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Abstract  

Multibody simulations of human motion require representative models of the anatomical 

structures. A model that captures the complexity of the foot is still lacking. In the present 

work, two detailed 3D multibody foot-ankle models generated based on CT scans using a 

semi-automatic tool are described. The proposed models consists of five rigid segments 

(talus, calcaneus, midfoot, forefoot and toes), connected by five joints (ankle, subtalar, 

midtarsal, tarsometatarsal and metatarsophalangeal), one with 15DOF and the other with 

8DOF. The calculated kinematics of both models were evaluated using gait trials and 

compared against literature, both presenting realistic results.  An inverse dynamic analysis 

was performed for the 8DOF model, again presenting feasible dynamic results. 
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Introduction 

The foot is a highly complex structure. Nevertheless, musculoskeletal models commonly describe 

it by simplified kinematic and dynamic models with three or fewer segments (Anderson & Pandy 

2001; Bruening et al. 2012). Being an intricate structure, a small number of segments is generally 

insufficient to capture the detail of human foot motion and joint loading (Neptune et al. 2000). 

In the present work, two extended multibody foot-ankle models that capture important 

foot movements at the midtarsal and tarsometatarsal (mentioned in Hicks 1953)  were developed. 

A tool to construct 3D multibody foot-ankle models based on CT scans for use in OpenSim (Delp 

et al. 2007) was created. Both models consisted of five rigid segments (talus, calcaneus, midfoot, 

forefoot and toes) with five anatomical joints (ankle, subtalar, midtarsal, tarsometatarsal and 

metatarsophalangeal) with fifteen and eight degrees of freedom (DOF) respectively. The first 

model has 3DOF at each joint, the DOF of the second model were based on the work of Hicks 

(1953). In addition, the geometry of the intrinsic and extrinsic muscles were included as well as 

the major ligaments. Both models were validated by comparing inverse kinematics for gait with 

joint kinematics published in literature (Lundgren et al. 2008). Furthermore, the 8DOF model 

was used to evaluate inverse dynamics and ligament strain during gait. 

Methods 

The following workflow describes the methodology applied to develop both models.  

Surfaces and volume meshes generation 

CT scan foot data from one healthy subject was segmented using Mimics® Innovation Suite 

(Materialise, Leuven, Belgium). The same software was used to create the surfaces and volume 

meshes of the bones and the soft tissues. The soft tissue meshes were only used for the 

computation of the segments’ mass and inertia tensor. The bone segments were generated 



through the union of the corresponding bones: midfoot (navicular, cuboid and cuneiforms), 

forefoot (metatarsals) and toes (phalanxes). Each segment was exported as a surface mesh 

(triangles) and as a volume mesh (tetrahedrons) separately. The soft tissue was divided in four 

different regions (calcaneus, midfoot, forefoot and toes) using cutting planes. Each plane was 

defined using three anatomical landmarks: 

 Midtarsal Plane - Central point of the lateral side of the cuboid at the level of the 

calcaneal-cuboid joint line, central point of the medial side and central point of the dorsal 

side of the navicular bone at the level of the talus-navicular joint line; 

 Tarsometatarsal Plane - Central point of the medial side of the 1st metatarsal bone at the 

level of the metatarsal-cuneiform joint line, central point of the lateral side of the 5th 

metatarsal bone at  the level of  metatarsal-cuboid joint line and the highest central point 

of the dorsal side of the 2nd metatarsal bone; 

 Metatarsophalangeal Plane – Lowest central point at the plantar side of the 1st proximal 

phalanx, highest central point of the  1st proximal phalanx and central point of the lateral 

side of the 5th proximal phalanx.  

Computation of the local coordinate systems 

An Euclidean transform in 3D space, based on single value decomposition (Besl & McKay 

1992), was used to transform the foot segment meshes from the CT scan coordinate system to 

OpenSim based on four corresponding points in both feet (CT scan and OpenSim – Model Gait 

2392). A reference frame with origin at the joint center was computed for each segment based on 

reproducible anatomical landmarks (Table 1), selected on the bones mesh using Mimics® 

Innovation Suite. 



Anthropometric properties computation 

The segments properties (volume, mass and center of mass) were computed using the volume 

mesh information and the CT scan’s greyscale of each element. The inertia tensor was computed 

based on the density information using explicit formulas for the moments of inertia of 3D 

tetrahedrons as polynomials of their vertex coordinates (Tonon 2004).  

