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ABSTRACT In multi-criteria decision making (MCDM), it is difficult for decision-makers to give accurate

evaluation values, and one-dimensional fuzzy set theory cannot capture periodic and seasonal information.

The interval-valued complex fuzzy soft set (IV-CFSS) has these advantages in describing the information,

which extends the evaluation value to the interval value, and extends the membership degree from the

real number to the complex number, and it is not limited by the parameterization. MCDM methods can

identify the best alternatives involving multiple criteria, and Evaluation based on Distance from Average

Solution (EDAS) method is one of the MCDM methods, which simplifies the traditional decision-making

process. In the real world, multi-criteria group decision making (MCGDM) is more realistic than MCDM.

The purpose of this manuscript is to propose new EDAS method for MCGDM in interval-valued complex

fuzzy soft environment. In the current work, the aggregation operators for IV-CFSS have not been applied

to the ranking of alternatives in MCGDM problems. For this proposed work, the interval-valued complex

fuzzy soft weighted arithmetic averaging (IV-CFSWAA) operator and the interval-valued complex fuzzy soft

weighted geometric averaging (IV-CFSWGA) operator are proposed. Then, the related properties of these

operators are studied. Based on these two operators, the interval-valued complex fuzzy soft EDAS methods

in MCGDM environment are proposed. Finally, an example of economic problem is provided to test the

feasibility and applicability of the proposed methods.

INDEX TERMS Interval-valued complex fuzzy soft set, interval-valued complex fuzzy soft weighted

arithmetic averaging operator, interval-valued complex fuzzy soft weighted geometric averaging operator,

evaluation based on distance from average solution, multi-criteria group decision-making.

I. INTRODUCTION

The concept of interval-valued complex fuzzy soft set

(IV-CFSS) is proposed by Selvachandran [1] in 2017, which

is a combination of interval-valued fuzzy set (IVFS) [2], soft

set (SS) [3], and complex fuzzy set (CFS) [4]. IVFS extends

the membership value from the determined value to the inter-

val value, which avoids the influence of personal preference

in the given evaluation, and the described information is more

The associate editor coordinating the review of this manuscript and
approving it for publication was Guiwu Wei.

reliable. SS overcomes the limitation of parameterization of

fuzzy sets and has outstanding advantages in multi-parameter

information description. CFS extends the membership value

from the real number to the complex number, increasing the

phase term that captures the periodicity and seasonality of the

information. This makes it easy to describe two-dimensional

data, and it can more rationally describe some special scenes

in the real world, such as economic applications, physics

analysis, and so on. IV-CFSS has the advantages of the above

three, so the application prospect is broad. Subsequently,

Selvachandran and Singh [5] proposed the application
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of IV-CFSS. Fan et al. [6] defined the distance measures of

interval-valued complex fuzzy soft sets (IV-CFSSs) and gave

their application.

The problem of aggregation operator is a research

hotspot in decision science. In terms of fuzzy set theory,

Xu and Yager [7] proposed some geometric aggregation oper-

ators based on intuitionistic fuzzy sets. Atanassov [8] stud-

ied operators over interval valued intuitionistic fuzzy sets.

Xia and Xu [9] proposed hesitant fuzzy information aggrega-

tion in decision making. Yu et al. [10] provided dual hesitant

fuzzy aggregation operators. Liu et al. [11] gave generalized

Pythagorean fuzzy aggregation operators and applications

in decision making. Garg and Nancy [12] proposed some

hybrid weighted aggregation operators under neutrosophic

set environment and applied them to multi-criteria decision-

making (MCDM). In terms of SS theory, Garg and Arora [13]

studied Bonferroni mean aggregation operators under intu-

itionistic fuzzy soft set environment and applied them to

decision-making. Arora and Garg [14] defined the prioritized

averaging/geometric aggregation operators under the intu-

itionistic fuzzy soft environment.. Arora and Garg [15]

provided robust aggregation operators for MCDM with

intuitionistic fuzzy soft environment and applied it to

decision-making. Garg and Arora [16] proposed the maclau-

rin symmetric mean aggregation operators based on t-norm

operations for the dual hesitant fuzzy soft set. Garg and

Arora [17] introduced dual hesitant fuzzy soft aggregation

operators and applied them in decision-making. Jana and

Pal [18] proposed a robust single-valued neutrosophic soft

aggregation operators in MCDM. In terms of CFS theory,

Bi et al. [19] defined complex fuzzy arithmetic aggregation

operators. Subsequently, Bi et al. [20] defined complex fuzzy

geometric aggregation operators. Garg and Rani [21] pre-

sented some generalized complex intuitionistic fuzzy aggre-

gation operators and applied them to MCDM process. Rani

and Garg [22] provided complex intuitionistic fuzzy power

aggregation operators and their applications in MCDM. Garg

and Rani [23] presented complex interval-valued intuitionis-

tic fuzzy sets and their aggregation operators.

The method of Evaluation based on Distance fromAverage

Solution (EDAS) [24] is a new MCDM method proposed by

Keshavarz Ghorabaee et al. in 2015. The core idea of the

EDAS method is to use average solution to evaluate alterna-

tives without computing positive and negative ideal solutions.

In this method, two measures called PDA (positive distance

from average) and NDA (negative distance from average) are

used, and the evaluation is based on the higher PDA value

and the lower NDA value. Kahraman et al. [25] extended

the EDAS method to intuitionistic fuzzy set. Peng et al. [26]

proposed interval-valued fuzzy soft decision making meth-

ods based on Multi-Attributive Border Approximation area

Comparison (MABAC), similarity measure and EDAS. Peng

and Chong [27] presented algorithms for neutrosophic soft

decision making based on EDAS and new similarity mea-

sure. Liang et al. [28] developed an integrated EDAS Elim-

ination and Choice Translating Reality (EDAS-ELECTRE)

method with picture fuzzy information for cleaner production

evaluation in gold mines. Karasan and Kahraman [29] pre-

sented a novel interval-valued neutrosophic EDAS method.

Galina et al. [30] developed the decision analysis with classic

and fuzzy EDAS modifications. Feng et al. [31] introduced

EDASmethod for extended hesitant fuzzy linguistic MCDM.

In terms of group decision making (GDM) method.

Li et al. [32] introduced a GDM model for integrating

heterogeneous information. Song and Li [33] presented a

large-scale GDM with incomplete multi-granular probabilis-

tic linguistic term sets and its application in sustainable sup-

plier selection. Song and Li [34] proposed handling GDM

model with incomplete hesitant fuzzy preference relations

and its application in medical decision. Song and Li [35]

proposed consensus constructing in large-scale GDM with

multi-granular probabilistic 2-tuple fuzzy linguistic prefer-

ence relations. Liu et al. [36] proposed the multi-attribute

group decision making based on Intuitionistic uncertain lin-

guistic Hamy mean operators with linguistic scale functions

and its application to health-care waste treatment technology

selection. Lin et al. [37] presented GDM model with hesi-

tant multiplicative preference relations based on regression

method and feedback mechanism.

