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Abstract

This survey is concerned with the size of perfect formulations for combinatorial op-
timization problems. By ”perfect formulation”, we mean a system of linear inequalities
that describes the convex hull of feasible solutions, viewed as vectors. Natural perfect
formulations often have a number of inequalities that is exponential in the size of the
data needed to describe the problem. Here we are particularly interested in situations
where the addition of a polynomial number of extra variables allows a formulation with
a polynomial number of inequalities. Such formulations are called ”compact extended
formulations”. We survey various tools for deriving and studying extended formulations,
such as Fourier’s procedure for projection, Minkowski-Weyl’s theorem, Balas’ theorem
for the union of polyhedra, Yannakakis’ theorem on the size of an extended formulation,
dynamic programming, and variable discretization. For each tool that we introduce, we
present one or several examples of how this tool is applied. In particular, we present
compact extended formulations for several graph problems involving cuts, trees, cycles
and matchings, and for the mixing set. We also present Bienstock’s approximate compact
extended formulation for the knapsack problem, Goemans’ result on the size of an ex-
tended formulation for the permutahedron, and the Faenza-Kaibel extended formulation
for orbitopes.
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1 Introduction

Many combinatorial optimization problems can be written in the following form: Optimize
a linear function of a vector x of feasible solutions, where the feasible set is given by linear
constraints (inequalities and/or equalities) and the restriction that some (or all) components
of the vector x are integral. A ”perfect” formulation is one where the linear constraints de-
scribe the convex hull of feasible solutions. The interest in perfect formulations comes from
the fact that the corresponding combinatorial optimization problems can then be solved as
linear programs. The number of linear constraints needed in a perfect formulation is often
exponential in the size of the data used to describe the problem. In this survey, we study
situations where the addition of a polynomial number of new variables allows a formulation
with polynomially many linear constraints. When this is possible, we say that the problem
has a ”compact extended formulation”. Such formulations are important in integer pro-
gramming and combinatorial optimization, both theory and computations. In this paper, we
survey various tools for deriving and studying extended formulations. For each tool that we
introduce, we present one or several examples of how this tool is applied.

Projection is the most basic tool for relating extended formulations to formulations in the
original space of variables. There are two classical methods for projecting, one uses the notion
of projection cone and the other is Fourier’s procedure. We show how Fourier’s method can
be used to derive Barahona’s compact extended formulation of the cycle relaxation of the cut
polytope. The projection cone idea is used to derive the Balas-Pulleyblank formulation of
the perfectly matchable subgraphs of a graph. It can also be used for other graph problems
(st-cut dominant, arborescences, trees, cuts, cycle cone).

We present Minkowski-Weyl’s theorem and apply it to derive a compact extended formu-
lation for the mixing set.

Balas’ theorem for the union of polyhedra is another very useful tool. We apply it to sev-
eral problems: All even subsets, cut dominant, an approximate compact extended formulation
for the knapsack problem, and the continuous mixing set.

A striking theorem of Yannakakis gives a lower bound on the size of an extended for-
mulation for a polytope. We extend this result to polyhedra and we apply it to extended
formulations for spanning trees, matchings, stable sets, and the permutahedron.

The next tool that we present is dynamic programming. We show how it implies extended
formulations for the knapsack problem, stable sets in distance claw-free graphs, and packing
and partitioning orbitopes.

Finally, we discuss variable discretization, a new tool that has proved extremely useful
when dealing with mixed integer linear sets. This approach has been particularly successful
in dealing with problems arising in lot-sizing.

We now give a formal presentation of the results. Given a set S ⊂ Rn and a linear
subspace L of Rn, the orthogonal projection of S onto L is the set of all points u ∈ L such
that there exists a vector v ∈ Rn orthogonal to L such that u + v ∈ S.

We are interested in orthogonal projections onto the space L = {x ∈ Rn : xi = 0, i ∈
N \M} where N = {1, . . . , n} and M is a subset of N . We denote the set {x ∈ RM : ∃z ∈
RN\M s.t.

