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Abstract. In this paper we consider the integral Volterra operator on the space

L2(0, 1). We say that a complex number λ is an extended eigenvalue of V if there

exists a nonzero operator X satisfying the equation XV = λV X. We show that

the set of extended eigenvalues of V is precisely the interval (0,∞) and the

corresponding eigenvectors may be chosen to be integral operators as well.

1. Introduction and Preliminaries

LetH be a complex Hilbert space, and denote by L(H) the algebra of all bounded

linear operators onH. Consider an operator A in L(H). IfX ∈ L(H) it can happen

that there is a nonzero operator Y such that

XA = AY.(1.1)

If we denote by EA the set of all X for which there exists an operator Y satisfying

(1.1) then it is easy to see that EA is an algebra. Furthermore, if A has dense

range, one can define the map ΦA : EA → L(H) by ΦA(X) = Y . One can easily

see that ΦA is an algebra homomorphism, and we will verify shortly that it is in

fact a closed (generally unbounded) linear transformation.
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When Y = λX for some complex number λ equation (1.1) becomes

XA = λAX.(1.2)

Clearly, a pair (X,λ) in L(H)\(0)×C satisfies (1.2) if and only if λ is an eigenvalue

for ΦA and X is an eigenvector for ΦA. An eigenvalue of ΦA will be referred to as

an extended eigenvalue of A. Although the intertwining equation (1.1) is one of

the most studied equations in operator theory its special case (1.2) has attracted

considerably less attention. It was used in order to extend the invariant subspace

result of Lomonosov [5]. This was accomplished independently by S. Brown [3]

and Kim, Pearcy, and Shields [6]. Quite recently, some progress in this direction

was made by Lauric [4].

In this paper we consider the case when H = L2(0, 1) — the space of square

integrable functions on [0, 1] with respect to Lebegue measure and A = V , the

Volterra integral operator on L2(0, 1), defined by

V f(x) =

x∫
0

f(t) dt.

We will show that the set of extended eigenvalues of the Volterra operator V is

precisely the set (0,∞). Moreover, we will show that for each such an extended

eigenvalue λ, the appropriate eigenvector can be found in the class of integral

operators. In other words, for each λ > 0, the equation

XV = λV X(1.3)

has a nonzero integral operator as a solution.
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The organization of the paper is as follows. In Section 2, we show that if λ does

not belong to (0,∞) then it cannot be an eigenvalue of ΦV . As an application

of our method we show as well that, for λ 6= 1, the operators V and λV are not

quasisimilar.

As possible candidates for a solution of (1.3) we will consider three classes of

operators: operators of multiplication, integral operators, and composition oper-

ators. Sections 3, 4, and 5, respectively, are dedicated to these classes. We will

show that if λ ∈ (0,∞) then it is an eigenvalue of ΦV , that is, in this case (1.3)

has nontrivial solutions. Finally, in Section 6 we present some open problems.

Once we establish the fact that the spectrum of ΦV is unbounded it will follow

that ΦV is an unbounded map. Here we show that, whenever A is an operator in

L(H) with dense range, ΦA is a closed linear map.

Theorem 1. For A ∈ L(H) with dense range, the map ΦA is a closed map on EA.

Proof. We need to show that if {Tn} is a norm convergent sequence in EA converging

to an operator T , and if ΦA(Tn) converges in norm to some S ∈ L(H), then S ∈ EA

and S = ΦA(T ). Denote Sn = ΦA(Tn). Then

TnA = ASn.(1.4)

Clearly TnA→ TA and ASn → AS, as n→∞, so (1.4) yields TA = AS which is

equivalent to ΦA(T ) = S.
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2. Point Spectrum of ΦV

In this section, we take the first step to determine the point spectrum of ΦV .

In particular, we will show that equation (1.3) has no nonzero operator X as a

solution if λ ∈ C \ (0,∞).

We start by noticing that 0 cannot be an eigenvalue of ΦV . This follows easily

from the observation that V has dense range in L2(0, 1). (In fact, the range of V

consists of all absolutely continuous functions which are zero at the origin.) Since

we can assume that λ 6= 0, equation (1.3) is equivalent to the equation

V X = βXV(2.1)

where β = 1/λ. We will show in this section that the operator equation (2.1)

has no nontrivial solution in the case when β ∈ C \ (0,∞). This will enable us

to conclude that the point spectrum of ΦV is a subset of (0,∞). In subsequent

sections, it will be shown that, when λ ∈ (0,∞), equation (1.3) does indeed have

nontrivial solutions. It will then follow that the point spectrum of ΦV is (0,∞).