Mimics® Innovation Suite allowed  to assign a density value (𝜌) to each volume mesh 

element (𝑛) based on a linear relation between the CT scan’s greyscale (Hounsfield units - 𝐻𝑈) 

and the correspondent density value (Equation 1). In total, 10 different densities were assigned to  

each segment (𝑖), with each density value correlating to an equally spaced set of HU measures. 

 

𝜌𝑛,𝑖 = 𝑏𝑖 + 𝑎𝑖 ∙ 𝐻𝑈𝑛 (1) 

The line’s slope (𝑎) and the y-intersect (𝑏) for each segment resulted from the following system of 

equations:   

 

{
𝜌𝑇𝑟𝑎𝑏𝑒𝑐𝑢𝑙𝑎𝑟 = 𝑏𝑖 + 𝑎𝑖 ∙ 𝐻𝑈𝑚𝑖𝑛𝑖

 

𝜌𝐶𝑜𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑏𝑖 + 𝑎𝑖 ∙ 𝐻𝑈𝑚𝑎𝑥𝑖

 (2) 

where 𝐻𝑈𝑚𝑖𝑛𝑖
 and  𝐻𝑈𝑚𝑎𝑥𝑖

 are the minimum and maximum greyscale value for each segment, 

and represent the trabecular and cortical bone. The density values used in Equation 2 for the 

trabecular and cortical bone were 0.05 × 103 𝑘𝑔/𝑚3 and 1.75 × 103 𝑘𝑔/𝑚3 respectively, based 

on femur bone density values, which were assumed to have similar densities to foot bones 

(Bitsakos et al. 2005). For the soft tissue a uniform density (𝜌𝑆𝑇 = 1.0158 × 103 𝑘𝑔/𝑚3) was 

used by averaging muscle (Ward & Lieber 2005) and fat density (Farvid et al. 2005). 

A lower limit of 0.001 𝑘𝑔. 𝑚2 was established for the principal direction of the inertia 

tensor to avoid problems during the dynamic simulation. 



Model creation 

Using all the information previously described both models were automatically generated using 

the Matlab-OpenSim interface (see Figure 1). 

The 15DOF model has 3DOF at each joint (Plantarflexion/Dorsiflexion, Abduction/Adduction, 

and Supination/Pronation). The 8DOF model is based on the work of Hicks (1953) and has 

 one DOF at the ankle joint - plantarflexion/dorsiflexion; 

 one DOF at the subtalar joint - defined by an oblique axis, combining eversion-abduction-

extension/inversion-adduction-flexion; 

 two DOF at the midtarsal joint - defined by two axes, an oblique and an anterior-posterior 

axis. Both allowing a combination of eversion-abduction-extension/inversion-adduction-

flexion.  

 two DOF at the tarsometatarsal joint - defined by two axes, the 1st ray axis and the 5th ray 

axis, both allowing flexion-eversion/extension-eversion; 

 two DOF at the metatarsophalangeal joint - plantarflexion/dorsiflexion and 

abduction/adduction. 

36 ligaments that span at least two of the defined segments were included in our model 

(Table 2). The implementation of these structures required a geometrical path, described by an 

anatomical based point set (origin, insertion and optional via points) (Kelikian & Sarrafian 1983). 

Marker set protocol and Acquisition 

Experimental data collected in five healthy subjects, four trials per subject and per foot, walking 

barefoot were used evaluate the foot model. Motion capture data was collected using ten infrared 

Vicon cameras (Vicon, Oxford Metrics, UK) to track the motion of 65 skin-mounted markers (18 



positioned on each foot) at a sampling rate of 200Hz (Duerinck et al. 2014). Synchronized ground 

reaction forces (GRF) and plantar pressure data were collected. Consistency of the normal force 

computed from the pressure data with the vertical component of the GRF was verified and 

confirmed in all trials. Force data was collected at 1000Hz using two AMTI force plates 

(Advanced Medical Technology, Watertown, Massachusetts) embedded in the walkway. Plantar 

pressure plates (RSscan International NV) were positioned on top of these force plates and 

recorded data at a sampling rate of 500Hz. The study was approved by the local ethical 

committee and all participants provided written informed consent. 

