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Abstract

Our aim is to study and investigate the family of (p,q)-extended (incomplete and

complete) elliptic-type integrals for which the usual properties and representations of

various known results of the (classical) elliptic integrals are extended in a simple

manner. This family of elliptic-type integrals involves a number of special cases and

has a connection with (p,q)-extended Gauss’ hypergeometric function and

(p,q)-extended Appell’s double hypergeometric function F1. Turán-type inequalities

including log-convexity properties are proved for these (p,q)-extended complete

elliptic-type integrals. Further, we establish various Mellin transform formulas and

obtain certain infinite series representations containing Laguerre polynomials. We

also obtain some relationship between these (p,q)-extended elliptic-type integrals

and Meijer G-function of two variables. Moreover, we obtain several connections with

(p,q)-extended beta function as special values and deduce numerous differential and

integral formulas. In conclusion, we introduce (p,q)-extension of the Epstein–Hubbell

(E-H) elliptic-type integral.

MSC: Primary 33B15; 33C05; 33E05; 33C65; secondary 33B99; 33C60; 33C75

Keywords: Turán-type inequalities; Elliptic integrals; Extended beta function;

Extended hypergeometric functions; Mellin transform; Laguerre polynomials

1 Introduction, preliminaries, andmotivation

Elliptic-type integrals such as (classical) Legendre elliptic integrals, generalized complete

elliptic integrals of the first and second kind (see, for example, [5, 29, 30, 33–35]), and sym-

metric elliptic integrals [7] and also several definite integrals of such families are known

to play a prominent role in special functions in terms of their modulus or complementary

modulus in the theory of conformal mappings [2], studies of crystallographic minimal

surfaces, radiation physics problems [3], nuclear technology, fracture mechanics studies

of elliptical crack problems, the study of electromagnetic or acoustic waves being scat-

tered by an elliptic disk [15], astronomy, geometry, physics, and engineering mechanics

[4]. In recent years (2009), Lin et al. [16, p. 1178, Eq. (1.12)] introduced and extensively
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investigated the following generalized family of elliptic integrals (incomplete) H(ψ ,k,γ ):

H(ψ ,k,γ ) :=

∫ ψ

0

(

1 – k2 sin2 θ
)γ– 1

2 dθ =

∫ sinψ

0

(1 – k2t2)γ–
1
2

√
1 – t2

dt, (1.1)

(

∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2
;γ ∈C

)

.

Obviously, their special cases are

H

(

π

2
,k,γ

)

:=H(k,γ ),

H(ψ ,k, 0) =: F(ψ ,k), and H(ψ ,k, 1) =: E(ψ ,k),

and

H

(

π

2
,k, 0

)

=: K(k) and H

(

π

2
,k, 1

)

=: E(k),

and they respectively yield the families of complete elliptic integrals H(k,γ ) due to the

Bushell [5, p. 2, Eq. (2.2)]

H(k,γ ) =

∫ π
2

0

(

1 – k2 sin2 θ
)γ– 1

2 dθ =

∫ 1

0

(1 – k2t2)γ–
1
2

√
1 – t2

dt (1.2)

(
∣

∣k2
∣

∣ < 1;γ ∈C
)

and well-known (canonical) Legendre incomplete elliptic integrals F(ψ ,k) and E(ψ ,k) and

complete elliptic integrals K(k) and E(k) of the first and second kind (in terms of modulus

|k| and amplitude ψ ) [6]:

F(ψ ,k) =

∫ ψ

0

dθ
√
1 – k2 sin2 θ

=

∫ sinψ

0

dt
√

(1 – t2)(1 – k2t2)
(1.3)

(

∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2

)

,

E(ψ ,k) =

∫ ψ

0

√

1 – k2 sin2 θ dθ =

∫ sinψ

0

√

1 – k2t2

1 – t2
dt (1.4)

(

∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2

)

,

and

K(k) =

∫ π
2

0

dθ
√
1 – k2 sin2 θ

=

∫ 1

0

dt
√

(1 – t2)(1 – k2t2)

(
∣

∣k2
∣

∣ < 1
)

, (1.5)

E(k) =

∫ π
2

0

√

1 – k2 sin2 θ dθ =

∫ 1

0

√

1 – k2t2

1 – t2
dt

(
∣

∣k2
∣

∣ < 1
)

. (1.6)

In recent years, extensions of a number of well-known special functions have been in-

vestigated and studied the (p,q)–variant, and in turn, when p = q the p–variant together
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with the set of related higher transcendental hypergeometric type special functions (see,

for details, [8–10, 17, 18, 20, 22–24]). In what follows we shall use the following recently

defined (p,q)-extensions of the classical beta function B(x, y) and classical Gauss’s hyper-

geometric function F(λ,μ;ν;Z) [11, p. 360, Eq. (1.14)]:

Bp,q(δ,σ ) = B(δ,σ ;p,q) =

∫ 1

0

tδ–1(1 – t)σ–1e–
p
t –

q
1–t dt (1.7)

(

min
{

ℜ(p),ℜ(q);min
{

ℜ(δ),ℜ(σ )
}

> 0
}

≥ 0
)

,

and [11, p. 371, Eq. (7.1)]

Fp,q(λ,μ;ν;Z) =
∑

n≥0

(λ)n
B(μ + n,ν –μ;p,q)

B(μ,ν –μ)

Zn

n!

