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ABSTRACT

�e transformation during wave propagation is signi�cantly important for the calculations of hydraulic and coastal 
engineering, as well as the sediment transport. �e exact wave height deformation calculation on the coasts is essential 
to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling 
results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the 
expression of the corresponding nonlinear wave shoaling coe�cient. Based on the extended elliptic mild slope equation, 
an e�cient wave numerical model is presented in this paper for predicting wave deformation across the complex 
topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling 
coe�cient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking 
could be shown by the present model. �e classical Berkho� single elliptic topography wave tests, the sinusoidal varying 
topography experiment, and complex composite slopes wave �ume experiments are applied to verify the accuracy of 
the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical 
topography and one-dimensional beach pro�les, including uniform slope and step-type pro�les. �e results indicate 
that the newly-developed nonlinear wave shoaling coe�cient improves the calculated accuracy of wave transformation 
in the surf zone e�ciently, and the wave breaking is the key factor a�ecting the wave characteristics and need to be 
considered in the nearshore wave simulations.
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INTRODUCTION

Waves propagate from deep waters to shallow waters with 
wave heights changing due to shoaling, refraction, di�raction, 
re�ection, bottom friction and breaking. �e transformation 
above during wave propagation is signi�cantly important 
for the calculations of hydraulic and coastal engineering, as 
well as the sediment transport. �e breaking waves not only 
produce large forces on coastal structures but also give rise to 
near-shore currents which in�uence the beach topographies 
[5][10][15]. �e exact wave height deformation calculation on 
the coasts is essential to near-shore hydrodynamics research 

and the structure design of coastal engineering.
Wave numerical models based on mild slope equation 

involving breaking have been proposed by many scholars[3]
[6][8][11][16-17][19][21-23]and the commonly used method is 
a wave energy dissipation coe�cient for wave breaking, which 
is applicable to arbitrary re�ective boundary conditions. 
Watanabe and Maruyama applied the time dependent mild 
slope equation to simulate the wave transformation in the 
surf zone, and found that the wave height was underestimated 
at the breaking point when applying a linear wave shoaling 
coe�cient. To overcome this shortcoming of the linear 
mild slope equation, Black and Rosenberg[17] raised a 
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semi-empirical formula, but it is di�cult to calculate the 
combined wave transformation on the coasts. Shuto’s 
empirical nonlinear shoaling equations is applied by Tsai[19] 
to deduce the wave shoaling coe�cient and improve the mild 
slope equation, which produced better wave heights prediction 
but emerge restrictions when Ursell number is less than 30.

In this paper, the empirical nonlinear shoaling equations 
proposed by Shuto are utilized to develop the nonlinear wave 
shoaling coe�cient corresponding to the nonlinear wave 
dispersion relation. �e extended elliptic mild slope equation 
is modi�ed with the nonlinear wave dispersion relation, the 
corresponding nonlinear wave shoaling coe�cient, the wave 
frictional energy dissipation coe�cient and the wave breaking 
energy loss coe�cient to calculate the wave transformation in 
the complicated topographies and the surf zone. Compared 
with the linear wave model, the accuracy of the numerical 
calculations of modi�ed wave model is improved and the 
computed wave heights under these topographies conform 
to the experimental results preferably.

WAVE DISPERSION RELATION

�e nonlinear dispersion relation with higher precision 
could be expressed as[9]

Where, σ is the frequency of wave, g is the acceleration of 
gravity, k is the wave number, h is the water depth and the 
parameters p, q and ε could be written as

Where H is the wave height. With simple transformations 
and arrangements, another form of eq.(1) could be expression 
as follow

Where L is the wave length and T is the wave period. 
According to the formula structure of eq. (3), when the ratio 
of water depth and wave length is larger than 0.5 or the wave 
belongs to the deep water wave, eq. (3) could be written as

Where, L0 is the wave length in deep water and ε
0
 = k

0
H

0
 / 2. 

k
0
 and H

0
 are the wave number and the wave height in deep 

water, respectively. Combining eq. (3) and eq. (4), namely

(1)

(2)

(3)

(4)

(5)