The EDAS method differs from the traditional Tech-

nique for Order Preference by Similarity to Ideal Solution

(TOPSIS) [38] and Vlsekriterijumska Optimizacija I Kom-

promisno Resenje (VIKOR) [39] methods which require

the calculation of positive and negative ideal solutions to

select the best alternative. The EDAS method only needs

to consider the distance from the average solution to obtain

the best alternative. It is greatly simplified in the calcu-

lation procedure, and the results obtained are consistent

with the results calculated by the above method. Multi-

criteria group decision-making (MCGDM) is an unavoid-

able problem in the decision-making field. To extend the

EDAS method to MCGDM, it is necessary to use aggrega-

tion operator. IV-CFSS has many advantages in describing

information, which can overcome the influence of subjec-

tive preference of experts and capture the periodic charac-

teristics of information. So this paper extends the EDAS

method to MCGDM environment with interval-valued com-

plex fuzzy soft information. In this paper, interval-valued

complex fuzzy soft weighted arithmetic averaging (IV-

CFSWAA) operator and interval-valued complex fuzzy soft

weighted geometric averaging (IV-CFSWGA) operator are

proposed. Then, the related properties of these operators

are studied. Based on the above aggregation operator for

IV-CFSS, the interval-valued complex fuzzy soft EDAS

methods in MCGDM environment are proposed. In these

methods, we use the generalized entropy for IV-CFSS to

determine the weight vector of parameters for the case where

the weight vector of experts is known and the weight vector

of parameters is unknown.

The rest of the paper is organized as follows. Section II

recalls the basic concepts of interval-valued fuzzy set,

interval-valued fuzzy soft set, interval-valued complex fuzzy
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set, and IV-CFSS. Section III defines the IV-CFSWAA oper-

ator and the IV-CFSWGA operator, and studies the related

properties of these operators. Section IV proposes EDAS

methods built on IV-CFSWAAoperator and the IV-CFSWGA

operator in MCGDM environment. Section V gives an

illustrative example to show the validity of the interval-

valued complex fuzzy soft EDAS methods. Section VI com-

pares the proposed methods with the existing methods.

Finally, in Section VII, conclusions and future work are

stated.

II. PRELIMINARIES

In this section, some basic concepts and operations

of IV-CFSS are reviewed.

Definition 1 [2]: Let U be an initial universal set. A is an

interval-valued fuzzy set (IVFS) over U , which is defined as

A =
{(

x,
(

µ−
A (x) , µ+

A (x)
))

: x ∈ U
}

whereµ−
A (x) , µ+

A (x) ∈ [0, 1] and 0 ≤ µ−
A (x)+µ+

A (x) ≤ 1.

Definition 2 [40]: Let P (U) be the power set over

initial universal set U , E be the set of parameters, and

A ⊂ E . (F,A) is called an interval-valued fuzzy soft set

(IVFSS) over U , where F is a mapping given by F :
A → P (U). Mathematically, IVFSS can be defined as

follows:

(F,A) =
{(

x,
(

µ−
Fa

(x) , µ+
Fa

(x)
)

: x ∈ U , a ∈ A
)}

where µ−
Fa

(x) , µ+
Fa

(x) ∈ [0, 1] and 0 ≤ µ−
Fa

(x) + µ+
Fa

(x) ≤ 1.

Definition 3 [41]: Let U be an initial universal set. A is an

interval-valued complex fuzzy set (IVCFS) over U , which is

defined as

A =
{(

x,
(

µ−
A (x) , µ+

A (x)
))

: x ∈ U
}

=
{(

x,
[

r−
A (x) , r+

A (x)
]

· ei
[

ω−
A (x),ω+

A (x)
]
)

: x ∈ U
}

where µ−
A : U → {a : a ∈ C, |a| ≤ 1} and µ+

A :
U → {a : a ∈ C, |a| ≤ 1} are the mappings of lower and

upper bounds of complex membership functions, respec-

tively. The amplitude terms r−
A (x) , r+

A (x) and the phase

terms ω−
A (x) , ω+

A (x) satisfy the conditions r−
A (x) , r+

A (x) ∈
[0, 1] and ω−

A (x) , ω+
A (x) ∈ [0, 2π ], respectively, with

i =
√

−1.

Definition 4 [1]: Let F (U) be a power set over initial

universe set U , E be a set of parameters, and (F,A) is

an IV-CFSS over U , where F is a mapping given by F :
A → F (U). Mathematically, IV-CFSS can be defined

as follows:

Fai
(

xj
)

=
{(

x,
(

µ−
F(aj)

(xi) , µ+
F(aj)

(xi)
))

: x ∈ U
}

=









x,
[

r−
F(aj)

(xi) , r+
F(aj)

(xi)
]

·e
i

[

ω−
F(aj)

(xi),ω
+
F(aj)

(xi)

]


 : x ∈ U







,

where i =
√

−1, r−
F(aj)

(xi) , r+
F(aj)

(xi) ∈ [0, 1],

ω−
F(aj)

(xi) , ω+
F(aj)

(xi) ∈ [0, 2π ].

For convenience, we define α =
[

r−
F(aj)

(xi) , r+
F(aj)

(xi)
]

·

e
i[ω−

F(aj)
(xi),ω

+
F(aj)

(xi)]
as IV-CFSN, denoted by αij =

[

r−
ij , r

+
ij

]

·

e
i
[

ω−
ij ,ω

+
ij

]

.

Definition 5: For IV-CFSN αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

,

the score function of αijis defined as

S
(

αij
)

= r−
ij + r+

ij − 1 +
1

2π

(

ω−
ij + ω+

ij − 2π
)

(1)

and the accuracy function of αij is defined as

H
(

αij
)

= r−
ij − r+

ij + 1 +
1

2π

(

ω−
ij − ω+

ij − 2π
)

(2)

Based on these two functions, αij and βij are two IV-

CFSNs, then the comparison between αij and βij is stated as

1) If S
(

αij
)

> S
(

βij
)

, then αij > βij;

2) If S
(

αij
)

= S
(

βij
)

, then

2a) If H
(

αij
)

> H
(

βij
)

, then αij > βij;

2b) If H
(

αij
)

= H
(

βij
)

, then αij = βij.

Definition 6: Let U = {x1, x2, . . . , xm} be a uni-

versal set, E = {e1, e2, . . . , en} be a set of parame-

ters. (F,E) =
{

F
(

ej
)

|j = 1, 2, . . . , n
}

and (G,E) =
{

G
(

ej
)

|j = 1, 2, . . . , n
}

are two IV-CFSSs. The generalized

entropy for (F,E) is defined in (3), as shown at the bottom

of this page.

III. INTERVAL-VALUED COMPLEX FUZZY SOFT

WEIGHTED AVERAGING OPERATOR

In this section, we proposed the IV-CFSWAA operator and

IV-CFSWGA operator for IV-CFSS.

A. INTERVAL-VALUED COMPLEX FUZZY SOFT WEIGHTED

ARITHMETIC AVERAGING OPERATOR

In this section, we defined the IV-CFSWAA operator and

studied its properties.

M (F,E) =
1

n

n
∑

j=1









1 −
1
λ

√

√

√

√

√

√

1

2m

m
∑

i=1







∣

∣

∣
r−
F(ej)

(xi) + r+
F(ej)

(xi) − 1

∣

∣

∣

λ

+
(

1
2π

∣

∣

∣
ω−
F(ej)

(xi) + ω+
F(ej)

(xi) − 2π

∣

∣

∣

)λ















, λ > 0 (3)
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Theorem 1: For two IV-CFSNs α11 =
[

r−
11, r

+
11

]

·ei
[

ω−
11,ω

+
11

]

,

α12 =
[

r−
12, r

+
12

]

· ei
[

ω−
12,ω

+
12

]

, the operations of them are

defined as

1)

α11 ⊕ α12 =



1 −
2
∏

j=1

(

1 − r−
1j

)

, 1 −
2
∏

j=1

(

1 − r+
1j

)





·e
i

[

2π

(

1−
2
∏

j=1

(

1−
ω

−
1j
2π

))

,2π

(

1−
2
∏

j=1

(

1−
ω

+
1j
2π

))]

.