(

p,q ≥ 0;ℜ(ν) > ℜ(μ) > 0; |Z| < 1
)

.

(1.8)

Also, we shall need a (p,q)-extension of Appell’s(first) hypergeometric function F1 [21,

Eq. (1.9)]:

F1
(

λ,μ,μ′;ν;X,Y;p,q
)

=
∑

m,n≥0

(μ)n
(

μ′)
n

B(λ +m + n,ν – λ;p,q)

B(λ,ν – λ)

Xm

m!

Yn

n!
(1.9)

(

min
{

ℜ(p),ℜ(q);max
{

|X|, |Y|
}

< 1
}

≥ 0
)

.

The goal of this paper is to introduce and investigate the family of (p,q)-extended (in-

complete) elliptic-type integrals and (complete) elliptic-type integrals, which are analo-

gous on the basis of definition (1.7) of the (p,q)-extended beta function B(δ,σ ;p,q) so that

many of the known properties of the elliptic-type integrals carry over naturally. In Sect. 2,

we introduce a family of (p,q)-extended elliptic-type integrals. The (p,q)-extension pro-

posed in this section provides connections with (p,q)-extended Gauss’ hypergeometric

function Fp,q and (p,q)-extended Appell’s double hypergeometric function F1. In Sect. 3,

Turán-type inequalities including the log-convexity property are proved for these (p,q)-

extended(complete) elliptic-type integrals. Furthermore, in Sect. 4, Mellin transform for-

mulas and some infinite series representations containing the Laguerre polynomials are

derived for these (p,q)-extended elliptic-type integrals. Moreover, in Sect. 5, we provide

certain connections with the (p,q)-extended beta function andMeijer’sG-function of two

variables as new representations for the parameter(special) values and differential and in-

tegral properties of the (p,q)-extended(complete) elliptic-type integrals. Finally, in con-

clusion Sect. 6, we introduce a (p,q)-extension of the Epstein–Hubbell (E-H) elliptic-type

integral.
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2 A family of (p,q)-extended elliptic-type integrals

Webegin by introducing a family of (p,q)-extended(incomplete) elliptic-type integrals and

(complete) elliptic-type integrals (in terms ofmodulus |k|with amplitudeψ ), given by (1.1)

Hp,q(ψ ,k,γ ) :=

∫ ψ

0

(

1 – k2 sin2 θ
)γ– 1

2 e
–

p

sin2 θ
–

q

cos2 θ dθ

=

∫ sinψ

0

(1 – k2t2)γ–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2 dt (2.1)

(

min
{

ℜ(p),ℜ(q)
}

> 0;
∣

∣k2
∣

∣ < 1 with 0≦ ψ ≦
π

2
when p = q = 0

)

.

It is clear that from (2.1), in the particular cases γ = 0 and γ = 1, respectively, we have

Fp,q(ψ ,k) :=

∫ ψ

0

1
√
1 – k2 sin2 θ

e
–

p

sin2 θ
–

q

cos2 θ dθ

=

∫ sinψ

0

1
√

(1 – t2)(1 – k2t2)
e
–

p

t2
–

q

1–t2 dt (2.2)

(

min
{

ℜ(p),ℜ(q)
}

> 0;
∣

∣k2
∣

∣ < 1 with 0≦ ψ ≦
π

2
when p = q = 0;

)

and

Ep,q(ψ ,k) :=

∫ ψ

0

√

1 – k2 sin2 θe
–

p

sin2 θ
–

q

cos2 θ dθ

=

∫ sinψ

0

√

1 – k2t2

1 – t2
e
–

p

t2
–

q

1–t2 dt (2.3)

(

min
{

ℜ(p),ℜ(q)
}

> 0;
∣

∣k2
∣

∣ < 1 with 0≦ ψ ≦
π

2
when p = q = 0

)

.

Furthermore, when ψ = π
2
, equations (2.1), (2.2), and (2.3) reduce to the corresponding

(p,q)-extended(complete) elliptic-type integrals given respectively by

Hp,q(k,γ ) :=

∫ π
2

0

(

1 – k2 sin2 θ
)γ– 1

2 e
–

p

sin2 θ
–

q

cos2 θ dθ

=

∫ 1

0

(1 – k2t2)γ–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2 dt, (2.4)

Kp,q(k) :=

∫ π
2

0

1
√
1 – k2 sin2 θ

e
–

p

sin2 θ
–

q

cos2 θ dθ

=

∫ 1

0

1
√

(1 – t2)(1 – k2t2)
e
–

p

t2
–

q

1–t2 dt (2.5)

(

min
{

ℜ(p),ℜ(q)
}

> 0;
∣

∣k2
∣

∣ < 1 when p = q = 0
)

,
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and

Ep,q(k) :=

∫ π
2

0

√

1 – k2 sin2 θe
–

p

sin2 θ
–

q

cos2 θ dθ

=

∫ 1

0

√

1 – k2t2

1 – t2
e
–

p

t2
–

q

1–t2 dt (2.6)

(

min
{

ℜ(p),ℜ(q)
}

> 0;
∣

∣k2
∣

∣ < 1 when p = q = 0
)

.