As an application of the techniques that we will introduce in this section we will

also show that, for β 6= 1, the operators V and βV are not quasisimilar.

As usual, when E is a set, the symbol χE denotes the characteristic function

of E, i. e., χE(x) = 1 if x ∈ E and χE(x) = 0 if x /∈ E. In what follows,

whenever necessary, we will regard L2(0, 1) as a closed subspace of L2(−∞,∞)

consisting of all those functions vanishing outside of (0, 1). Let D = {f : f is

absolutely continuous and f(0) = 0}. Also, let D denote the unbounded operator

with domain D defined by Df = d
dx
f for f ∈ D. In all equations involving D we
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will assume that they are restricted to D. Thus, we will write V D = DV = I. In

order to understand better the spectral behavior of these operators it is useful to

consider a certain semigroup of operators. Namely, for each t ≥ 0, let St be the

operator on L2(0, 1) defined by

Stf(x) = χ[t,∞)∩[0,1](x)f(x− t).(2.2)

It is easy to verify that {St : 0 ≤ t < ∞} is a strongly continuous semigroup on

L2(0, 1). Notice that for t ≥ 1, St = 0. The following result is going to be used in

the proof of Theorem 3. For its proof as well as the perusal of this circle of ideas

we recommend [1].

Theorem 2. The infinitesimal generator of St is −D and moreover, for all z ∈

C, (z +D)−1 exists as a bounded operator and

(z +D)−1 =
∫ 1

0
eztSt dt.(2.3)

We now state and prove the main theorem in this section.

Theorem 3. Suppose β ∈ C \ (0,∞). Then, there is no nonzero operator T on

L2(0, 1) satisfying the equation V T = βTV.

Proof. First note that since V is injective, there is no nontrivial solution of the

equation V T = βTV for β = 0 and henceforth for the rest of this section, we

assume β 6= 0.

Let T be an operator on L2(0, 1) satisfying the equation

V T = βTV(2.4)
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for some β ∈ C. Since D is precisely the range of V , equation (2.4) implies that

T (D) ⊂ D. Consequently, equation (2.4) is equivalent to

TD = βDT.(2.5)

Let z ∈ C. Then

T (z +D) = (z + βD)T = β(
z

β
+D)T.

Since z was arbitrary, the previous equation is equivalent to T (βz+D) = β(z+D)T .

Therefore, (z +D)−1T = βT (βz +D)−1. Using Theorem 2, we obtain

∫ 1

0
eztStT dt = β

∫ 1

0
eβztTSt dt.(2.6)

Let u and v belong to L2(0, 1) and define f(t) = (StTu, v) and g(t) = β(TStu, v).

Here, (·, ·) denotes the standard inner product in L2(0, 1). Note that since St is a

strongly continuous semigroup, f and g are continuous functions on [0, 1]. From

the definition of the functions f and g and (2.6) it follows that
∫ 1

0 e
ztf(t)dt =∫ 1

0 e
βztg(t)dt. Next, we expand both sides of this equation as power series in z and

we notice that both series converge uniformly in t for each z ∈ C. Thus we can

integrate the series term by term. Comparing coefficients in these series we obtain

that ∫ 1

0
tnf(t)dt =

∫ 1

0
βntng(t)dt, n ≥ 0.

It follows that, for every polynomial p, we have

∫ 1

0
p(t)f(t)dt =

∫ 1

0
p(βt)g(t)dt.(2.7)
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Now suppose β ∈ C \ [0,∞). Let S = {βt : 0 ≤ t ≤ 1} ∪ [0, 1]. Define a function

h on S by h(βt) = g(t), t ∈ [0, 1] and h = 0 otherwise. Then h ∈ L2(S) with

respect to the standard Lebegue measure on S. By Mergelyan’s theorem (cf. [7]

p. 390), there exists a sequence of polynomials pn on S converging to h in L2(S).

But then,
∫ 1

0 pn(t)f(t) dt → 0 and
∫ 1

0 pn(βt)g(t) dt → ‖g‖2 as n → ∞. In view of

(2.7), this shows that g = 0 in L2(0, 1) and since g is continuous, this means that

g(t) = 0 for all t in [0, 1]. In particular, g(0) = β(Tu, v) = 0. Since β 6= 0 and u

and v are arbitrary in L2(0, 1) it follows that T = 0.