2)

α11 ⊗ α12 =





2
∏

j=1

r−
1j ,

2
∏

j=1

r+
1j





·e
i

[

2π

(

2
∏

j=1

ω
−
1j
2π

)

,2π

(

2
∏

j=1

ω
+
1j
2π

)]

.

3)

λα11 =
[

1 −
(

1 − r−
11

)λ
, 1 −

(

1 − r+
11

)λ
]

·e
i

[

2π

(

1−
(

1−
ω

−
11
2π

)λ
)

,2π

(

1−
(

1−
ω

+
11
2π

)λ
)]

.

4)

αλ
11 =

[

(

r−
11

)λ
,
(

r+
11

)λ
]

· e
i

[

2π

(

ω
−
11
2π

)λ

,2π

(

ω
+
11
2π

)λ
]

.

Definition 7: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-

CFSNs, an interval-valued complex fuzzy soft weighted

arithmetic averaging (IV-CFSWAA) operator is a function

IV − CFSWAA : αn → α, defined by

IV − CFSWAA (α11, α12, . . . , αmn) =
n
⊕
j=1

(

ξj
m
⊕
i=1

(

ηiαij
)

)

(4)

where ηi and ξj are the weights of expert and parameter,

respectively, and
m
∑

i=1

ηi = 1,
n
∑

j=1

ξj = 1.

Based on IV-CFSWAA operator, we can get the following

theorems.

Theorem 2: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-

CFSNs, then aggregated value of IV-CFSWAA operator is

also IV-CFSN and is given by

IV − CFSWAA (α11, α12, . . . , αmn)

=



1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

,

1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ηi

)ξj




·e
i



2π



1−
n
∏

j=1

(

m
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
n
∏

j=1

(

m
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj








(5)

Proof: For m = 1, we have η1 = 1. According to

Definition 7, we can get

IV − CFSWAA (α11, α12, . . . , αmn) =
n
⊕
j=1

(

ξjαij
)

=



1 −
n
∏

j=1

(

1 − r−
ij

)ξj
, 1 −

n
∏

j=1

(

1 − r+
ij

)ζj





·e
i



2π



1−
n
∏

j=1

(

1−
ω

−
ij
2π

)ζj


,2π



1−
n
∏

j=1

(

1−
ω

+
ij
2π

)ζj








=



1 −
n
∏

j=1

(

1
∏

i=1

(

1 − r−
ij

)ηi

)ξj

,

1 −
n
∏

j=1

(

1
∏

i=1

(

1 − r+
ij

)ηi

)ξj




·e
i



2π



1−
n
∏

j=1

(

1
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
n
∏

j=1

(

1
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj








And for n = 1, we have ξ1 = 1, then

IV − CFSWAA (α11, α12, . . . , αmn) =
m
⊕
i=1

(

ηiαij
)

=

[

1 −
m
∏

i=1

(

1 − r−
ij

)ηi
, 1 −

m
∏

i=1

(

1 − r+
ij

)ηi

]

·e
i

[

2π

(

1−
m
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)

,2π

(

1−
m
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)]

=



1 −
1
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

,

1 −
1
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ηi

)ξj




·e
i



2π



1−
1
∏

j=1

(

m
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
1
∏

j=1

(

m
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj








For m = p1 − 1, n = p2, and m = p1, n = p2 − 1, we have

IV − CFSWAA (α11, α12, . . . , αmn) =
p2
⊕
j=1

(

ξj
p1−1
⊕
i=1

(

ηiαij
)

)

=






1 −

p2
∏

j=1





p1−1
∏

i=1

(

1 − r−
ij

)ηi





ξj

,

1 −
p2
∏

j=1





p1−1
∏

i=1

(

1 − r+
ij

)ηi





ξj






·e
i



2π



1−
p2
∏

j=1

(

p1−1
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
p2
∏

j=1

(

p1−1
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj







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IV − CFSWAA (α11, α12, . . . , αmn) =
p2−1
⊕
j=1

(

ξj
p1
⊕
i=1

(

ηiαij
)

)

=



1 −
p2−1
∏

j=1

(

p1
∏

i=1

(

1 − r−
ij

)ηi

)ξj

,

1 −
p2−1
∏

j=1

(

p1
∏

i=1

(

1 − r+
ij

)ηi

)ξj




·e
i



2π



1−
p2−1
∏

j=1

(

p1
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
p2−1
∏

j=1

(

p1
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj








For m = p1, n = p2, we have

IV − CFSWAA (α11, α12, . . . , αmn) =
p2
⊕
j=1

(

ξj
p1
⊕
i=1

(

ηiαij
)

)

=



1 −
p2
∏

j=1

(

p1
∏

i=1

(

1 − r−
ij

)ηi

)ξj

,

1 −
p2
∏

j=1

(

p1
∏

i=1

(

1 − r+
ij

)ηi

)ξj




·e
i



2π



1−
p2
∏

j=1

(

p1
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
p2
∏

j=1

(

p1
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj








So, the Theorem 2 is hold for all m ≥ 1, n ≥ 1.

Example 1: Let (F,E) be an IV-CFSS,K = {k1, k2, k3, k4}
be the set of experts, E = {e1, e2, e3} be the set of parame-

ters. let η = (η1 = 0.2, η2 = 0.4, η3 = 0.3, η4 = 0.1)T and

ξ = (ξ1 = 0.2, ξ2 = 0.3, ξ3 = 0.5)T be the weight vectors

of experts and parameters, respectively. (F,E) is shown

in Table 1.

TABLE 1. Decision matrix
(

F , E
)

.

The Theorem 9 satisfies the following properties.

Theorem 3:Letαij =
[

r−
ij , r

+
ij

]

·ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m,

j = 1, 2, . . . , n) be a collection of IV-CFSNs, and αij = α,

then

IV − CFSWAA (α11, α12, . . . , αmn) = α (6)

This property is called Idempotency Property.

Proof: Since αij = α =
[

r−, r+] · ei[ω−,ω+], then we

have

IV − CFSWAA (α11, α12, . . . , αmn)

=



1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r−)ηi
)ξj

,

1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r+)ηi
)ξj




·e
i



2π



1−
n
∏

j=1

(

m
∏

i=1

(

1− ω−
2π

)ηi

)ξj


,2π



1−
n
∏

j=1

(

m
∏

i=1

(

1− ω+
2π

)ηi

)ξj








=









1 −





(

1 − r−)
m
∑

i=1

ηi





n
∑

j=1

ξj

, 1 −





(

1 − r+)
m
∑

i=1

ηi





n
∑

j=1

ξj









·e

i











2π











1−







(

1− ω−
2π

)

m
∑

i=1
ηi







n
∑

j=1
ξj











,2π











1−







(

1−ω+
2π

)

m
∑

i=1
ηi







n
∑

j=1
ξj





















=
[

1 −
(

1 − r−) , 1 −
(

1 − r+)]

·ei
[

2π
(

1−
(

1− ω−
2π

))

,2π
(

1−
(

1− ω+
2π

))]

=
[

r−, r+] · ei[ω
−,ω+]

Therefore, IV − CFSWAA (α11, α12, . . . , αmn) = α.