Decomposition of ground reaction forces 

The measured GRF were decomposed into four components applied to the calcaneus, midfoot, 

forefoot and toes respectively for use in inverse dynamics simulation. At each time frame, the 

GRF were decomposed proportional to the measured plantar pressure under each foot segment 

using a manually defined mask based on the maximal plantar pressure map over all time steps. 

Validation 

A total of 40 trials was used. The model was scaled in Opensim for each subject using a static 

measurement. Joint kinematics were estimated for both models (8DOF and 15DOF) using a 

Kalman smoothing algorithm for inverse kinematics (De Groote et al. 2008). 7 trials for the 

15DOF model and 4 for the 8DOF model were left out because the outputted kinematic solution 

presented a physiologically unrealistic movement due to an inaccurate marker data. Based on the 

joint kinematics, the relative orientation of the segments was computed.  

Using the computed kinematics the elongation of the ligaments was calculated as a percentage of 

their resting length during the stance phase of gait. The joint moments of the 8DOF model were 

calculated using an inverse dynamics analysis  



Results  

The mean relative motion between segments, mean joint moments and mean ligament elongation, 

and their correspondent standard deviation (SD) are displayed in Figure 2. The kinematic results 

are compared against the in-vivo foot kinematics data of Lundgren et al. (2008). In this work they 

used bone anchored external markers to describe the kinematics, a more direct measurement of 

skeletal kinematics than skin mounted markers which are prone to soft tissue artefacts.  

The kinematics computed with the 15DOF model presents more inter-subject variability 

when comparing to the 8DOF model (i.e. maximal 𝑆𝐷𝑇𝑖𝑏𝑖𝑎−𝑇𝑎𝑙𝑢𝑠
15𝐷𝑂𝐹 = 8.3° against maximal 

𝑆𝐷𝑇𝑖𝑏𝑖𝑎−𝑇𝑎𝑙𝑢𝑠
8𝐷𝑂𝐹 = 6.3°). The mean kinematics comparison between both models and literature, using 

the root mean square (RMS), are generally consistent (i.e. 𝑅𝑀𝑆𝑇𝑖𝑏𝑖𝑎−𝑇𝑎𝑙𝑢𝑠
8𝐷𝑂𝐹 = 2.0° and 

𝑅𝑀𝑆𝐶𝑎𝑙𝑐𝑎𝑛𝑒𝑢𝑠−𝑀𝑖𝑑𝑓𝑜𝑜𝑡
8𝐷𝑂𝐹 = 1.7°, 𝑅𝑀𝑆𝑇𝑖𝑏𝑖𝑎−𝑇𝑎𝑙𝑢𝑠

15𝐷𝑂𝐹 = 2.0° and 𝑅𝑀𝑆𝐶𝑎𝑙𝑐𝑎𝑛𝑒𝑢𝑠−𝑀𝑖𝑑𝑓𝑜𝑜𝑡
15𝐷𝑂𝐹 = 2.7°,). The largest 

differences are observed in the motion between the talus and midfoot (𝑅𝑀𝑆𝑇𝑎𝑙𝑢𝑠−𝑀𝑖𝑑𝑓𝑜𝑜𝑡
8𝐷𝑂𝐹 = 8.8° and 

𝑅𝑀𝑆𝑇𝑎𝑙𝑢𝑠−𝑀𝑖𝑑𝑓𝑜𝑜𝑡
15𝐷𝑂𝐹 = 9.3°). 

Since kinematics computed with the 8DOF model was less variable (smaller SD) and to 

some extent more in accordance with literature (smaller RMS) than kinematics computed with 

the 15DOF model, the dynamics analysis was only performed for the 8DOF model. The SD of 

the joint torques (Figure 2 - B) is small (i.e. maximal 𝑆𝐷𝑆𝑢𝑏𝑡𝑎𝑙𝑎𝑟
8𝐷𝑂𝐹 = 0.13𝑁𝑚/𝑘𝑔 and maximal 

𝑆𝐷𝑇𝑎𝑟𝑠𝑜𝑚𝑒𝑡𝑎𝑡𝑎𝑟𝑠𝑎𝑙 5𝑡ℎ 𝑅𝑎𝑦
8𝐷𝑂𝐹 = 0.087𝑁𝑚/𝑘𝑔), indicating a high inter-subject consistency. Furthermore, the 

definition of the ligaments’ geometry allowed the assessment of their elongation during gait 

compared to their length in anatomical position, presenting an average maximum elongation for 

the ankle ligaments of 5.3%. 