In terms of the complementary modulus k′, the (p,q)-extended(complete)elliptic-type

integrals are defined by

K ′
p,q(k) = Kp,q

(

k′) = Kp,q

(
√
1 – k2

) (

k′ :=
√
1 – k2

)

(2.7)

and

E′
p,q(k) = Ep,q

(

k′) = Ep,q

(
√
1 – k2

) (

k′ :=
√
1 – k2

)

. (2.8)

The particular cases of (2.2) to (2.8) when p = q and p = q = 0 reduce to the general-

ized elliptic-type integrals studied by Srivastava et al. [33] and classical elliptic integrals

(incomplete and complete) (1.1) to (1.6), respectively (see, e.g., [5, 6], and [12]).

2.1 (p,q)-Hypergeometric(extended) function representations

In this section, we express the above defined (p,q)-extensions of complete elliptic-type

integrals in terms of (p,q)-extended hypergeometric functions.

Theorem 2.1 Consider (p,q)-Gauss’s hypergeometric function Fp,q(λ,μ;ν;Z) given by

(1.8). Let ℜ(p),ℜ(q) > 0, and |k2| < 1. Then

Hp,q(k,γ ) =
π

2
Fp,q

(

1

2
– γ ,

1

2
; 1;k2

)

, (2.9)

Kp,q(k) =
π

2
Fp,q

(

1

2
,
1

2
; 1;k2

)

, (2.10)

and

Ep,q(k) =
π

2
Fp,q

(

–
1

2
,
1

2
; 1;k2

)

. (2.11)

Proof Letting t2 = u in (2.4), (2.5), and (2.6) and using definition (1.8), we get the required

representation (2.9), (2.10), and (2.11), respectively. �

Theorem2.2 Consider (p,q)-Appell’s hypergeometric function F1(λ,μ,μ
′;ν;X,Y;p,q) de-

fined as in (1.9). For ℜ(p),ℜ(q) > 0 and |k2| < 1, we have

Hp,q(k,γ ) =
π

2
F1

(

1

2
,
1

2
,
1

2
– γ ;

3

2
; 1,k2;p,q

)

, (2.12)

Kp,q(k) =
π

2
F1

(

1

2
,
1

2
,
1

2
;
3

2
; 1,k2;p,q

)

, (2.13)
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Ep,q(k) =
π

2
F1

(

1

2
,
1

2
,–

1

2
;
3

2
; 1,k2;p,q

)

. (2.14)

Proof Setting t2 = u in equations (2.4), (2.5), and (2.6) andusing the integral representation

defined by Parmar and Pogány [21, Lemma 8, Eqs. (2.1)]

F1
(

λ,μ,μ′;ν;x, y;p,q
)

=

∫ 1

0

tλ–1(1 – t)ν–λ–1

B(λ,ν – λ)
(1 – xt)–μ(1 – yt)–μ′

e–
p
t –

q
1–t dt, (2.15)

where max{| arg(1 –X)|, | arg(1 –Y)|} < π ;ℜ(ν) > ℜ(λ) > 0 and min{ℜ(p),ℜ(q)} > 0, we get

the required relations (2.12), (2.13), and (2.14), respectively. �

3 Log-convexity properties and Turán-type inequalities

In this section, we establish the Turán-type inequalities based upon log-convexity prop-

erties for theHp,q(k,γ ), Kp,q(k), and Ep,q(k) in (2.4), (2.5), and (2.6).

Theorem 3.1 The following assertions are true for ℜ(p) > 0, ℜ(q) > 0:

(1) The function γ �→Hp,q(k,γ ) is log-convex on (0,∞) for all k ∈ (0, 1).

(2) The function p �→Hp,q(k,γ ) is log-convex on (0,∞) for all k ∈ (0, 1).

(3) The function q �→Hp,q(k,γ ) is log-convex on (0,∞) for all k ∈ (0, 1).

Moreover, for the same parametric range, the following Turán inequalities hold true:

H
2
p,q(k,γ ) –Hp,q(k,γ – 1).Hp,q(k,γ + 1) ≤ 0 γ ∈ (1,∞), (3.1)

H
2
p,q(k,γ ) –Hp–1,q(k,γ ).Hp+1,q(k,γ ) ≤ 0 p ∈ (1,∞), (3.2)

H
2
p,q(k,γ ) –Hp,q–1(k,γ ).Hp,q+1(k,γ ) ≤ 0 q ∈ (1,∞). (3.3)

Proof By using the definition of the classical Hölder–Rogers inequality for integrals in the

integral representation (2.4), we have

Hp,q

(

k,λγ1 + (1 – λ)γ2
)

=

∫ 1

0

(1 – k2t2)λγ1+(1–λ)γ2–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2 dt

=

∫ 1

0

[

(1 – k2t2)γ1–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2

]λ[ (1 – k2t2)γ2–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2

]1–λ

dt

≤
[∫ 1

0

(1 – k2t2)γ1–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2 dt

]λ[∫ 1

0

(1 – k2t2)γ2–
1
2

√
1 – t2

e
–

p

t2
–

q

1–t2 dt

]1–λ

.