Theorem 4:Letαij =
[

r−
ij , r

+
ij

]

·ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m,

j = 1, 2, . . . , n) be a collection of IV-CFSNs, and

α−
ij =

[

min
m

min
n

{

r−
ij

}

,min
m

min
n

{

r+
ij

}]

·ei
[

min
m

min
n

{

ω−
ij

}

,min
m

min
n

{

ω+
ij

}]

,

α+
ij =

[

max
m

max
n

{

r−
ij

}

, max
m

max
n

{

r+
ij

}]

·ei
[

max
m

max
n

{

ω−
ij

}

,max
m

max
n

{

ω+
ij

}]

.

Then we can have

α−
ij ≤ IV − CFSWAA (α11, α12, . . . , αmn) ≤ α+

ij (7)

This property is called Boundedness Property.

Proof: Since αij = α =
[

r−, r+]·ei[ω−,ω+]be IV-CFSN,

then min
m

min
n

{

r−
ij

}

≤ r−
ij ≤ max

m
max
n

{

r−
ij

}

. we can get

1 − max
m

max
n

{

r−
ij

}

≤ 1 − r−
ij ≤ 1 − min

m
min
n

{

r−
ij

}

⇒
m
∏

i=1

(

1 − max
m

max
n

{

r−
ij

})ηi
≤

m
∏

i=1

(

1 − r−
ij

)ηi

≤
m
∏

i=1

(

1 − min
m

min
n

{

r−
ij

})ηi
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IV − CFSWAA (α11, α12, . . . , α43)

=



1 −
3
∏

j=1

(

4
∏

i=1

(

1 − r−
ij

)ηi

)ξj

, 1 −
3
∏

j=1

(

4
∏

i=1

(

1 − r+
ij

)ηi

)ξj




·e
i



2π



1−
3
∏

j=1

(

4
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


,2π



1−
3
∏

j=1

(

4
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj








=





















1 −
(

(1 − 0.4)0.2 (1 − 0.5)0.4 (1 − 0.2)0.3 (1 − 0.7)0.1
)0.2

×
(

(1 − 0.3)0.2 (1 − 0.3)0.4 (1 − 0.2)0.3 (1 − 0.1)0.1
)0.3

×
(

(1 − 0.6)0.2 (1 − 0.8)0.4 (1 − 0.6)0.3 (1 − 0.1)0.1
)0.5

,

1 −
(

(1 − 0.5)0.2 (1 − 0.6)0.4 (1 − 0.3)0.3 (1 − 0.8)0.1
)0.2

×
(

(1 − 0.4)0.2 (1 − 0.4)0.4 (1 − 0.3)0.3 (1 − 0.2)0.1
)0.3

×
(

(1 − 0.7)0.2 (1 − 1)0.4 (1 − 0.7)0.3 (1 − 0.2)0.1
)0.5





















·e

i











































2π













1 −
(

(

1 −
(

π
/

6
)

/ (2π)
)0.2 (

1 −
(

π
/

3
)

/ (2π)
)0.4 (

1 −
(

2π
/

3
)

/ (2π)
)0.3 (

1 −
(

π
/

6
)

/ (2π)
)0.1

)0.2

×
(

(

1 −
(

5π
/

6
)

/ (2π)
)0.2 (

1 −
(

π
/

6
)

/ (2π)
)0.4 (

1 −
(

5π
/

6
)

/ (2π)
)0.3

(1 − (π) / (2π))0.1
)0.3

×
(

(

1 −
(

3π
/

2
)

/ (2π)
)0.2 (

1 −
(

3π
/

2
)

/ (2π)
)0.4 (

1 −
(

π
/

2
)

/ (2π)
)0.3 (

1 −
(

π
/

2
)

/ (2π)
)0.1

)0.5













,

2π











1 −
(

(

1 −
(

π
/

3
)

/ (2π)
)0.2

(1 − (π) / (2π))0.4
(

1 −
(

4π
/

3
)

/ (2π)
)0.3 (

1 −
(

π
/

3
)

/ (2π)
)0.1

)0.2

×
(

(1 − (π) / (2π))0.2 (1 − (π) / (2π))0.4 (1 − (π) / (2π))0.3 (1 − (4π/3) / (2π))0.1
)0.3

×
(

(1 − (2π) / (2π))0.2
(

1 −
(

5π
/

3
)

/ (2π)
)0.4

(1 − (π) / (2π))0.3 (1 − (2π/3) / (2π))0.1
)0.5





















































= [0.53, 1] · ei[2π(0.47),2π ]

⇒
(

1 − max
m

max
n

{

r−
ij

})

m
∑

i=1

ηi
≤

m
∏

i=1

(

1 − r−
ij

)ηi

≤
(

1 − min
m

min
n

{

r−
ij

})

m
∑

i=1

ηi

⇒ 1 − max
m

max
n

{

r−
ij

}

≤
m
∏

i=1

(

1 − r−
ij

)ηi

≤ 1 − min
m

min
n

{

r−
ij

}

⇒
(

1 − max
m

max
n

{

r−
ij

})ξj
≤

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

≤
(

1 − min
m

min
n

{

r−
ij

})ξj

⇒
n
∏

j=1

(

1 − max
m

max
n

{

r−
ij

})ξj
≤

n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

≤
n
∏

j=1

(

1 − min
m

min
n

{

r−
ij

})ξj

⇒
(

1 − max
m

max
n

{

r−
ij

})

n
∑

j=1

ξj

≤
n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

≤
(

1 − min
m

min
n

{

r−
ij

})

n
∑

j=1

ξj

⇒ 1 − max
m

max
n

{

r−
ij

}

≤
n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

≤ 1 − min
m

min
n

{

r−
ij

}

⇒ min
m

min
n

{

r−
ij

}

≤ 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

≤ max
m

max
n

{

r−
ij

}

.

Similarly, we can get

min
m

min
n

{

r+
ij

}

≤ 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ηi

)ξj

≤ max
m

max
n

{

r+
ij

}

,

min
m

min
n

{

ω−
ij

}

≤ 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − ω−
ij

)ηi

)ξj

≤ max
m

max
n

{

ω−
ij

}

,

min
m

min
n

{

ω+
ij

}

≤ 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − ω+
ij

)ηi

)ξj

≤ max
m

max
n

{

ω+
ij

}

.
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By the score function of IV-CFSNs, we have

S (IV − CFSWAA (α11, α12, . . . , αmn))

= 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj

+ 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ηi

)ξj

− 1

+
1

2π













2π

(

1 −
n
∏

j=1

(

m
∏

i=1

(

1 −
ω−
ij

2π

)ηi
)ξj
)

+2π

(

1 −
n
∏

j=1

(

m
∏

i=1

(

1 −
ω+
ij

2π

)ηi
)ξj
)

− 2π













≥ min
m

min
n

{

r−
ij

}

+ min
m

min
n

{

r+
ij

}

− 1

+
1

2π

(

min
m

min
n

{

ω−
ij

}

+ min
m

min
n

{

ω+
ij

}

− 2π
)

= S
(

α−
ij

)

and

S (IV − CFSWAA (α11, α12, . . . , αmn))

≤ max
m

max
n

{

r−
ij

}

+ max
m

max
n

{

r+
ij

}

− 1

+
1

2π

(

max
m

max
n

{

ω−
ij

}

+ max
m

max
n

{

ω+
ij

}

− 2π
)

= S
(

α+
ij

)

So, we can obtain

α+
ij ≤ IV − CFSWAA (α11, α12, . . . , αmn) ≤ α−

ij

Theorem 5: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and α=
[

r−, r+] ·ei[ω−,ω+]

be IV-CFSNs. Then we can have

IV − CFSWAA (α11 ⊕ α, α12 ⊕ α, . . . , αmn ⊕ α)

= IV − CFSWAA (α11, α12, . . . , αmn) ⊕ α (8)

This property is called Shift Invariance Property.