We will now show that for β 6= 1 the operators V and βV are not quasisimilar.

First, we need the following lemma. Once again, St is the semigroup defined in

(2.2).

Lemma 1. Let β > 0 and let T be an operator on L2(0, 1) such that V T = βTV .

Then, StT = TSt/β for all t ≥ 0.

Proof. Just as in the proof of Theorem 3 let u and v belong to L2(0, 1) and define

f(t) = (StTu, v) and g(t) = β(TStu, v).

First we consider the case when 0 < β ≤ 1. Let h ∈ L2(0, 1). Using the fact that

polynomials are dense in L2(0, 1) and (2.7), we have∫ 1

0
h(t)f(t)dt =

∫ 1

0
h(βt)g(t)dt =

1
β

∫ 1

0
χ[0,β](t)h(t)g(

t

β
) dt.

This implies that f(t) = (1/β)χ[0,β](t)g(t/β) a. e. on [0, 1]. Since f(t) = 0 for t ≥ 1

and g(t/β) = 0 for t ≥ β, it follows that f(t) = (1/β)g(t/β) for a. e. t and, thus,

(StTu, v) = (TSt/βTu, v).
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Since u and v are arbitrary, it follows that StT = TSt/β for all t ≥ 0 and 0 < β ≤ 1.

Next we turn our attention to the case β > 1. Once again using (2.7) we have

that, for any polynomial p,

∫ 1

0
p(t)f(t)dt =

∫ 1

0
p(βt)g(t)dt =

1
β

(∫ 1

0
p(t)g(

t

β
)dt+

∫ β

1
p(t)g(

t

β
)dt
)
.(2.8)

Let h be an arbitrary function in L2(0, 1) and recall that h can be viewed as a

function in L2(0, β) such that h = 0 a. e. on (1, β). Let {pn} be a sequence of

polynomials converging in L2(0, β) to h. Then,

∫ 1

0
pn(t)f(t)dt −→

∫ 1

0
h(t)f(t)dt

and

1
β

∫ 1

0
pn(t)g(

t

β
)dt+

1
β

∫ β

1
pn(t)g(

t

β
)dt −→ 1

β

∫ 1

0
h(t)g(

t

β
)dt+ 0.

Since h is an arbitrary function in L2(0, 1), using equation (2.8) with pn in place

of p, it follows that f(t) = (1/β)g(t/β) a. e. on [0, 1] and, as before, it means that

StT = TSt/β for all t ≥ 0.

Recall that two operators X and Y on any two Hilbert spaces X and Y respectively

are said to be quasisimilar if there exist operators T1 from X to Y and T2 from

Y to X such that both T1 and T2 are one to one with dense ranges and such that

T1X = Y T1 and XT2 = T2Y . Of course, when T1 and T2 are equal and invertible,

this yields the usual definition of similarity.

Theorem 4. For β 6= 1, the operators V and βV are not quasisimilar.
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Proof. If β is not a positive real number, the claim follows from Theorem 3. Now

suppose β > 0, β 6= 1 and let T be an operator on L2(0, 1) such that V T = βTV .

Then, by Lemma 1, StT = TSt/β. If β < 1 then

SβT = TS1 = 0.(2.9)

If β > 1 then

0 = S1T = TS 1
β
.(2.10)

However, note that St = 0 if and only if t ≥ 1. Therefore, from (2.9) and (2.10) it

follows that in case β > 0, β 6= 1 the operator T is either not one to one or does

not have dense range. As a result, V and βV cannot be quasisimilar if β 6= 1.

3. Operators of multiplication

Let ϕ be a function in L∞(0, 1) — the Banach space of measurable, essentially

bounded functions on [0, 1]. The operator Mϕ on L2(0, 1) defined by (Mϕf)(x) =

ϕ(x)f(x) is called the operator of multiplication by ϕ. In this section we are

interested if Mϕ can satisfy condition (1.3) for some ϕ in L∞(0, 1). The following

result shows that the answer to this question is negative.

Theorem 5. Let ϕ be a function in L∞(0, 1) and let Mϕ be the operator of mul-

tiplication by ϕ in L(L2(0, 1)). If MϕV = λVMϕ then ϕ = 0 a. e.