This is equivalent to

Hp,q

(

k,λγ1 + (1 – λ)γ2
)

≤
[

Hp,q(k,γ1)
]λ[

Hp,q(k,γ2)
]1–λ

∀ γ1,γ2,k ∈ (0, 1) and λ ∈ [0, 1],

(3.4)

which proves the first assertion.

In a similar manner, by using (2.4) and using the Hölder–Rogers inequality, we get

Hλp1+(1–λ)p2 ,q(k,γ ) ≤
[

Hp1 ,q(k,γ )
]λ[

Hp2 ,q(k,γ )
]1–λ

∀ p1,p2 > 0,k ∈ (0, 1) and λ ∈ [0, 1],

(3.5)
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Hp,λq1+(1–λ)q2 (k,γ ) ≤
[

Hp,q1 (k,γ )
]λ[

Hp,q2 (k,γ )
]1–λ

∀ q1,q2 > 0,k ∈ (0, 1) and λ ∈ [0, 1],

(3.6)

which proves the second assertion and the third assertion.

Next, choosing λ = 1
2
in (3.4), (3.5), and (3.6), we conclude the Turán inequalities (3.1),

(3.2), and (3.3), respectively. �

Corollary 3.1 The following assertions are true for ℜ(p) > 0, ℜ(q) > 0:

(1) The function p �→ Kp,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).

(2) The function q �→ Kp,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).

(3) The function p �→ Ep,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).

(4) The function q �→ Ep,q(k) is log-convex on (0,∞) for all k ∈ (0, 1).

Moreover, for the same parametric range, the following Turán inequalities hold true:

K2
p,q(k) –Kp–1,q(k).Kp+1,q(k)≤ 0 p ∈ (1,∞), (3.7)

K2
p,q(k) –Kp,q–1(k).Kp,q+1(k)≤ 0 q ∈ (1,∞), (3.8)

E2
p,q(k) – Ep–1,q(k).Ep+1,q(k)≤ 0 p ∈ (1,∞), (3.9)

E2
p,q(k) – Ep,q–1(k).Ep,q+1(k)≤ 0 q ∈ (1,∞). (3.10)

Proof Furthermore, by specifying γ = 0 and γ = 1 in assertions (3.5) and (3.6) (or alterna-

tively employing definitions (2.5) and (2.6) and using the Hölder–Rogers inequality), we

can easily obtain

Kλp1+(1–λ)p2 ,q(k)≤
[

Kp1 ,q(r)
]λ[

Kp2 ,q(r)
]1–λ ∀ p1,p2 > 0,k ∈ (0, 1) and λ ∈ [0, 1], (3.11)

Kp,λq1+(1–λ)q2 (k) ≤
[

Kp,q1 (r)
]λ[

Kp,q2 (r)
]1–λ ∀ q1,q2 > 0,k ∈ (0, 1) and λ ∈ [0, 1], (3.12)

Eλp1+(1–λ)p2 ,q(k) ≤
[

Ep1 ,q(r)
]λ[

Ep2 ,q(r)
]1–λ ∀ p1,p2 > 0,k ∈ (0, 1) and λ ∈ [0, 1], (3.13)

and

Ep,λq1+(1–λ)q2 (k)≤
[

Ep,q1 (r)
]λ[

Ep,q2 (r)
]1–λ ∀ q1,q2 > 0,k ∈ (0, 1) and λ ∈ [0, 1]. (3.14)

Again, specifying λ = 1
2
and p1 = p–1, p2 = p+1 in (3.11) and (3.13) and q1 = q–1, q2 = q+1

in (3.12) and (3.14), we obtain the Turán-type inequalities (3.7) to (3.10), respectively. �

4 Mellin transform formulas and Laguerre polynomial representations

TheMellin transforms of the function f (x, y) of two variables with respect to the indices r

and s are given by [19]

M
{

f (x, y)
}

(r, s) =

∫ ∞

0

∫ ∞

0

xr–1ys–1f (x, y) dxdy, (4.1)

where it is assumed that the integral (improper) in (4.1) exists.
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Theorem 4.1 Consider Appell’s hypergeometric function F1(λ,μ,μ
′;ν;X,Y). The follow-

ing Mellin transformation formula forHp,q(ψ ,k,γ ) in (2.1) holds true:

M
{

Hp,q(ψ ,k,γ )
}

(r, s) =
Ŵ(r)Ŵ(s) sin2r+1 ψ

2(r + 1
2
)

· F1
(

r +
1

2
,
1

2
– γ ,

1

2
– s; r +

3

2
;k2 sin2 ψ , sin2 ψ

)

(4.2)

(

ℜ(r) > 0,ℜ(s) > 0;
∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2

)

.