Proof: Since

αij ⊕ α =
[

1−
(

1−r−
ij

)

(

1−r−) , 1−
(

1−r+
ij

)

(

1−r+)
]

· ei[2π (1−(1−
ω

−
ij
2π )(1− ω−

2π )),2π (1−(1−
ω

+
ij
2π )(1− ω+

2π ))],

then we have, IV − CFSWAA(α11 ⊕ α, α12 ⊕ α, . . . ,

αmn ⊕ α), as shown at the bottom of this page.

Theorem 6:Letαij =
[

r−
ij , r

+
ij

]

·ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m,

j = 1, 2, . . . , n) be a collection of IV-CFSNs and λ > 0. Then

we can have

IV − CFSWAA (λα11, λα12, . . . , λαmn)

= λIV − CFSWAA (α11, α12, . . . , αmn) (9)

This property is called Homogeneity Property.

Proof: Since λαij =
[

1 −
(

1 − r−
ij

)λ

, 1 −
(

1 − r+
ij

)λ
]

·ei[2π (1−(1−
ω

−
ij
2π )λ),2π (1−(1−

ω
+
ij
2π )λ)], then we have, IV −

CFSWAA (λα11, λα12, . . . , λαmn), as shown at the top of the

next page.

B. INTERVAL-VALUED COMPLEX FUZZY SOFT WEIGHTED

GEOMETRIC AVERAGING OPERATOR

In this section, we defined the IV-CFSWGA operator and

studied its properties.

Definition 8: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i = 1,

2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-CFSNs, an

IV − CFSWAA (α11 ⊕ α, α12 ⊕ α, . . . , αmn ⊕ α)

=











1 −
n
∏

j=1

(

m
∏

i=1

((

1 − r−
ij

)ηi (
1 − r−)ηi

)

)ξj

,

1 −
n
∏

j=1

(

m
∏

i=1

((

1 − r+
ij

)ηi (
1 − r+)ηi

)

)ξj











·e
i



2π



1−
n
∏

j=1

(

m
∏

i=1

((

1−
ω

−
ij
2π

)ηi
(

1− ω−
2π

)ηi

))ξj


,2π



1−
n
∏

j=1

(

m
∏

i=1

((

1−
ω

+
ij
2π

)ηi
(

1− ω+
2π

)ηi

))ξj








=













1 −

(

n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi
)ξj
)

(

1 − r−) ,

1 −

(

n
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ηi
)ξj
)

(

1 − r+)













·e
i



2π



1−





n
∏

j=1

(

m
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj


(1−ω−)



,2π



1−





n
∏

j=1

(

m
∏

i=1

(

1−
ω

+
ij
2π

)ηi
)ξj


(1−ω+)









= IV − CFSWAA (α11, α12, . . . , αmn) ⊕ α
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IV − CFSWAA (λα11, λα12, . . . , λαmn)

=



1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ληi

)ξj

, 1 −
n
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ληi

)ξj




·e
i






2π






1−

n
∏

j=1





m
∏

i=1

(

1−
ω

−
ij
2π

)ληi




ξj





,2π






1−

n
∏

j=1





m
∏

i=1

(

1−
ω

+
ij
2π

)ληi




ξj












=






1 −





n
∏

j=1

(

m
∏

i=1

(

1 − r−
ij

)ηi

)ξj




λ

, 1 −





n
∏

j=1

(

m
∏

i=1

(

1 − r+
ij

)ηi

)ξj




λ






·e
i






2π






1−





n
∏

j=1

(

m
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj




λ





,2π






1−





n
∏

j=1

(

m
∏

i=1

(

1−
ω

−
ij
2π

)ηi
)ξj




λ












= λIV − CFSWAA (α11, α12, . . . , αmn)

interval-valued complex fuzzy soft weighted geometric aver-

aging (IV-CFSWGA) operator is a function IV −CFSWGA :
αn → α defined by

IV−CFSWGA (a11, a12, . . . , amn)=
n
⊗
j=1

(

m
⊗
i=1

(

a
ηi

ij

)

)ξj

(10)

where ηj and ξi are the weights of expert and parameter,

respectively, and
n
∑

j=1

ηj = 1,
m
∑

i=1

ξi = 1.

Based on IV-CFSWGA operator, we obtain the following

theorems.

Theorem 7: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-

CFSNs, then aggregated value of IV-CFSWGA operator is

also IV-CFSN and is given by

IV − CFSWGA (α11, α12, . . . , αmn)

=





n
∏

j=1

(

m
∏

i=1

(

r−
ij

)ηi

)ξj

,

n
∏

j=1

(

m
∏

i=1

(

r+
ij

)ηi

)ξj




·e
i



2π





n
∏

j=1

(

m
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





n
∏

j=1

(

m
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








(11)

Proof: For m = 1, we have η1 = 1. According to

Definition 8, we can get

IV − CFSWGA (α11, α12, . . . , αmn) =
n
⊗
j=1

(

a
ξj

ij

)

=





n
∏

j=1

(

r−
ij

)ξj
,

n
∏

j=1

(

r+
ij

)ζj





·e
i



2π





n
∏

j=1

(

ω
−
ij
2π

)ζj


,2π





n
∏

j=1

(

ω
+
ij
2π

)ζj








=



1 −
n
∏

j=1

(

1
∏

i=1

(

r−
ij

)ηi

)ξj

,

n
∏

j=1

(

1
∏

i=1

(

r+
ij

)ηi

)ξj




·e
i



2π





n
∏

j=1

(

1
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





n
∏

j=1

(

1
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








And for n = 1, we have ξ1 = 1, then

IV − CFSWGA (α11, α12, . . . , αmn) =
m
⊗
i=1

(

α
ηi
ij

)

=

[

m
∏

i=1

(

r−
ij

)ηi
,

m
∏

i=1

(

r+
ij

)ηi

]

·e
i

[

2π

(

m
∏

i=1

(

ω
−
ij
2π

)ηi
)

,2π

(

m
∏

i=1

(

ω
+
ij
2π

)ηi
)]

=





1
∏

j=1

(

m
∏

i=1

(

r−
ij

)ηi

)ξj

,

1
∏

j=1

(

m
∏

i=1

(

r+
ij

)ηi

)ξj




·e
i



2π





1
∏

j=1

(

m
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





1
∏

j=1

(

m
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








For m = p1 − 1, n = p2, and m = p1, n = p2 − 1, we have

IV − CFSWGA (α11, α12, . . . , αmn) =
p2
⊗
j=1

(

p1−1
⊗
i=1

(

α
ηi
ij

)

)ξj

=







p2
∏

j=1





p1−1
∏

i=1

(

r−
ij

)ηi





ξj

,

p2
∏

j=1





p1−1
∏

i=1

(

r+
ij

)ηi





ξj






·e
i



2π





p2
∏

j=1

(

p1−1
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





p2
∏

j=1

(

p1−1
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








IV − CFSWGA (α11, α12, . . . , αmn) =
p2−1
⊗
j=1

(

p1
⊗
i=1

(

α
ηi
ij

)

)ξj
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=





p2−1
∏

j=1

(

p1
∏

i=1

(

r−
ij

)ηi

)ξj

,

p2−1
∏

j=1

(

p1
∏

i=1

(

r+
ij

)ηi

)ξj




·e
i



2π





p2−1
∏

j=1

(

p1
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





p2−1
∏

j=1

(

p1
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








For m = p1, n = p2, we have

IV − CFSWGA (α11, α12, . . . , αmn) =
p2
⊗
j=1

(

p1
⊗
i=1

(

α
ηi
ij

)

)ξj

=





p2
∏

j=1

(

p1
∏

i=1

(

r−
ij

)ηi

)ξj

,

p2
∏

j=1

(

p1
∏

i=1

(

r+
ij

)ηi

)ξj




·e
i



2π





p2
∏

j=1

(

p1
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





p2
∏

j=1

(

p1
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








So, the Theorem 7 is hold for all m ≥ 1, n ≥ 1.