Proof. The equation MϕV = λVMϕ implies that

ϕ(x)

x∫
0

f(t) dt = λ

x∫
0

ϕ(t)f(t) dt, ∀f ∈ L2(0, 1), for a. e. x ∈ [0, 1].(3.1)
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Equivalently,

x∫
0

f(t)[ϕ(x)− λϕ(t)] dt = 0

for all f in L2(0, 1) and for a. e. x ∈ [0, 1]. Hence,

1∫
0

f(t)χ[0,x](t)[ϕ(x)− λϕ(t)] dt = 0(3.2)

for all f in L2(0, 1) and for a. e. x ∈ [0, 1]. Notice that the reason that equation

(3.2) is valid only almost everywhere is that ϕ is defined only up to sets of measure

zero. Due to the separability of L2(0, 1) the set of numbers x for which (3.2) holds

can be chosen to be the same for any f ∈ L2(0, 1). Thus, the quantifiers on f and

on x can and will be taken to be independent. Therefore, for any x satisfying (3.2),

we have that χ[0,x](t)[ϕ(x)− λϕ(t)] = 0 for a. e. t which implies that ϕ is constant

a. e. Consequently, ϕ must be a constant function in L∞(0, 1). Furthermore, if

ϕ(x) = C then χ[0,x](t)[C − λC] = 0 for a. e. t and, therefore, C = 0.

Theorem 5 shows that Mϕ cannot be an eigenvector of ΦV . In other words, if ΦM
V

is the restriction of ΦV to the subspace consisting of operators of multiplications,

then the point spectrum of ΦM
V consists of λ = 1 alone. Moreover, the proof

of Theorem 5 shows that, in this case, Mϕ is an eigenvector for ΦM
V if and only

if ϕ(x) = C a. e. for some constant C. This leaves open the question about

other parts of the spectrum of ΦM
V . We conclude this discussion with the following

problem.

Problem 1. Describe the spectrum of ΦM
V . Describe parts of the spectrum of ΦM

V .
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4. Integral operators

We now investigate whether there exists a nonzero integral operator that sat-

isfies equation (1.3) for some λ > 0. Throughout this section we will be dealing

exclusively with Lebesgue measure, both on the line (denoted by m) and in the

plane (denoted by m2). In order to distinguish between the two we will, when

necessary, use notation like a. e. [m2] meaning that a property holds everywhere in

the two-dimensional domain except for a set E such that m2(E) = 0. Frequently,

when considering a function F (x, y) defined on a set E in the plane, it will be

useful to pass from separate measurability in each variable to measurability with

respect to m2. More precisely, with each x we associate a function Fx(y) defined

by Fx(y) = F (x, y); similarly, we define F y(x) = F (x, y). Sometimes, the measur-

ability of Fx and F y implies the m2-measurability of F . The following elementary

result (cf. [7], p. 176) will be useful in this direction.

Lemma 2. Suppose F is a real-valued function on R2 such that each section Fx

is measurable and each section F y is continuous. Then F is m2-measurable.

Let K(x, y) be a Lebesgue integrable function on [0, 1]×[0, 1]. Then, it is possible

to define an operator K on L2(0, 1) as

Kf(x) =

1∫
0

K(x, y)f(y) dy.(4.1)

Such operators are called integral operators and we say that the function K(x, y) is

its kernel function, or just the kernel. We are interested in finding eigenvalues and

eigenvectors for ΦK
V — the restriction of ΦV to the subspace of integral operators.
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By Theorem 3, the set of eigenvalues of ΦV is a subset of the interval (0,∞). We will

show that this inclusion is in fact an equality. The following result is instrumental

in this direction. Namely, it gives a necessary and sufiicient condition on the kernel

K(x, y) of an integral operator K to be an eigenvector of ΦK
V . Recall that, since we

assume that λ is a positive real number, there is no loss of generality in considering

the equation V K = βKV .

Theorem 6. Let β be a positive number and let K be an integral operator with

kernel K(x, y). Then V K = βKV if and only if K(x, y) = g(x − βy) for some

measurable function g on R such that g = 0 on the interval [−β, 1 − β] and∫ 1
0

∫ 1
0 |g(x− βy)|dxdy <∞.