Dividing by the wave period T at both ends of eq.(5), the 
relational expression of the wave phase velocity C and C

0
 in 

deep water could be indicated as

On the basis of the de�nition of wave group velocity, the 
expression of wave group velocity would be written as

Taking the derivative of the wave number for both ends of 
eq. (1), and substituting into eq. (7), the wave group velocity 
could be expressed as

Adopting eq. (2) to simplify eq. (8) further, namely

�en, the relational expression between wave group 
velocity C

g
 and the wave phase velocity C could be shown as

Where, the ratio N could be written as

When the wave locates in the deep water, eq. (11) could 
be simpli�ed as

WAVE ENERGY EQUATION

WAVE SHOALING EFFECT

Wave energy equation is the foundation of wave 
transformation calculation[4]. In the process of monochromatic 
wave propagation, one dimension steady energy equation could 
be given by [1]

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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Where, E is the wave energy per unit area of the water body, 
f is the coe�cient of combined energy dissipation, and x is 
the horizontal axis of the Cartesian coordinate perpendicular 
to the coastline. �e wave energy dissipation on the right-
hand side of eq. (13) could be equal to zero if the energy was 
assumed without any loss, such as outside the surf zone[19]. 
According to the Airy wave theory, E = ρgH2 / 8and the wave 
shoaling coe�cient could be shown as

Where, f
s
 is the wave shoaling coe�cient and n is the ratio 

of wave group velocity and the wave phase velocity due to the 
linear dispersion relation. If applying the nonlinear dispersion 
relation eq. (1), combining eq. (1) with eq. (13), yields

A�er further arrangement, namely

Substituting eq. (11) into eq. (16), the wave shoaling 
coe�cient in the linear wave shoaling theory with nonlinear 
dispersion relation could be expressed as

�us the liner wave shoaling conclusion proposed by Shuto 
can be evolved as

Based on the relational expressions as follow

Combining eq. (10), eq. (13) and eq. (19), the expression 
of wave shoaling coe�cient could be shown as

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Where, β
po 

is the bottom slope along the wave transformation 
direction. Namely, the solution of eq. (20) is the derivation of 
three di�erential terms expressed by the wave characteristics.

In eq. (20), the derivative of wave velocity C with respect 
to the water depth h could be shown as

Due to the nonlinear dispersion relation equation (1), yields

Expanding and arranging the derivatives of composite 
functions in eq. (22), namely

Combining eq. (11) and eq. (23), the derivative of kh could 
be written as

Substituting eq. (24) into eq. (21), yields

In eq. (20), the derivative of ratio N with respect to the 
water depth h could be shown as

Expanding and arranging the derivatives of composite 
functions in eq. (26), namely

Where, the parameter K
w1

 could be written as

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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And the parameter K
w2

 could be written as

On the basis of eq. (5), the relational expression of the 
wave numbers in the coasts and in deep waters could be 
expressed as

Substituting eq. (30) into eq. (27), the parameters K
w1

 and 
K

w2
 could be written respectively as

In eq. (20), the derivative of wave energy E with respect 
to the water depth could be shown as

According to eq. (19), the expression of wave height is 
when the Ursell number is no larger than 

30, and eq. (33) could be shown as

When value range of the Ursell number is 30< U
r
 ≤ 50, 

H= C
w1

h-2/7 and C
w1

 is the coe�cient. Namely,

When the Ursell number is larger than 50,  
and C

w2
 is the coe�cient. Substituting the expression of the 

Ursell number, U
r
 = gHT2 / h2, into the relational expression 

of wave height, yields

Taking the derivative of the water depth h for both ends 
of eq. (36), then

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

A�er the arrangement, eq. (37) could be transformed as

Substituting eq. (38) into eq. (34), yields

Combining eq. (25), eq. (27), eq. (34), eq. (35), eq. (39) with 
eq. (20), the wave nonlinear shoaling coe�cient corresponding 
to the wave nonlinear dispersion relation raised by Li et al.[13] 
could be expressed as

Where, the parameters K
w1

 and K
w2 

could be expressed as 
eq. (31) and eq. (32), respectively. �e parameter K

w3 
could 

be written as

Eq. (40) would be adopted as the wave shoaling coe�cient 
by the extended elliptic mild slope equation in this paper.