Example 2: Let (F,E) be an IV-CFSS,K = {k1, k2, k3, k4}
be the set of experts, E = {e1, e2, e3} be the set of parame-

ters. let η = (η1 = 0.1, η2 = 0.3, η3 = 0.3, η4 = 0.3)T and

ξ = (ξ1 = 0.2, ξ2 = 0.4, ξ3 = 0.4)T be the weight vectors

of experts and parameters, respectively. (F,E) is shown

in Table 2.

IV-CFSWGA operator satisfies the properties of

IV-CFSWAA operator.

TABLE 2. Decision matrix
(

F , E
)

.

Theorem 8: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i =
1, 2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-CFSNs,

and αij = α, then

IV − CFSWGA (α11, α12, . . . , αmn) = α (12)

This property is called Idempotency Property.

Theorem 9: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i =
1, 2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-CFSNs,

and

α−
ij =

[

min
m

min
n

{

r−
ij

}

,min
m

min
n

{

r+
ij

}]

·ei
[

min
m

min
n

{

ω−
ij

}

,min
m

min
n

{

ω+
ij

}]

,

IV − CFSWGA (α11, α12, . . . , α34)

=





3
∏

j=1

(

4
∏

i=1

(

r−
ij

)ηi

)ξj

,

3
∏

j=1

(

4
∏

i=1

(

r+
ij

)ηi

)ξj




·e
i



2π





3
∏

j=1

(

4
∏

i=1

(

ω
−
ij
2π

)ηi
)ξj


,2π





3
∏

j=1

(

4
∏

i=1

(

ω
+
ij
2π

)ηi
)ξj








=





















(

0.70.1 × 0.40.3 × 0.20.3 × 0.90.3
)0.2

×
(

0.30.1 × 0.30.3 × 0.30.3 × 0.20.3
)0.4

×
(

0.50.1 × 0.90.3 × 0.60.3 × 0.10.3
)0.4

,
(

10.1 × 0.60.3 × 0.30.3 × 10.3
)0.2

×
(

0.40.1 × 0.40.3 × 0.40.3 × 0.30.3
)0.4

×
(

0.70.1 × 10.3 × 0.70.3 × 0.20.3
)0.4





















·e

i











































2π













(

((

π
/

6
)

/ (2π)
)0.1 ((

π
/

3
)

/ (2π)
)0.3 ((

2π
/

3
)

/ (2π)
)0.3 ((

π
/

6
)

/ (2π)
)0.3

)0.2

×
(

((

5π
/

6
)

/ (2π)
)0.1 ((

π
/

6
)

/ (2π)
)0.3 ((

5π
/

6
)

/ (2π)
)0.3

((π) / (2π))0.3
)0.4

×
(

((

3π
/

2
)

/ (2π)
)0.1 ((

3π
/

2
)

/ (2π)
)0.3 ((

π
/

2
)

/ (2π)
)0.3 ((

π
/

2
)

/ (2π)
)0.3

)0.4













,

2π











(

((

π
/

3
)

/ (2π)
)0.1

((π) / (2π))0.3
((

4π
/

3
)

/ (2π)
)0.3 ((

π
/

3
)

/ (2π)
)0.3

)0.2

×
(

((π) / (2π))0.1 ((π) / (2π))0.3 ((π) / (2π))0.3 ((4π/3) / (2π))0.3
)0.4

×
(

((2π) / (2π))0.1
((

5π
/

3
)

/ (2π)
)0.3

((π) / (2π))0.3 ((2π/3) / (2π))0.3
)0.4





















































= [0.34, 0.47] · ei[2π(0.28),2π(0.50)]
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α+
ij =

[

max
m

max
n

{

r−
ij

}

, max
m

max
n

{

r+
ij

}]

·ei
[

max
m

max
n

{

ω−
ij

}

,max
m

max
n

{

ω+
ij

}]

.

Then we can have

α−
ij ≤ IV − CFSWGA (α11, α12, . . . , αmn) ≤ α+

ij (13)

This property is called Boundedness Property.

Theorem 10: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i =
1, 2, . . . ,m, j = 1, 2, . . . , n) and α =

[

r−, r+] · ei[ω−,ω+]

be IV-CFSNs. Then we can have

IV − CFSWGA (α11 ⊗ α, α12 ⊗ α, . . . , αmn ⊗ α)

= IV − CFSWGA (α11, α12, . . . , αmn) ⊗ α (14)

This property is called Shift Invariance Property.

Theorem 11: Let αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

(i =
1, 2, . . . ,m, j = 1, 2, . . . , n) be a collection of IV-CFSNs and

λ > 0. Then we can have

IV − CFSWGA
(

αλ
11, α

λ
12, . . . , α

λ
mn

)

= (IV − CFSWGA (α11, α12, . . . , αmn))
λ (15)

This property is called Homogeneity Property.

IV. EDAS ALGORITHMS BASED ON AGGREGATION

OPERATORS FOR IV-CFSS IN MCGDM ENVIRONMENT

In this section, we propose the EDAS method of interval-

valued complex fuzzy soft set using IV-CFSWAA operator

and IV-CFSWGA operator in MCGDM environment.

Suppose the set of alternatives is U = {u1, u2, . . . , ul},
the set of experts is K = {k1, k2, . . . , km}, and the set of

parameters is E = {e1, e2, . . . , en}. The weight vector of

experts η = (η1, η2, . . . , ηm)T is known with
m
∑

i=1

ηi = 1,

and the weight vector of parameters ξ = (ξ1, ξ2, . . . , ξn)
T is

completely unknown. (F,E)s (s = 1, 2, . . . , l) is IV-CFSS.

For ∀ej ∈ E , Fs
(

ej
)

=
{(

k1, α1j

)

,
(

k2, α2j

)

, . . . ,
(

km, αmj
)}

,

j = 1, 2, . . . , n. αij =
[

r−
ij , r

+
ij

]

· ei
[

ω−
ij ,ω

+
ij

]

is IV-CFSN, rep-

resenting the evaluation value ith expert gives to jth parameter

for the sth alternative. Then we present the EDAS algorithms

of IV-CFSS in MCGDM environment.

A. ALGORITHM 1: BY USING IV-CFSWAA OPERATOR

Step 1: Collect the required decision information in the form

of IV-CFSS as Table 3. Interval-valued complex fuzzy soft

decision matrix (F,E)s (s = 1, 2, . . . , l)corresponds to each

alternative.

TABLE 3. IV-CFSS
(

F , E
)

S
.