Proof. Let K be an integral operator with kernel K(x, y) and suppose V Kf =

βKV f for all f ∈ L2(0, 1). Then,

x∫
0

dt

1∫
0

K(t, y)f(y) dy = β

1∫
0

dt

t∫
0

K(x, y)f(y) dy(4.2)

for all f ∈ L2(0, 1) and a. e. x. Due to separability of L2(0, 1) the exceptional set

where (4.2) fails to hold can be chosen independent of f . Changing the order of

integration on both sides of (4.2) yields

1∫
0

f(y) dy

 x∫
0

K(t, y) dt

 = β

1∫
0

f(y) dy

 1∫
y

K(x, t) dt

 .
In view of the arbitrary choice of f in L2(0, 1) it follows that

x∫
0

K(t, y) dt = β

1∫
y

K(x, t) dt(4.3)
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for a. e. x and a. e. y in [0, 1]. Conversely, if a kernel K(x, y) satisfies (4.3) for

a. e. x and a. e. y in [0, 1] then it is easy to see that V K = βKV .

Suppose now that K is an integral operator satisfying V K = βKV . Then its

kernel K(x, y) must satisfy (4.3). Notice that this kernel is indeed an equivalence

class of functions that agree a. e. [m2]. Now we pick any particular representative

and denote it again by K(x, y). The advantage of this strategy is that each side of

(4.3) is now defined for all (x, y) ∈ [0, 1]× [0, 1]. With this understanding it is easy

to see that the left hand side of (4.3), which we will denote F1(x, y), is a measurable

function of y for every x, and that it is a continuous function of x for every y ∈ [0, 1].

Hence, Lemma 2 shows that F1(x, y) is a measurable function with respect to the

two-dimensional Lebesgue measure. Since a similar argument shows that the right

hand side of (4.3), which we will denote F2(x, y), is measurable with respect to the

two-dimensional Lebesgue measure we conclude that F1(x, y) = F2(x, y) a. e. [m2].

Furthermore, F1(x, y) has partial derivative (F1)x for every (x, y) ∈ [0, 1] × [0, 1]

and F2(x, y) has partial derivative (F2)y for every (x, y) ∈ [0, 1] × [0, 1]. Hence,

F1(x, y) has partial derivative (F1)y for a. e. [m2] point (x, y) ∈ [0, 1]× [0, 1]. The

conclusion is that we can, and we do denote both sides of (4.3) as F (x, y).

A calculation shows that Fx(x, y) = K(x, y) and Fy(x, y) = −βK(x, y). Since

Fx(x, y) = lim
hn→0

F (x+ hn, y)− F (x, y)
hn
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and each member of the sequence is a measurable function of (x, y) it follows that

Fx is m2-measurable. Similarly, Fy is m2-measurable. Finally, we have that

Fy(x, y) = −βFx(x, y), for a. e. (x, y) ∈ [0, 1]× [0, 1].(4.4)

Let (a, b) be any point in [0, 1] × [0, 1], and let R = Ra,b denote the rectangle

bounded by x = 0, x = a, y = b, and y = 1. Then

∫∫
R

Fx(x, y) dx dy =

1∫
b

dy

a∫
0

Fx(x, y) dx =

1∫
b

dy

a∫
0

K(x, y) dx =

1∫
b

F (a, y) dy

while

∫∫
R

Fy(x, y) dy dx =

a∫
0

dx

1∫
b

Fy(x, y) dy =

a∫
0

dx

1∫
b

−βK(x, y) dy

= −
a∫

0

F (x, b) dx.

In view of (4.4)

∫∫
R

[Fy(x, y) + βFx(x, y)] dx dy = 0.

Therefore,

β

1∫
b

F (a, y) dy −
a∫

0

F (x, b) dx = 0

or, equivalently,

a∫
0

F (x, b) dx = β

1∫
b

F (a, y) dy.(4.5)
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We emphasize that (4.5) holds for every (a, b) ∈ [0, 1] × [0, 1]. Denote either side

of it by G(a, b). Then G is an [m2]-measurable function that satisfies the equation

Gy(x, y) = −βGx(x, y), for all (x, y) ∈ [0, 1]× [0, 1].(4.6)

Although this equation is similar to (4.4) there is an important difference. The

equation (4.6) holds for every (x, y) ∈ [0, 1] × [0, 1]. Now we exploit this fact by

using a well known argument from classical analysis.