(
x
z

)
∈ S} by projx(S).
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Our interest comes from the fact that the two programs

max{f(x) : x ∈ projx(S)} and max{f(x) + 0z :
(

x
z

)
∈ S}

are equivalent. However, sometimes the set S is easier to describe than its projection, so
looking at the second problem is easier. In this survey, we study sets of the type:

X = {x ∈ RN : A′x ≤ b′, xi integer, i ∈ I ⊆ N} (1)

that arise in combinatorial optimization and integer programming, pure (when I = N) or
mixed (when I is a proper subset of the set of variable indices).

Let conv(X) denote the convex hull of the vectors in X. Namely, conv(X) = {λ1x1+ . . .+
λkxk : k ≥ 1, x1, . . . , xk ∈ X, λ1 + . . . + λk = 1, λ1, . . . , λk ≥ 0}. A theorem of Meyer [39]
states that conv(X) is a rational polyhedron whenever A′, b′ have rational entries. We aim
to find an external description of the polyhedron conv(X) as the projection of a polyhedron
in a higher dimensional space.

That is, we wish to find a polyhedron Q = {
(

x
z

)
∈ Rn × Rp : Ax + Bz ≤ b} such that:

• projx(Q) = conv(X). When this happens, we say that the system Ax + Bz ≤ b that
defines Q provides an extended formulation for the set X.

• The linear program max{hx + gz : Ax + Bz ≤ b} is easy to solve.
This is certainly the case when the size of the system A′x ≤ b′ that defines X is
small (e.g., a polynomial number of constraints) and the size of the matrix (A|B|b) is
polynomially bounded in the size of the matrix (A′|b′). When this happens, we say that
the system Ax + Bz ≤ b provides a compact extended formulation for X.
Another case is when the separation problem over {(x, z) : Ax+Bz ≤ b} can be solved
in polynomial time.

2 Projections

2.1 The projection cone

Given a polyhedron Q = {(x, z) ∈ Rn × Rp : Ax + Bz ≤ b}, consider a valid inequality
ax ≤ b for Q. It follows from the definition of projection that ax ≤ b is also valid for
projx(Q). Since, for every vector u satisfying u ≥ 0, uB = 0, the inequality uAx ≤ ub is
valid for Q, this observation shows that uAx ≤ ub is also valid for projx(Q). The next
theorem states that the converse also holds. We define the projection cone of a polyhedron
Q = {(x, z) ∈ Rn × Rp : Ax + Bz ≤ b} as

CQ = {u ∈ Rm : uB = 0, u ≥ 0}.

Theorem 2.1. Given a polyhedron Q = {(x, z) ∈ Rn × Rp : Ax + Bz ≤ b}, its projection
onto the x-space is projx(Q) = {x ∈ Rn : uAx ≤ ub for all u ∈ CQ}.
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Proof. Given x̄ ∈ Rn, note that x̄ is in projx(Q) if and only if the polyhedron {z ∈ Rp : Bz ≤
b−Ax̄} is nonempty. In other words x̄ does not belong to projx(Q) if and only if the system
Bz ≤ b − Ax̄ is infeasible. By Farkas’ Lemma, the system Bz ≤ b − Ax̄ is infeasible if and
only if there exists a vector u ≥ 0 such that uB = 0 and uAx̄ > ub. The inequality uAx ≤ ub
is valid for projx(Q) and violated by x̄.

This theorem has a number of equivalent variants depending on the form in which the
polyhedron Q is given. As an example, we state the result when Q has equality constraints
and the variables to be projected out are nonnegative.

Corollary 2.2. Given a polyhedron Q = {(x, z) ∈ Rn × Rp : Ax + Bz = b, z ≥ 0}, its
projection is projx(Q) = {x ∈ Rn : uAx ≤ ub for all u s.t. uB ≥ 0}.