Step 2: For each parameter, the evaluations of all experts

are aggregated into a collective evaluation to construct

an aggregate matrix β =
(

βsj
)

l×n, which can be con-

structed by using the IV-CFSWAA operator and be shown

in Table 4.

TABLE 4. Aggregation matrix using IV-CFSWAA operator.

For each parameter, the evaluation values of all experts are

aggregated into a collective evaluation value. So we can get

n = 1 and ξ1 = 1 for IV-CFSWAA operator. Then,

βsj =
m
⊕
i=1

(

ηiαij
)

=

[

1−
m
∏

i=1

(

1−rs−ij
)ηi

, 1−
m
∏

i=1

(

1−rs+ij
)ηi

]

·e
i

[

2π

(

1−
m
∏

i=1

(

1−
ω
s−
ij
2π

)ηi
)

,2π

(

1−
m
∏

i=1

(

1−
ω
s+
ij
2π

)ηi
)]

(16)

Step 3: Determine the weight vector of parameters ξ =
(ξ1, ξ2, . . . , ξn)

T . The ξj (j = 1, 2, . . . , n) is determined by

the following formula:

ξj =
1 −Mj

n−
n
∑

j=1

Mj

, (17)

where Mj is defined as the generalized entropy M (F,E), as

shown at the bottom of this page, for IV-CFSS.

To simplify calculations, we take λ = 2.

Step 4: Determine the average solution by the parameter

value :

AV =
[

AVj
]

1×n

M (F,E) =
1

n

n
∑

j=1









1 −
1
λ

√

√

√

√

√

√

1

2m

m
∑

i=1







∣

∣

∣
r−
F(ej)

(xi) + r+
F(ej)

(xi) − 1

∣

∣

∣

λ

+
(

1
2π

∣

∣

∣
ω−
F(ej)

(xi) + ω+
F(ej)

(xi) − 2π

∣

∣

∣

)λ















, λ > 0
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where

AVj =
1

l

l
⊕
s=1

(

βsj
)

=






1 −

(

l
∏

s=1

(

1 − r−
sj

)

)

1
l

, 1 −

(

l
∏

s=1

(

1 − r+
sj

)

)

1
l







·e
i






2π






1−

(

l
∏

s=1

(

1−
ω

−
sj
2π

))
1
l






,2π






1−

(

l
∏

s=1

(

1−
ω

+
sj
2π

))
1
l













(18)

Step 5: Calculate the positive distance (PDA) matrix from

the average solution and the negative distance (NDA) matrix

from the average solution according to the type of the param-

eter (cost type, benefit type), as shown below:

PDA =
[

PDAsj
]

l×n , (19)

NDA =
[

NDAsj
]

l×n . (20)

If the jth parameter is a benefit indicator, then,

PDAsj =
max

(

0,
(

S
(

βsj
)

− S
(

AVsj
)))

S
(

AVsj
) , (21)

NDAsj =
max

(

0,
(

S
(

AVsj
)

− S
(

βsj
)))

S
(

AVsj
) . (22)

If the jth parameter is a cost indicator, then,

NDAsj =
max

(

0,
(

S
(

βsj
)

− S
(

AVsj
)))

S
(

AVsj
) , (23)

PDAsj =
max

(

0,
(

S
(

AVsj
)

− S
(

βsj
)))

S
(

AVsj
) . (24)

Step 6: Calculate the weighted sum of PDAsj and NDAsj,

and calculate the formula as follows:

SPs =
n
∑

j=1

wjPDAsj, (25)

SNs =
n
∑

j=1

wjNDAsj. (26)

Step 7: Standardize the values of SPs and SNs. The stan-

dardization formula is as follows:

NSPs =
SPs

maxs (SPs)
, (27)

NSNs = 1 −
SNs

maxs (SNs)
. (28)

Step 8: Calculate the appraisal score (AS) for all alterna-

tives, and calculate the formula is shown as follows:

ASs =
1

2
(NSPs + NSNs) (29)

Step 9: Rank the evaluation scores in descending order to

get the ordering of the alternatives.

B. ALGORITHM 2: BY USING IV-CFSWGA OPERATOR

Step 1 is the same as step 1 of Algorithm 1.

Step 2: For each parameter, the evaluations of all experts

are aggregated into a collective evaluation to construct an

aggregate matrix β =
(

βsj
)

l×n, which can be constructed by

using the IV-CFSWGA operator and be shown in Table 5.

TABLE 5. Aggregation matrix using IV-CFSWGA operator.

For each parameter, the evaluation values of all experts are

aggregated into a collective evaluation value. So we can get

n = 1 and ξ1 = 1 for IV-CFSWGA operator. Then,

βsj =
m
⊗
i=1

(

αsij

)ηi

=

[

m
∏

i=1

(

rs−ij

)ηi
,

m
∏

i=1

(

rs+ij

)ηi

]

·e
i

[

2π

(

m
∏

i=1

(

ω
s−
ij
2π

)ηi
)

,2π

(

m
∏

i=1

(

ω
s+
ij
2π

)ηi
)]

(30)

Step 3: Determine the weight vector of parameters ξ =
(ξ1, ξ2, . . . , ξn)

T . The ξj (j = 1, 2, . . . , n) is determined by

the following formula:

ξj =
1 −Mj

n−
n
∑

j=1

Mj

, (31)

where Mj is defined as the generalized entropy M (F,E), as

shown at the bottom of this page. for IV-CFSS.

To simplify calculations, we take λ = 2.

Step 4: Determine the average solution by the parameter

value :

AV =
[

AVj
]

1×n

M (F,E) =
1

n

n
∑

j=1









1 −
1
λ

√

√

√

√

√

√

1

2m

m
∑

i=1







∣

∣

∣
r−
F(ej)

(xi) + r+
F(ej)

(xi) − 1

∣

∣

∣

λ

+
(

1
2π

∣

∣

∣
ω−
F(ej)

(xi) + ω+
F(ej)

(xi) − 2π

∣

∣

∣

)λ















, λ > 0
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TABLE 6. Definition of parameter index.

TABLE 7. IV-CFSS
(

F , E
)

1 for the province A.

TABLE 8. IV-CFSS
(

F , E
)

2 for the province B.

TABLE 9. IV-CFSS
(

F , E
)

3 for the province C.

where,

AVj =
1

l

l
⊗
s=1

(

βsj
)

=







(

l
∏

s=1

(

r−
sj

)

)

1
l

,

(

l
∏

s=1

(

r+
sj

)

)

1
l







·e
i






2π







(

l
∏

s=1

(

ω
−
sj
2π

))
1
l






,2π







(

l
∏

s=1

(

ω
+
sj
2π

))
1
l













(32)

The remaining steps are the same as Algorithm 1.

V. NUMBERICAL EXAMPLE

In this section, an example to illustrate the validity and

effectiveness of our proposed EDAS algorithms in MCGDM

environment in section IV is presented. The proposed algo-

rithms can rank the degree of the impact of economic policies

on certain provinces and select the province with the most

significant economic policy impact.

In economic development, the economic development

strategies of different historical periods and different coun-

tries are different. Under the guidance of economic strategy,

national economic regulation and control policies are the

dominant factors in regional economic development, affect-

ing the development pattern, development speed and devel-

opment of regional economies quality. A country’s economic

regulation and control policies are multifaceted. The most

influential factors are fiscal policy, monetary policy, indus-

trial policy, and income policy. The specific interpretation

of each policy is shown in Table 6. Every economic policy

has a lagging effect on the economy, and lag time will affect

the effectiveness of economic policies. So obviously this

problem is two-dimensional, IV-CFSS provides a new idea
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TABLE 10. IV-CFSS
(

F , E
)

4 for the province D.