Proof By making use of definition (4.1), we get from (2.1) that

M
{

Hp,q(ψ ,k,γ )
}

(r, s)

=

∫ ∞

0

∫ ∞

0

pr–1qs–1Hp,q(ψ ,k,γ ) dpdq

=

∫ ∞

0

∫ ∞

0

pr–1qs–1
(∫ ψ

0

(

1 – k2 sin2 θ
)γ– 1

2 e
–

p

sin2 θ
–

q

cos2 θ dθ

)

dpdq

=
1

2

∫ ∞

0

∫ ∞

0

pr–1qs–1
(∫ sin2 ψ

0

(1 – k2t)γ–
1
2

√
t(1 – t)

e–
p
t –

q
1–t dt

)

dpdq,

where the value in the inner θ -integral has also been evaluated by sin2 θ = t and dθ =
dt

2
√
t(1–t)

. Now, by the absolute convergence of the integrations involved under the condi-

tions mentioned in Theorem 4.1, we change the order of integrals on the right-hand side

(RHS) to find

M
{

Hp,q(ψ ,k,γ )
}

(r, s)

=
1

2

∫ sin2 ψ

0

(1 – k2t)γ–
1
2

√
t(1 – t)

(∫ ∞

0

pr–1e–
p
t dp

)(∫ ∞

0

qs–1e–
q
1–t dq

)

dt

=
Ŵ(r)Ŵ(s)

2

∫ sin2 ψ

0

tr–
1
2 (1 – t)s–

1
2
(

1 – k2t
)γ– 1

2 dt, (4.3)

where we obviously have used the classical Euler’s gamma integral

Ŵ(η)ξ–η =

∫ ∞

0

e–ξ ttη–1 dt, ℜ(ξ ) > 0,ℜ(η) > 0, (4.4)

in the inner p-integral and q-integral. Now, setting t = (sin2 ψ)τ and dt = (sin2 ψ) dτ yields

M
{

Hp,q(ψ ,k,γ )
}

(r, s)

=
Ŵ(r)Ŵ(s) sin2r+1 ψ

2

∫ 1

0

τ r– 1
2
(

1 – k2 sin2 ψτ
)γ– 1

2
(

1 – sin2 ψτ
)s– 1

2 dτ . (4.5)
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Finally, by using (see, e.g., [32, p. 276, Eq. 9.4(7)])

F1
(

λ,μ,μ′;ν;X,Y
)

=
Ŵ(ν)

Ŵ(λ)Ŵ(ν – λ)

∫ 1

0

tλ–1(1 – t)ν–λ–1(1 –Xt)–μ(1 –Yt)–μ′
dt (4.6)

(

max
{
∣

∣arg(1 –X)
∣

∣,
∣

∣arg(1 –Y)
∣

∣

}

< π ;ℜ(ν) > ℜ(λ) > 0
)

,

we obtain the required Mellin transformation formula (4.2) given by Theorem 4.1. �

Appell’s functions F1 are represented in terms of Kampé de Fériet’s hypergeometric

function [32, p. 22, Eq. 1.3(2)] and the Srivastava–Daoust hypergeometric function of the

two variables [32, p. 37, Eq. 1.4(21)]:

F1[α,β1,β2;γ ;X,Y] = F1:1;1
1:0;0

[

α : β1;β2;

γ : ; ;
X,Y

]

(4.7)

and

F1[α,β1,β2;γ ;X,Y] = F1:1;1
1:0;0

[

(α : 1, 1) : (β1, 1); (β2, 1);

(γ : 1, 1) : ; ;
X,Y

]

. (4.8)

We first apply representation (4.7) in (4.2) and representation (4.8) in (4.2), and afterward

employing the Legendre duplication formula [32, p. 17, Eq. 1.2(14)]) for the gamma func-

tion

Ŵ(2η) =
22η–1
√

π
Ŵ(η)Ŵ

(

η +
1

2

)

,

we can evaluate the Mellin transform formulas forHp,q(ψ ,k,γ ) in (2.1) as given by Corol-

lary 4.1. In particular, if we put γ = 0 and γ = 1, we can obtain certain Mellin transforma-

tion formulas for the Fp,q(ψ ,k) and Ep,q(ψ ,k) in (2.2) and (2.3) as given by Corollary 4.2.

The proofs are omitted for Corollaries 4.1 and 4.2.

Corollary 4.1 The following Mellin transformation formulas hold true:

M
{

Hp,q(ψ ,k,γ )
}

(r, s) =
Ŵ(r)Ŵ(s) sin2r+1 ψ

2(r + 1
2
)

· F1:1;1
1:0;0

[

r + 1
2
: 1
2
– γ ; 1

2
– s;

r + 3
2
: ; ;

k2 sin2 ψ , sin2 ψ

]

(4.9)

and

M
{

Hp,q(ψ ,k,γ )
}

(r, s)

= Ŵ(r)Ŵ(s) sin2r+1 ψ

· F1:1;1
1:0;0

[

(2r + 1 : 2, 2) : ( 1
2
– γ , 1); ( 1

2
– s, 1);

(2r + 2 : 2, 2) : ; ;
k2 sin2 ψ , sin2 ψ

]

. (4.10)
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Corollary 4.2 The following Mellin transformation formulas for Fp,q(ψ ,k) and Ep,q(ψ ,k)

in (2.2) and (2.3) hold true:

M
{

Fp,q(ψ ,k)
}

(r, s) =
Ŵ(r)Ŵ(s) sin2r+1 ψ

2(r + 1
2
)

· F1
(

r +
1

2
,
1

2
,
1

2
– s; r +

3

2
;k2 sin2 ψ , sin2 ψ

)

, (4.11)

M
{

Fp,q(ψ ,k)
}

(r, s) =
Ŵ(r)Ŵ(s) sin2r+1 ψ

2(r + 1
2
)