Let c be a fixed number. The function H(x) = G(x, (c+ x)/β) is a measurable

function as a composition of a measurable function G and a continuous map ρ :

x 7→ (x, (c+ x)/β). Moreover, the function H is a differentiable function of x as a

composition of two differentiable functions. Then

H ′(x) =
∂

∂x
G(x, (c+ x)/β) = Gx(x, (c+ x)/β) +Gy(x, (c+ x)/β)

1
β

and so, using (4.6), H ′(x) = 0. We conclude that H is a constant function of

x. This implies that G(x, (c + x)/β) is a constant function of x so there exists a

measurable function g̃ such that G(x, y) = g̃(x−βy). Since Gxx(x, y) = K(x, y) it

follows that there exists a measurable function g such that K(x, y) = g(x − βy).

Moreover, the integrability condition on K translates to the required integrability

condition on g. Finally, (4.3) implies that

∫ x

0
g(t− βy)dt = β

∫ 1

y

g(x− βt)dt

for a. e. x and a. e. y in [0, 1]. A change of variable leads to the equality

∫ x−βy

−βy
g(s)ds =

∫ x−βy

x−β
g(s)ds
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that holds for a. e. x and a. e. y in [0, 1], which in turn means that∫ x−β

−βy
g(s)ds = 0

for a. e. x and a. e. y in [0, 1]. It follows that g = 0 on [−β, 1− β].

Conversely, if K is an integral operator with kernel K(x, y) = g(x−βy) for some

measurable function g that vanishes on [−β, 1 − β], then it is easy to verify that

K satisfies (4.3) and the theorem is proved.

As a consequence of this result we obtain that, if λ ∈ (0, 1), then it is an extended

eigenvalue of V .

Proposition 1. Let λ ∈ (0, 1) and let ∆λ be the triangle bounded by y = λx,

y = 0, and x = 1. Also, let K be the integral operator on L2(0, 1) with kernel

K(x, y) = χ∆λ
(x, y). Then KV = λV K.

Proof. The result follows from Theorem 6 with g = χ(0,∞) since χ∆(x, y) = g(x−

y/λ).

When λ > 1 we have to slightly change the definition of ∆λ.

Proposition 2. Let λ > 1 and let ∆λ be the triangle bounded by y = λ(x−1) + 1,

y = 0, and x = 1. Also, let K be the integral operator on L2(0, 1) with kernel

K(x, y) = χ∆λ
(x, y). Then KV = λV K.

Proof. Again, it is an easy application of Theorem 6 with g = χ(1−β,∞).

We conclude our study of integral operators satisfying the equation KV = λV K

with the following fact that may have some independent interest.
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Proposition 3. Let λ be a positive number and let K be the integral operator on

L2(0, 1) with kernel K(x, y). If KV = λV K then there exists a nondegenerate

rectangle R = [0, a] × [b, 1] ( [0, 1] × [0, 1] such that K(x, y) vanishes almost

everywhere in R.

Proof. Let M be a nontrivial invariant subspace (n. i. s.) for V and let N =

(KM)−, where − stands for the closure in the norm topology of L2(0, 1). It is

easy to see that, in this situation, N is also an invariant subspace for V . Recall

that if M is a n. i. s. for V then there is m ∈ (0, 1) such that every function in

M vanishes on [0,m] a. e. (cf. [8]). Similarly, since N is an invariant subspace

(although it could be the whole L2(0, 1)) there is n ∈ [0, 1) so that every function

in N vanishes on [0, n] a. e.

Let f ∈M. Then

Kf(x) =

1∫
0

K(x, y) f(y) dy =

1∫
m

K(x, y) f(y) dy =

1∫
0

K(x, y)χ[m,1](y) f(y) dy.

Since Kf ∈ N it follows that the last integral vanishes for a. e. x ∈ [0, n] and

every f ∈ L2(0, 1). Consequently, K(x, y)χ[m,1](y) = 0 for a. e. x ∈ [0, n] and

a. e. y ∈ [0, 1]. Since K(x, y) is m2-measurable, it follows that K(x, y) = 0 a. e.

in [0, n]× [m, 1].

It remains to consider the case when n = 0. Since M is an arbitrary n. i. s. for

V we can assume that (KM)− = L2(0, 1) for every suchM. Let M1 (M2 both

be n. i. s. for V and let f ∈M2 	M1. If g = Kf then there exists h ∈M1 such

that Kh = g = Kf . Obviously, h−f is a nonzero vector in KerK — the nullspace

of K. In view of V K = λKV we see that KerK is a n. i. s. for V . Thus, there is
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n0 ∈ (0, 1) such that

KerK = {f ∈ L2 : f = 0 on [0, n0]}.