Discussion 

The 8DOF model resulted in kinematics that better resemble literature than the 15DOF model. 

The 15DOF model, due to the three rotational DOF in each joint, has more freedom to solve the 

inverse kinematics problem and is thus more prone to measurement errors, which might explain 

the higher standard deviations. The main kinematic differences, when comparing to  Lundgren et 

al. (2008), are observed in the movements between talus and midfoot. However, this difference 

might be explained by the fact that the model evaluates the movement between segments (talus 

and midfoot) whereas Lundgren et al. measured the movement between talus and navicular, 

which might move with respect to the other bones in the midfoot. Since the work of Lundgren et 

al. (2008) did not include bone pins in the phalanges, it was not possible to compare the 

metatarsophalangeal joint kinematics. Likewise, no reference data for the relative movement of 

the midfoot-forefoot was available. 

To date, only a limited number of foot models provide dynamic joint information for 

other joints than the ankle, making the comparison of our results challenging. Nevertheless, the 

presented results are consistent with the available literature for the joint moments at the ankle, 

subtalar, midtarsal, and metatarsophalangeal joints (Scott & Winter 1993; Bruening et al. 2012; 

Malaquias et al. 2015). 

The ankle ligaments average maximum elongation showed a physiological acceptable 

value, since ligament rupture occurs above 8% (Nordin & Frankel 2001). However, for the 

smaller foot ligaments, further refinement is needed. 

Conclusions 

A simple, reproducible and efficient semi-automatic tool to compute multi-segment foot models 

based on CT scans was developed, allowing a more detailed representation of the ankle-foot 



complex with 8DOF and 15DOF. A total of 36 ligaments were included in both models to allow 

evaluating their elongation. The 8DOF model-based inverse kinematic and inverse dynamic 

analysis of gait resulted in realistic kinematics and dynamics. Due to the more accurate 

representation of the degrees of freedom in the foot, this model has the potential to offer new 

insights in pathological foot kinematics and dynamics. 

 

Future research should concentrate on quantifying the specific dynamic parameters of the 

intrinsic muscles and ligaments (e.g. ligament resting length, stiffness, muscle’s optimal fiber 

length and tendon slack length), allowing the study of muscle and ligament forces. 

Supplementary Material 

The model is made available in: simtk.org/home/kul_footmodel. 
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Table 1 - Anatomical landmarks, selected on the bones mesh, used to compute the joint axes and 

segments origin.  

 

  

Bones Landmarks 

  

Talus  

 

Supero-medial aspect of the neck of the Talus 

Tip of the Lateral Process 

Center of the Ankle joint 

(Medium Point) 

Tip of the Medial Malleolus 

Tip of the Lateral Malleolus 

Calcaneus  

 

Sustentaculum Tali 

Postero-lateral ‘corner’ of the Calcaneus 

Center of the Calcaneus/Cuboid joint 

Center of the Subtalar joint 

(Center of the sphere defined by four 

points) 

Center of the posterior articular surface 

Center of the middle articular surface 

Center of the anterior articular surface 

Tip of the trochlear process 

Midfoot  

 

Supero medial aspect of the head of the Talus 

Tip of the Lateral process of the Calcaneus 

Center of the midtarsal joint 

(Medium Point) 

Medial medium point of the Talo-Navicular joint 

Lateral medium point of the Calcaneo-Cuboid joint 

Forefoot  

 

Mid-dorsum of the foot over the base of the 3rd metatarsal 

Tuberosity of the Navicular 

Center of the Tarsometatarsal joint 

(Medium Point) 

Lateral tuberosity of the 5th Metatarsal 

Medial medium point of the Cuneiform-1st Metatarsal articular surface 

Toes  

 

Tip of the 1st Distal Phalanx 

Center of the Metatarsophalangeal joint 

(Medium Point) 

Medial medium point of the 1st Metatarsal-1st proximal Phalanx articular 
surface 
Lateral medium point of the 5th Metatarsal-5th proximal Phalanx articular 

surface 



Table 2 – Ligaments geometrical path description. The Resting Length is presented for the 

generic model, before scaling. 