× F1:1;1
1:0;0

[

r + 1
2
: 1
2
; 1
2
– s;

r + 3
2
: ; ;

k2 sin2 ψ , sin2 ψ

]

, (4.12)

M
{

Fp,q(ψ ,k)
}

(r, s)

= Ŵ(r)Ŵ(s) sin2r+1 ψ

· F1:1;1
1:0;0

[

(2r + 1 : 2, 2) : ( 1
2
, 1); ( 1

2
– s, 1);

(2r + 2 : 2, 2) : ; ;
k2 sin2 ψ , sin2 ψ

]

, (4.13)

M
{

Ep,q(ψ ,k)
}

(r, s)

=
Ŵ(r)Ŵ(s) sin2r+1 ψ

2(r + 1
2
)

· F1
(

r +
1

2
,–

1

2
,
1

2
– s; r +

3

2
;k2 sin2 ψ , sin2 ψ

)

, (4.14)

M
{

Ep,q(ψ ,k)
}

(r, s)

=
Ŵ(r)Ŵ(s) sin2r+1 ψ

2(r + 1
2
)

F1:1;1
1:0;0

[

r + 1
2
: – 1

2
; 1
2
– s;

r + 3
2
: ; ;

k2 sin2 ψ , sin2 ψ

]

, (4.15)

and

M
{

Ep,q(ψ ,k)
}

(r, s)

= Ŵ(r)Ŵ(s) sin2r+1 ψ

× F1:1;1
1:0;0

[

(2r + 1 : 2, 2) : (– 1
2
, 1); ( 1

2
– s, 1);

(2r + 2 : 2, 2) : ; ;
k2 sin2 ψ , sin2 ψ

]

. (4.16)

Theorem 4.2 The mentioned Mellin transformation formulas for Hp,q(k,γ ), Kp,q(k), and

Ep,q(k) in (2.4), (2.5), and (2.6) hold true:

M
{

Hp,q(k,γ )
}

(r, s) =
Ŵ(r)Ŵ(s)B(r + 1

2
, s + 1

2
)

2
2F1

(

r +
1

2
,
1

2
– γ ; r + s + 1;k2

)

(4.17)

(

ℜ(r) > 0,ℜ(s) > 0;
∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2

)

,

M
{

Kp,q(k)
}

(r, s) =
Ŵ(r)Ŵ(s)B(r + 1

2
, s + 1

2
)

2
2F1

(

r +
1

2
,
1

2
; r + s + 1;k2

)

(4.18)

(

ℜ(r) > 0,ℜ(s) > 0;
∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2

)

,
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and

M
{

Ep,q(k)
}

(r, s) =
Ŵ(r)Ŵ(s)B(r + 1

2
, s + 1

2
)

2
2F1

(

r +
1

2
,–

1

2
; r + s + 1;k2

)

(4.19)

(

ℜ(s) > 0;
∣

∣k2
∣

∣ < 1; 0≦ ψ ≦
π

2

)

.

Proof By first substituting ψ = π
2
in (4.2), (4.11), and (4.14) and afterward employing the

following identity (see [13, p. 239, Eq. (10)])

F1[λ,μ1,μ2;ν;X, 1] =
Ŵ(ν)Ŵ(ν – λ –μ2)

Ŵ(ν – λ)Ŵ(ν –μ2)
2F1(λ,μ1;ν –μ2;X),

we obtain the required Mellin transformation formulas given by Theorem 4.2. �

If we set r = 1 and s = 1 in (4.18) and (4.19), we obtain the following connection between

the classical elliptic integrals and the (p,q)-extended (complete) elliptic integrals:

∫ ∞

0

∫ ∞

0

Kp,q(k) dpdq =
π

16
2F1

(

1

2
,
3

2
; 3;k2

)

, (4.20)

which, in view of the well-known representation [26, p. 473, Entry (93)], yields

∫ ∞

0

∫ ∞

0

Kp,q(k) dpdq =
1

3k2

[

K(k) –
(

2 – k2
)

D(k)
]

(4.21)

and

∫ ∞

0

∫ ∞

0

Ep,q(k) dpdq =
π

16
2F1

(

–
1

2
,
3

2
; 3;k2

)

, (4.22)

which, by means of the well-known representation [26, p. 469, Entry (20)], can be written

in the following form:

∫ ∞

0

∫ ∞

0

Ep,q(k) dpdq =
1

15k2

[(

1 + k2
)

K(k) – 2
(

1 – k2 + k4
)

D(k)
]

. (4.23)

The Laguerre(simple)polynomials Ln(x) are defined by (see, e.g., [25, p. 645])

Ln(x) := L(0)n (x) and L(λ)n (x) :=

n
∑

j=0

(

n + λ

n – j

)

(–x)j

j!
.

Now we derive the Laguerre polynomial relation asserted by (4.24).