Let f ∈ KerK. Then

0 = Kf(x) =

1∫
0

K(x, y) f(y) dy =

1∫
n0

K(x, y) f(y) dy.

Since f is an arbitrary function in KerK, the last equation shows, once again, that

K(x, y) vanishes a. e. in [0, 1]× [n0, 1]. This completes the proof.

Clearly, we have just started the spectral theory for ΦK
V and one should try to

address the following problems.

Problem 2. Describe the spectrum of ΦK
V . Describe parts of the spectrum of ΦK

V .

5. Composition operators

In this section we consider the class of composition operators on L2(0, 1). Let

ϕ : [0, 1]→ [0, 1] be a measurable function. A composition operator Cϕ is defined

as

(Cϕf)(x) = (f ◦ ϕ)(x).

We are interested in determining whether a composition operator can be an eigen-

vector of ΦV . In this direction we report some modest progress. When the map

ϕ : [0, 1]→ [0, 1] is defined as ϕ(x) = βx for some β ∈ [0, 1] then the composition
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operator Cϕ satisfies the equation V Cϕ = βCϕV . Indeed,

(CϕV f)(x) = (V f)(ϕ(x)) = (V f)(βx) =

βx∫
0

f(t) dt

while

(V Cϕf)(x) =

x∫
0

(Cϕf)(t) dt =

x∫
0

f(ϕ(t)) dt =

x∫
0

f(βt) dt

and the substitution s = βt yields the desired conclusion. This shows that Cϕ

is an eigenvector for ΦV corresponding to an eigenvalue β ∈ [0, 1]. However, we

were unable to find a composition operator that would be an eigenvector when

β /∈ [0, 1]. We leave this as an open problem.

Problem 3. Given β ∈ (1,∞) is there a composition operator Cϕ in L2(0, 1) such

that V Cϕ = βCϕV .

Of course, this is a part of the more general question that concerns the restriction

ΦC
V of ΦV to the class of composition operators.

Problem 4. Describe the spectrum of ΦC
V . Describe parts of the spectrum of ΦC

V .

6. Some open problems

In Section 4 we have established that the Volterra operator has a large supply of

extended eigenvalues. However, this is not true for arbitrary operators with dense

range. Indeed, it was shown in [2] that there are such operators for which the only

extended eigenvalue is λ = 1. Thus, it is of interest to characterize operators that

have nontrivial (meaning different from 1) extended eigenvalues. The following

questions seem natural in this context.
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Problem 5. Does every compact operator have a nontrivial extended eigenvalue?

Does every quasinilpotent operator have a nontrivial extended eigenvalue? What

other classes have such a property?

When an operator A has a nontrivial extended eigenvalue one may ask whether

the extended point spectrum has any algebraic or topological structure of interest.

Since in the case of the Volterra operator this set is the multiplicative group of

positive real numbers one may ask whether, for example, such a set is always a

semigroup. Clearly, ΦA(I) = I, so 1 is an extended eigenvalue for A. However,

when it comes to the semigroup property the situation is not clear. Indeed, let

λ and µ be two different extended eigenvalues of A. Then there exist nonzero

operators X and Y such that ΦA(X) = λX and ΦA(Y ) = µY . Clearly, this

implies that ΦA(XY ) = λµXY. Unfortunately, this does not force λµ to be an

extended eigenvalue of A since we could have that XY = 0. We conclude this

discussion with the following question.

Problem 6. For which operators A is the set of all extended eigenvalues of A a

unital semigroup?

References

[1] H. Bercovici, Operator theory and arithmetic in H∞. Mathematical Surveys and Mono-

graphs, 26. American Mathematical Society, Providence, RI, 1988.

[2] A. Biswas, A. Lambert, S.Petrovic, On the λ-commutativity of operators, preprint.

[3] S. Brown, Connections between an operator and a compact operator that yield hyperin-

variant subspaces. J. Operator Theory (1) 1 (1979), 117–121.



ANIMIKH BISWAS, ALAN LAMBERT, AND SRDJAN PETROVIC

[4] V. Lauric, Operators α-commuting with a compact operator. Proc. Amer. Math. Soc. (8)

125 (1997), 2379–2384.

[5] V. Lomonosov, Invariant subspaces of the family of operators that commute with a com-

pletely continuous operator. (Russian) Funkcional. Anal. i Priložen. (3) 7 (1973), 55–56.
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