TABLE 11. IV-CFSS
(

F , E
)

5for the province E.

TABLE 12. Aggregation matrix using IV-CFSWAA operator.

TABLE 13. PDA matrix.

to describe the problem. IV-CFSS has the advantage of IVFS,

which can overcome the personal preferences of experts given

information in GDM. At the same time, IV-CFSNs can also

use magnitude term to describe the information of economic

policy impact, and use the phase term to describe the relevant

information of economic policy lag time. How to analyze

the comprehensive impact of a country’s economic policies

on the regional economy. We give the analysis method as

follows.

Suppose U = {u1, u2, u3, u4, u5} is a collection of five

provinces in country M, representing provinces A, B, C,

D, and E, respectively, K = {k1, k2, k3} is a collection

of three experts, and E = {e1, e2, e3, e4} is a set of four

TABLE 14. NDA matrix.

TABLE 15. Calculated results.

parameter indicators, representing fiscal policy, monetary

policy, industrial policy, and income policy, respectively. Let

η = (η1 = 0.4, η2 = 0.2, η3 = 0.4)T be the weight vector of

experts. Then we can get the best alternative according to the

algorithms in section IV.

AV =
[

[0.5314, 0.7249] · ei[0.4547,0.6164] [0.5190, 0.7299] · ei[0.4941,0.6851]
[0.4133, 0.6346] · ei[0.4941,0.6851] [0.5042, 0.6845] · ei[0.4497,0.6318]

]

1×4
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TABLE 16. Aggregation matrix using IV-CFSWGA operator.

A. BY USING IV-CFSWAA OPERATOR

Step 1: The information of the impact of economic policy of

country M on the regional economy is given by three experts

in the form of IV-CFSS, and decision matrix (F,E)s (s =
1, 2, 3, 4, 5) in Table 7-11 is for the information of five

provinces A, B, C, D, E, respectively. For IV-CFSN [0.6, 0.7]·
ei[2π(0.5),2π(0.6)]in Table 7, themagnitude term [0.6, 0.7] indi-

cates that expert k1 agreed 60%-70% with the impact of pol-

icy e1 on province A and the phase term [2π (0.5) , 2π (0.6)]

indicates that expert k1 agreed 50%-70%with the lag time for

impact of policy e1 on province A.

Step 2: Aggregate evaluation values of all experts for

each parameter using IV-CFSWAA operator and aggregation

matrix is as shown in Table 12.

Step 3: Calculate the weight vector of parameters and we

can get

ξ =(ξ1=0.2853, ξ2=0.2932, ξ3=0.1944, ξ4=0.2271)T .

Step 4: Determine the average solution by the parameter

value, AV , as shown at the bottom of the previous page.

Step 5: Calculated PDA matrix from the average solu-

tion and NDA matrix from the average solution are shown

in Table 13 and Table 14, respectively.

Step 6: Calculate the weighted sum of PDAsj and NDAsj,

and the calculated results are shown in Table 15.

Step 7: Standardize the values of SPs and SNs. The results

after standardization are shown in Table 15.

Step 8: Calculate the ASs, and the results are shown

in Table 15.

Step 9: Rank the ASs in descending order, and we can get

u1 ≻ u5 ≻ u2 ≻ u3 ≻ u4. So the u1 is the best alternative, that

is, economic policies of country M has the greatest impact on

province A.

B. BY USING IV-CFSWGA OPERATOR

Step 2: Aggregate evaluation values of all experts for each

parameter using IV-CFSWGA operator and aggregation

matrix is as shown in Table 16.

Step 3: Calculate the weight vector of parameters and we

can get

ξ =(ξ1=0.2861, ξ2=0.2853, ξ3=0.1795, ξ4=0.2491)T .

TABLE 17. PDA matrix.

TABLE 18. NDA matrix.

TABLE 19. Calculated results.

Step 4: Determine the average solution by the parameter

value, AV , as shown at the bottom of this page.

Step 5:Calculated positive distance (PDA) matrix from the

average solution and negative distance (NDA) matrix from

the average solution are shown in Table 17 and Table 18,

respectively.

Step 6: Calculate the weighted sum of PDAsj and NDAsj,

and the calculation results are shown in Table 19.

Step 7: Standardize the values of SPs and SNs. The results

after standardization are shown in Table 19.

Step 8: Calculate the ASs, and the results are shown

in Table 19.

AV =
[

[0.5633, 0.7549] · ei[0.4480,0.6088] [0.5541, 0.7537] · ei[0.4917,0.6606]
[0.4393, 0.6481] · ei[0.4759,0.6641] [0.5339, 0.7126] · ei[0.4459,0.6175]

]

1×4
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TABLE 20. Aggregation matrix.

TABLE 21. Results.

Step 9: Rank the ASs in descending order, and we can get

u1 ≻ u5 ≻ u3 ≻ u2 ≻ u4. So the u1 is the best alternative, that

is, economic policies of country M has the greatest impact on

province A.

VI. COMPARATIVE ANALYSIS AND

FURTHER DISCUSSION

There is no research on the MCGDM method for interval-

valued complex fuzzy soft information. So, in this section,

we compare the proposed methods with the existing meth-

ods in the interval-valued fuzzy soft environment. First,

the expert’s evaluation values need to be converted into the

form of interval-valued fuzzy soft sets (IVFSSs) by taking

the phase term of the IV-CFSNs to 0. Then, the interval-

valued fuzzy soft numbers of different experts are aggregated

by weighted averaging operator corresponding to the weight

vector of experts η = (η1 = 0.4, η2 = 0.2, η3 = 0.4)T .

The aggregated interval-valued fuzzy soft matrix for dif-

ferent alternatives can be computed in Table 20. Based on

aggregated interval-valued fuzzy soft matrix, we apply the

existing methods including MABAC method [26], similarity

measure method [26], Weighted Distance Based Approxi-

mation (WDBA) method [42], Combinative Distance-based

Assessment (CODAS) method [42], and similarity measure

method [42] to obtain the assessment results. The computed

results are shown in Table 21. From the Table 21, we can

see that the optimal alternative calculated by the algorithms

proposed in this paper is u5, which is different from the results

calculated by the existing methods. The reason for this result

is that this paper converts IV-CFSSs to IVFSSs by taking

the phase term of IV-CFSNs as zero at the very beginning

of this section. In this way, when assessing the impact of

national economic policies on regional economies, the impact

of policy time lags on the economy cannot be considered.

This is not comprehensive and sufficient in the description

of the information. Therefore, in the MCGDM environment,

the EDAS algorithms for interval-valued complex fuzzy soft

information proposed in this paper are advantageous.

VII. CONCLUSION

The EDAS methods are useful decision-making technique

that can solve the MCGDM problem. In the MCGDM envi-

ronment, interval-valued complex fuzzy soft EDAS meth-

ods are developed for economic analysis problems. On the

one hand, this paper extends the application of the EDAS

methods to interval-valued complex fuzzy soft environment.

On the other hand, we have improved the EDAS methods

for more complex MCGDM environment. In addition, we

define the aggregation operators for IV-CFSS, namely the

IV-CFSWAA operator and the IV-CFSWGA operator. In this

study, we successfully introduce the proposed methods to

assess the impact of national economic policies on the region.

In future research, the focus is on the promotion and applica-

tion of complex fuzzy soft sets in other fuzzy sets.
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