Theorem 4.3 The following Laguerre polynomial relation holds true forHp,q(k):

Hp,q(k) =

∞
∑

m,n=0

e–p–qB(n + 3
2
,m + 3

2
)

2
Lm(p)Ln(q)2F1

(

γ –
1

2
,n+

3

2
;m+n+3;k2

)

. (4.24)
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Proof Putting sin2 θ = t and 2dθ = dt/
√
t(1 – t) in (2.4), we get

Hp,q(k) =
1

2

∫ 1

0

t–
1
2 (1 – t)–

1
2
(

1 – k2t
)γ– 1

2 e–
p
t –

q
1–t dt. (4.25)

By making use of the known identity in a slightly corrected form for the simple Laguerre

polynomials due to Choi et al. [11, p. 350, Eq. (5.5)]

exp

(

–
p

t
–

q

1 – t

)

= e–p–q

{ ∞
∑

m,n=0

Lm(p)Ln(q)t
n+1(1 – t)m+1

}

in (4.25), we have

Hp,q(k)

=
e–p–q

2

∫ 1

0

t–
1
2 (1 – t)–

1
2
(

1 – k2t
)γ– 1

2

{ ∞
∑

m,n=0

Lm(p)Ln(q)t
n+1(1 – t)m+1

}

dt. (4.26)

Now, changing integration and summation order and using the integral representation of

2F1 [27]

2F1(λ,μ;ν;Z) =
Ŵ(ν)

Ŵ(μ)Ŵ(ν –μ)

∫ 1

0

tμ–1(1 – t)ν–μ–1(1 – Zt)–λ dt,

when there holds ℜ(ν) > ℜ(μ) > 0; | arg(1 – Z)| ≤ π – ǫ (0 < ǫ < π ) in (4.26), we are led to

the required result. �

Corollary 4.3 The following Laguerre polynomial relations hold true for Kp,q(k) and

Ep,q(k):

Kp,q(k) =

∞
∑

m,n=0

e–p–qB(n + 3
2
,m + 3

2
)

2
Lm(p)Ln(q)2F1

(

1

2
,n +

3

2
;m + n + 3;k2

)

(4.27)

and

Ep,q(k) =

∞
∑

m,n=0

e–p–qB(n + 3
2
,m + 3

2
)

2
Lm(p)Ln(q)2F1

(

–
1

2
,n +

3

2
;m + n + 3;k2

)

. (4.28)

5 Certain properties of (p,q)-extended elliptic integrals

In this section we obtain certain special values in terms of (p,q)-extended beta function

Bp,q(δ,σ ) and present the connections with G-function of two variables. We also present

various derivative and integrals formulas for the (p,q)-extended elliptic-type integrals.

5.1 Special parametric values and connections with G-function

In this subsection, we first find the special values of Kp,q(k), K
′
p,q(k), Ep,q(k), and E′

p,q(k) in

terms of the (p,q)-extended beta function Bp,q(δ,σ ). It suffices to consider the correspond-

ing defining expressions in Sect. 2 in view of the definition of Bp,q(δ,σ ) (1.7).
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Theorem 5.1 Let Bp,q(δ,σ ) be the (p,q)-extended beta function defined in (1.7). Then:

Kp,q(0) = K ′
p,q(1) = Ep,q(0) = E′

p,q(1) =
1

2
Bp,q

(

1

2
,
1

2

)

, (5.1)

Ep,q(1) = E′
p,q(0) =

1

2
Bp,q

(

1

2
, 1

)

, (5.2)

and

Kp,q(1) = K ′
p,q(0) =

1

2
Bp,q

(

1

2
, 0

)

. (5.3)

Next, observe that Meijer’s G-function of two variables [31, p.7, Eq. (1.2.3) and p.88,

Eq. (6.4.1)] is expressible in terms of the (p,q)-extended beta function Bp,q(δ,σ ) for

ℜ(p),ℜ(q) > 0 as follows [11, p.350, Eq. (5.6)]:

Bp,q(δ,σ ) =G0,0:2,0;2,0
1,0:0,2;0,2

[

(δ + σ ; 1, 1) : ;

: (0, 1), (δ, 1); (0, 1), (σ , 1)
;p,q

]

. (5.4)

Now, by making use of relationship (5.4) to (5.1) through (5.3) in Theorem 5.1, we can

establish various representations of (p,q)-extended (complete) elliptic integrals that are

given in Corollary 5.1.

Corollary 5.1 The following relations hold true:

Kp,q(0) = K ′
p,q(1) = Ep,q(0) = E′

p,q(1)

=G0,0:2,0;2,0
1,0:0,2;0,2

[

(1; 1, 1) : ;

: (0, 1), (1/2, 1); (0, 1), (1/2, 1)
;p,q

]

, (5.5)

Ep,q(1) = E′
p,q(0) =G0,0:2,0;2,0

1,0:0,2;0,2

[

(3/2; 1, 1) : ;

: (0, 1), (1/2, 1); (0, 1), (1, 1)
;p,q

]

, (5.6)

and

Kp,q(1) = K ′
p,q(0) =G0,0:2,0;2,0

1,0:0,2;0,2

[

(1/2; 1, 1) : ;

: (0, 1), (1/2, 1); (0, 1), (0, 1)
;p,q

]

. (5.7)

5.2 Differential and integral formulas

In this subsection, we present various differential and integral formulas for (p,q)-extended

elliptic-type integrals. The proofs are omitted.