 

  

Ligament Origin Via Points Insertion Resting Length (m) 

Tibio-Talar Posterior Tibia - Talus 0.01982 

Tibio-Talar Anterior Tibia - Talus 0.02534 

Tibio-Calcaneal Tibia - Calcaneus 0.03015 

Tibio-Navicular Tibia - Navicular 0.04080 

Talo-Fibular Posterior Tibia - Talus 0.03009 

Talo-Fibular Anterior Tibia - Talus 0.03016 

Calcaneo-Fibular Tibia - Calcaneus 0.03571 

Plantar Fascia Calcaneus 1st Metatarsal 1st Prox. Phalange 0.14290 

Plantar Fascia Calcaneus 2nd Metatarsal 2nd Prox. Phalange 0.14404 

Plantar Fascia Calcaneus 3rd Metatarsal 3rd Prox. Phalange 0.14335 

Plantar Fascia Calcaneus 4th Metatarsal 4th Prox. Phalange 0.13612 

Plantar Fascia Calcaneus 5th Metatarsal 5th Prox. Phalange 0.12815 

Longitudinal Plantar Calcaneus Cuboid 2nd Metatarsal 0.08037 

Longitudinal Plantar Calcaneus Cuboid 3rd Metatarsal 0.07665 

Longitudinal Plantar Calcaneus Cuboid 4th Metatarsal 0.07153 

Longitudinal Plantar Calcaneus Cuboid 5th Metatarsal 0.06389 

Calcaneo-Navicular Plantar Calcaneus - Navicular 0.01968 

Calcaneo-Navicular Plantar Calcaneus - Navicular 0.01214 

Calcaneo-Navicular Plantar Calcaneus - Navicular 0.01041 

Calcaneo-Cuboid Plantar Calcaneus - Cuboid 0.01767 

Calcaneo-Cuboid Plantar Calcaneus - Cuboid 0.02296 

Calcaneo-Cuboid Dorsal Calcaneus - Cuboid 0.02543 

Talo-Navicular Dorsal Talus - Navicular 0.01164 

Talo-Navicular Dorsal Talus - Navicular 0.01164 

Calcaneo-Navicular Bifurcate Calcaneus - Navicular 0.01659 

Calcaneo-Cuboid Bifurcate Calcaneus - Cuboid 0.01422 

TarsoMetatarsal Dorsal Medial Cuneiform - 1st Metatarsal 0.01271 

TarsoMetatarsal Dorsal Inter. Cuneiform - 2nd Metatarsal 0.00963 

TarsoMetatarsal Dorsal Lateral Cuneiform - 3rd Metatarsal 0.00684 

TarsoMetatarsal Dorsal Cuboid - 4th Metatarsal 0.00852 

TarsoMetatarsal Dorsal Cuboid - 5th Metatarsal 0.00733 

TarsoMetatarsal Plantar Medial Cuneiform - 1st Metatarsal 0.00903 

TarsoMetatarsal Plantar Inter. Cuneiform - 2nd Metatarsal 0.00745 

TarsoMetatarsal Plantar Lateral Cuneiform - 3rd Metatarsal 0.00697 

TarsoMetatarsal Plantar Cuboid - 4th Metatarsal 0.00767 

TarsoMetatarsal Plantar Cuboid - 5th Metatarsal 0.00897 



 

Figure 1 - Extended foot model (OpenSim). Depicted segments: Cyan - Talus; Purple - 

Calcaneus; Green - Midfoot; Yellow - Forefoot; Red – Toes. 

 



a) 

b) 



 

Figure 2 – Results: (a) Kinematic results - Angles (degrees) between the two specified bodies for 

the 8DOF model (green), 15DOF model (red) and Lundgren et al. (2008) (blue) during the stance 

phase of gait; (b) Inverse Dynamics results - Joint normalised moments (Nm/Kg) obtained for the 

8DOF model during the stance phase of gait; (c) Ligaments - Elongation of the right foot 

ligaments (% of their resting length) during the stance phase of gait. The solid lines represent the 

mean of the trials and the dashed lines ± 1SD. 

 

c) 