WAVE BREAKING EFFECT

�e breaking index considering the bottom slope is 
following[15]

Based on the convenience of programming and the 
distinct classi�cation, the breaking index proposed by Battjes 

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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would be adopted in the mild slope equation in this paper. 
�e hydraulic jump model is used to compute the energy 
loss a�er the wave breaks. Subscribing the index above into 
wave energy equation, we can get the wave breaking energy 
dissipation coe�cients:

WAVE FRICTIONAL EFFECT

In the most coasts, the energy dissipation produced by 
the bed frictions would be the primary cause compared with 
those by the permeability loss and the mud surface wave 
resistance loss.

According to the wave boundary layer theory, the work 
of the bed friction could be indicated as

Where, D
f
 is the unit bed surface energy loss and f

b
 is the 

wave frictional energy dissipation coe�cient. And the unit 
bed surface energy loss could be shown as

Where U
b
 = U

bm
 cos(kx-σt) = A

m
σ cos(kx-σt) = (πH / 

Tsinh(kh)) cos(kx-σt). Combing eq. (47) and eq. (48), yields

Eq. (50) would be adopted in this paper for the wave energy 
dissipation due to the bed frictions.

THE WAVE MODEL BASED ON EXTENDED 
ELLIPTIC MILD SLOPE EQUATION 

�e extended elliptic mild slope equation involving the 
energy dissipation stated above is applied to calculate the 
wave transformation. �e governing equation of the extended 
elliptic mild slope equation [11] could be expressed as

(45)

(46)

(47)

(48)

(49)

(50)

(51)

Where

Where V = (∂/∂x, ∂/∂y) is the horizontal operator; Φ is 
the velocity potential function of the harmonic wave; V 
hand V

h
2 are the bottom slopes and bottom curvatures in 

the and directions, respectively;  and are the two horizontal 
coordinates; f = f

s
 + f

d
 + f

b
 is the combined energy dissipation 

factor, and f
s
, f

b
 and f

d
 are calculated with eq.(41), eq.(49-1) and 

eq.(56) respectively. �e nonlinear wave dispersion relation 
is adopted with eq. (1).

In order to verify the present model and test the 
computational accuracy, the classical and the slope �ume 
experiments would be used including the Berkho� single 
elliptical topography, sinusoidal varying topography, and 
uniform slope and composite slopes topography tests in the 
�ume. In terms of re�ecting the modi�cation, the computed 
values of RIDE model established by Maa et al.[11], which 
adopted the linear wave theory, would be used to contrast 
with the present model.

BERKHOFF SINGLE ELLIPTICAL TOPOGRAPHY

Berkhoff et al.[2] conducted the wave propagating 
and transforming experiment on the ideal uniform slope 
topography with a single ellipse, and obtained the measured 
data of eight cross sections. In the numerical simulation, the 
height of incident wave is 0.0232 m, the period is 1.0 s and the 
direction is along the positive coordinate. �e comparisons 
among computed values of the linear wave model of Maa et al., 
calculated results of the present model and experimental data 
in the cross section 1# ~ 8# are shown in Fig.2. �e horizontal 
coordinate is the cross section, and the vertical coordinate is 
the ratio of local wave height and incident wave height. �e 
black solid points in Fig.2 represent the experimental wave 
height data, the black dashed lines represent computed values 
of the linear wave model of Maa et al. and the black solid lines 
represent the calculated results of the present wave model. On 
the basis of the contrasts in Fig.2, although there are some 
obvious deviations in some locations, such as the signi�cant 
error at 17m nearby in the 7# cross section, yet the calculated 
results of the present model coincide to the experimental 
results overall and the computed precision is preferable than 
the linear wave model of Maa et al.. Fig.3 shows the contrast 
about the computed wave height distribution �elds between the 
linear wave model of Maa et al. and the present model. And the 
le� �gures are the computed values of the linear wave model 
of Maa et al., and the right �gures are the calculated results of 
the present model. Based on the comparison of wave height 
distribution �eld, the calculated results of the present model 
make the wave energy more disperse a�er the single ellipse.