Theorem 5.2 The following derivative formulas hold true for Kp,q(k) and Ep,q(k):

d

dk

{

Ep,q(ψ ,k)
}

=
1

k

[

Ep,q(ψ ,k) – Fp,q(ψ ,k)
]

, (5.8)

d

dk

{

Ep,q(k)
}

=
1

k

[

Ep,q(k) –Kp,q(k)
]

, (5.9)

d

dk

{

E′
p,q(k)

}

= –
k

k′2

[

E′
p,q(k) –K ′

p,q(k)
]

, (5.10)
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d

dk′

{

Ep,q(k)
}

= –
k′

k2

[

Ep,q(k) –Kp,q(k)
]

, (5.11)

dm

d(k2)m

{

Kp,q(k)
}

=
π [(2m)!]2

2(m!)316m
Fp,q

(

1

2
+m,

1

2
+m, 1 +m;k2

)

, (5.12)

dm

d(k2)m

{

Ep,q(k)
}

=
π

2

( 1
2
)m(–

1
2
)m

m!
Fp,q

(

–
1

2
+m,

1

2
+m, 1 +m;k2

)

. (5.13)

Theorem 5.3 The following integral formulas hold true for Kp,q(k) and Ep,q(k):

∫

[

Kp,q(k) – Ep,q(k)
]dk

k
= –Ep,q(k), (5.14)

∫

Kp,q(k)
dk

k2
= –

1

k
Ep,q(k), (5.15)

∫

k

k′2

[

K ′
p,q(k) – E′

p,q(k)
]

dk = E′
p,q(k), (5.16)

and

∫

k′

k2

[

Kp,q(k) – E′
p,q(k)

]

dk′ = Ep,q(k). (5.17)

6 Concluding remark and observations

In our present studies, we have introduced and extensively investigated the family of (in-

complete and complete) (p,q)-extended elliptic-type integrals and presented connections

with (p,q)-extended beta function, (p,q)-extended Gauss’ hypergeometric function, and

(p,q)-extended Appell’s double hypergeometric function F1. Moreover, we obtained the

connection with Meijer G-function of two variables. Turán-type inequalities were proved

by using log-convexity property for these (p,q)-extended complete elliptic-type integrals.

Further, we established various Mellin transform formulas and obtained certain infinite

series representations containing Laguerre polynomials. We also obtained some relation-

ship between these (p,q)-extended elliptic-type integrals and as special values and de-

ducednumerous differentiation and integral formulas. In conclusion,we introduced (p,q)-

extension of the Epstein–Hubbell elliptic-type integral.

It is worth mentioning, as a main conclusion to observe, that Epstein and Hubbell [12]

studied and investigated the following extensions ofK(k) and E(k), whichwas encountered

in a Legendre polynomial expansion method when applied to certain problems involving

computation of the radiation field off-axis from a uniform circular disk radiating according

to an arbitrary angular distribution law [14] (see also Weiss [37]):

�j(κ) :=

∫ π

0

dθ

(1 – κ2 cos θ )j+
1
2

(6.1)

(

0≦ κ < 1; j ∈N0 :=N∪ {0};N := {1, 2, 3, . . .}
)

.

Note that, by comparing definitions (1.5), (1.6), and (6.1), we can deduce the following

connections:

�0(κ) =
k
√
2

κ
K(k) and �1(κ) =

k
√
2

κ(1 – κ2)
E(k)

(

k2 :=
2κ2

1 + κ2

)

.
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These Epstein–Hubbell elliptic-type integrals can be extended by using definitions, which

we have considered in this paper, can be generalized by introducing (p,q)-extended

Epstein–Hubbell elliptic-type integral in (6.1):

�γ ,p,q(κ) :=

∫ π

0

1

(1 – κ2 cos θ )γ+
1
2

e
–

p

sin2(θ/2)
–

q

cos2(θ/2) dθ (6.2)

(

min
{

ℜ(p),ℜ(q)
}

> 0; 0≦ κ ≦ 1;γ ∈ C0 when p = q = 0
)

.

It is worth noting that if we substitute t = cos( θ
2
) =

√

(1+cos θ )
2

in (2.4), we obtain the follow-

ing connection with the (p,q)-extended elliptic-type integrals Hp,q(k,γ ) defined by (2.4)

and �γ ,p,q(k) defined by (6.2)

Hp,q(k,γ ) =
(2 – k2)γ–

1
2

2γ+ 1
2

�–γ ,p,q

(

k
√
2 – k2

)

.

Again by letting cos(θ/2) = t and then t2 = u in (6.2), we can easily obtain relationship

(6.3) in terms of (p,q)-extended Gauss’ hypergeometric function (1.8)

�γ ,p,q(κ) :=
π

(1 + κ2)γ+
1
2

Fp,q

(

γ +
1

2
,
1

2
; 1;

2κ2

1 + κ2

)

. (6.3)

Note that expression (6.3) for p = q = 0 reduces to the known result [37]. Further many of

properties such as Mellin transform formulas, infinite series representations containing

Laguerre polynomials, log-convexity property, and Turán-type inequalities and differen-

tiation and integral formulas can be easily derived. As a result, the information involved

can be left as an exercise for the curious reader. More various concavity, convexity, and

monotonicity properties of our findings can be studied and investigated parallel to the

recent papers [1, 28, 36, 38, 39].
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