which give the amplitudes o, and &, as functionals of §” and S and
the fact that all the amplitudes are completely symmetric under permutation of their arguments.

Likewise we can transform the other matrix element in Eq. (B2) into an expression containing functional derivatives
of p(r,,r,) with respect to o, and &,. In this case we will need, in addition to the functional derivatives with respect
to S,(x,,...,x,) in Eq. (B4), also the derivatives with respect to S,(x,,...,x,), which are defined analogously to
Eq. (B4) to be

&p(ry,ry)
SSM(X],...,xn) s
= 8p(ry,ry) 80, (Y1, - s¥m) 8p(ry,ry) 86, (Yis - s¥m)
Z—fdyl'“fdym : : + ]
~, m! 80, (¥1s - s ¥m) 88, (X, X)) BT, (Y, s Ym) OSa(Xp L xy)
© 8plry,ry)
2: m! fdyl fdy'" 80, (Vi s ¥m)

, w = 1 SSk Zl,...,Zk) + ¥

xl’ ’xn) i
© 1 B Sﬁ("]’r4) ((D s . to (I))
TS L e e e e 100 w3
m— i m b o v e

Here we have used the definitions in Egs. (2.11) and (2.14). The matrix element on the last line of Eq. (B5) is a func-
tional of the amplitudes &, [cf. Eq. (3.22) of I]. Having now obtained the functional derivatives with respect to
S (xy,...,x,)and S, (x,...,x,), the remaining matrix element in Eq. (B2) can be calculated by applying methods
similar to those used in Appendix A. We omit the rather lengthy calculation, and give only the resulting final expres-
sion (see I for details),

<q’|ﬁ("x”4)a:, --~a: )

&p(ry,ry) € p(r,ry)
== — d d L s 3 Vms PRSP )
San(xx,---,xn)+m2=1m?f y, o S e )t Poi X1 x,
+i_1_i_l_fd fd fdz"‘fdz Op(ri.ra) o (y Vo sZ z.)
2 mt e S e ] K80 D1 - o y) R T B
XLkn(Zl,...,Zk;xl,..4,xn). (B6)

Here the coefficient L ; is defined as

Lkz(y1,---,)’k§21’---»Zl)—:—sz(Zu-u,Zl;}’n---,,Vk)
- e L
—mz,'o m' ”2 i fdul fdum fdvl fdvn((b!e a,, a, a, a, |®)
><(<I>|e‘snau1 -"auma;l ---a;[ |<I>><<I>|e_5"avl'-'au"a;l -'-a;k |®) . (BY

We note that the coefficient L, is simply the special case L], of Eq. (A19).
When we insert Egs. (B3) and (B6) in Eq. (B2) and execute the implied multiplication, we obtain {p(r,,ry)p(r,,r;))
in terms of various products of the functional derivatives 8 /80, and 85/85,, multiplied with coefficients that them-



37 EXTENDED COUPLED-CLUSTER METHOD. III. ... 1085

selves are functionals of o, and &,. These functional derivatives 85/8c, and §p /85, are simple expressions of &,
and o,, respectively, as can be seen from Eq. (4.18). Furthermore, we notice that the last term in Eq. (Bl),

—plr,ry;)d(ry—ry), will be canceled against a part of the product of terms 8p(r;,r,) /80 (x4, ..
,Xx,) in Eq. (B4). This is evident by inspecting Eq. (4.18). Omitting further details, we ob-

and 8p(r,,r3) /86 ,(x,, . ..
tain the final expression

.,x,) in Eq. (B6)

s 1
t - - 1 F
(a)ala,a, )=plr,rptry,r)+ 3 -5 [dx, - [ dx, @, olrir Xy, o X)0, r Xy, )
n=0 """
* 1 & 1
+ 303 s [axg [ax, [avo [y,
n! <~ m!
n=0 m =0
X[&"n+l(rl,x1, P ,x,, )Y;Ll,m +1(r47x1) e !xn;rjyy]’ LRI )ym )&m+l(r2’yl’ LR ’ym)
S SN0 ACRINIRT Ve SRS 4 575 SPRS A L TS D ST )
F0, (FXy, - ,x,,)Y,?LI,mH(r;,x;, S D TTRRRIS 20 i 2% SPIIES
0 (ParXis e e X )Y (PLX s X3P Y e 3 Ym0t (P31 w5V ] - (BB)

The various Y coefficients are functionals of the amplitudes o, and &,, with the following explicit forms:

)ﬁé(xl""’xnuﬂa---’ym)
=Y s e i Xy e s X )Z O e (Xps e XY V)
oS 1 &1
+k§l-’;—!‘1§1-ﬁfdz, fdzk fdvl--' fdvla,,+k(xl,...,xn,zl,...,zk)
XLz, o250, oo 00 (0, VLY e Y )

o 1 )

Y 200, XY V) E D Ffdzl fdzka,,+k(x1,...,x,,,z‘,...,zk)Lkm(z,,...,zk,yl,...,ym),
k=1 %:

Y2 (X oo s XVt e oV V=YW Vi X e X)) (B9)

Y2 (X 1y oo sXp5V1s e e o sV ) =Ly (X1 o 0 X5V o )

We point out that the expression of Eq. (B8) is trivial-
ly seen to be manifestly symmetric under the simultane-
ous interchange of the arguments r,=2r, and ry=2r,, by
making the appropriate change of integration variables
and by using the symmetry relations between the Y
coefficients as in the defining relations (B9). However,
the symmetry under the interchange of either r,=2r, or
ry=2r, separately is not manifest, since the first term on
the right-hand side already does not show this symme-
try. Indeed, to restore the symmetry it is clear that the
remaining terms must contain some suitably disconnect-
ed pieces. We would only point out now that the struc-

ture of the L,, coefficients is such that they are not
completely connected, and that it is the contribution
from the Y?? term in Eq. (B8) that properly accounts for
this feature. The dedicated reader may prove to his
satisfaction that once one has removed from this term
the disconnected pieces [which are p(r,r;)p(r,,r,) and
. Tt
a part contributing to ¢ aya, ){a,a, ), where the

remaining contribution to the latter product comes from
the n =0 part of the second term in Eq. (B8)], all of the
remaining terms are manifestly symmetric and connect-
ed, and that the total expression of Eq. (B8) does indeed
obey all the correct symmetry properties.
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