(52a)

(52b)
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�e calibrations indicate that the nonlinear wave dispersion 
relation and the corresponding wave shoaling coe�cient in 
the present model are able to improve the wave refraction and 
di�raction e�ects apparently under the complex topography.

Fig. 1. �e single elliptical topography and arrangement of cross sections

Fig. 2. Compared computed values of the linear wave model of Maa et al.and 
calculated results of the present model with experimental wave height data in 

the eight di�erent cross sections

Fig. 3. Compared computed wave height distribution �eld of the linear wave 
model of Maa et al. (le�)with calculated wave height distribution �eld of the 

present model(right)

SINUSOIDAL VARYING TOPOGRAPHY

Davies and Heathershaw[20] carried out a series of 
experimental research on the wave transformation under 
various sand ripple numbers and water depth conditions. 
�e wave situation with ten sand ripples is simulated by 
the present model. In the numerical simulation, the wave 
height of incident wave is 0.02 m, the period is 1.31 s, and the 
direction is along the positive coordinate. �e fully absorbing 
condition is situated at x = 30 m. �e comparisons between 
observed data and computed values under sinusoidal sand 
ripples terrain are listed in Fig.5. �e horizontal coordinate 
is the distance from the wave incident position, and the 
vertical coordinate is the wave amplitude of local wave 
(Half of local wave height). �e black solid points in Fig.5 
represent the observed wave amplitude data, and the black 
solid lines represent the calculated results of established wave 
models. In the light of the veri�cations in Fig.5, the calculated 
results of the wave mathematical model could coincide to the 
experimental data generally, and is capable of re�ecting the 
tendency of wave deformation under the sinusoidal varying 
topography.

Fig. 4. Sinusoidal varying topography pro�le when ripple wavenumber equals 
to ten
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Fig. 5. Compared experimental wave height data observed in the �ume with 
computed values of the present model

COMPOSITE SLOPES TOPOGRAPHY

�e wave transformation experiment under the complex 
bar-type beach pro�le caught out by Nagayama[12] is applied 
to verify the present model, the topography pro�le is shown 
in Fig.6(a). �e wave height of incident wave is 0.07 m, and 
the wave period is 1.18s. �e numerical results of the present 
model are compared with the computed values of the linear 
wave model of Maa et al. and the experimental data, which are 
shown in Fig.6(b). Both the solution of the linear wave model 
of Maa et al. and the present model predict a second wave 
breaking at the tailing section of the 1/20 slope. For under this 
bar-type topography, the wave deformation includes the wave 
shoaling e�ect, wave frictional e�ect, wave decaying e�ect, 
wave recovery and the second breaking. It is found that the 
present model is in better agreement with the experimental 
results and of higher accuracy.

Fig. 6(a). Composite slopes topography pro�le with fronting and tailing slope 
1/20

Fig. 6(b). Compared computed values of the linear wave model of Maa et al. 
and calculated results of the present model with experimental wave height data 

along the wave propagation

CONCLUSION

�e mild slope equation models applied in this paper have 
contained various modi�cations for the computations of 
combined wave shoaling, refraction, di�raction, re�ection, 
bottom friction and breaking. In the surf zone, linear wave 

dispersion relation and linear wave shoaling coe�cient 
have been adopted to improve the accuracy of wave height 
calculation. To overcome the error of the linear dispersion 
relation, the empirical nonlinear shoaling relation equations 
are utilized to develop the nonlinear wave shoaling coe�cient 
corresponding to the nonlinear wave dispersion relation. 
�e extended elliptic mild slope equation is modi�ed with 
the nonlinear wave dispersion relation, the corresponding 
deduced nonlinear wave shoaling coe�cient, the wave 
frictional energy dissipation coe�cient and the wave breaking 
energy loss coe�cient to calculate the wave transformation in 
the complicated topographies and the surf zone. �e Berkho� 
classical single elliptic topography experiment, some uniform 
slope and composite slope �ume tests are applied to verify 
the modi�ed wave model, and the calculated results coincide 
to the experimental data overall.
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