2.2 Fourier’s method for computing projections of polyhedra

Next we describe Fourier’s elimination procedure to compute projections of polyhedra [24].
It performs row operations on a system of linear inequalities to eliminate one variable at
a time, in the same spirit as Gauss’ method to solve systems of linear equations. Here we
describe an iteration of Fourier’s method.

Given a system Ax + cz ≤ b, ( unknowns x ∈ Rn, z ∈ R) with inequalities indexed by M ,
define

I+ = {i ∈ M : ci > 0}
I− = {i ∈ M : ci < 0}
I0 = {i ∈ M : ci = 0}.

Multiplying the rows by appropriate positive numbers we assume that the entries of c are
0,±1. The system Ax + cz ≤ b can be rewritten as:

∑n
j=1 aijxj +z ≤ bi, i ∈ I+

∑n
j=1 aijxj −z ≤ bi, i ∈ I−∑n
j=1 aijxj ≤ bi, i ∈ I0.

For every pair of indices i ∈ I+ and k ∈ I−, construct the inequality:

n∑

j=1

aijxj +
n∑

j=1

akjxj ≤ bi + bk. (2)

Let A′x ≤ b′ be the system consisting of the inequalities in I0 and the |I+| × |I−| inequalities
(2).

Theorem 2.3. Let Q = {(x, z) ∈ Rn×R : Ax+ cz ≤ b} and P = {x ∈ Rn : A′x ≤ b′}. Then
P = projx(Q).

Proof. By construction, all the inequalities in the system A′x ≤ b′ are valid for both Q and
projx(Q), therefore projx(Q) ⊆ P .
To prove that P ⊆ projx(Q), we show that if x′ satisfies A′x ≤ b′, then there exists z′ ∈ R
such that (x′, z′) ∈ Q. That is, the system cz ≤ b − Ax′ is feasible. Again we may assume
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that the entries of c are 0,±1.
Let u = mini∈I+{bi−

∑n
j=1 aijx

′
j} (where u = +∞ if I+ = ∅), and l = maxi∈I−{

∑n
j=1 aijx

′
j−

bi} (where l = −∞ if I− = ∅). Since A′x′ ≤ b′, the construction of A′x ≤ b′ implies l ≤ u,
therefore, given z′ such that l ≤ z′ ≤ u, (x′, z′) ∈ Q.

Remark 2.4. At each iteration, Fourier’s method generates a finite number of inequalities.
Therefore it provides an algorithmic proof that the projection of a polyhedron is a polyhedron.

Remark 2.5. At each iteration, Fourier’s method removes |I+|+ |I−| inequalities and adds
|I+| × |I−| inequalities, hence the number of inequalities has an order which may be squared
at each iteration. So the number of inequalities produced by eliminating p variables may be
exponential in p. In general, not all the inequalities produced by the procedure are necessary
to define the projected polyhedron.

Fourier’s method can be used to solve systems of inequalities: Project away all the vari-
ables until a polyhedron with one variable is left: Notice that when n = 1, the system A′x ≤ b′

after scaling consists of inequalities of the type x1 ≤ ui and x1 ≥ lj (one of the two sets may
be empty). Let umin = min{ui} and lmax = max{lj}. After removing redundant inequali-
ties, we get the equivalent system: lmax ≤ x1 ≤ umin. The above procedure constructs the
inequality 0x1 ≤ umin − lmax which is feasible if and only if umin − lmax ≥ 0.

2.3 An application of Fourier’s method: The cycle relaxation of the cut
polytope

Let G = (V,E) be an undirected graph, possibly with loops and parallel edges. For any set
of nodes S ⊆ V , let δ(S) = {uv ∈ E : u ∈ S, v 6∈ S}. A cut of G is a set of the form δ(S), for
some S ⊆ V . Note that, according to this definition, the empty set is a cut. The cut polytope
P cut(G) is the convex hull of the incidence vectors of the cuts of G.

Since the cuts of G are the subsets of E having even intersection with every cycle of G, a
vector in {0, 1}E is the incidence vector of a cut of G if and only if it satisfies the following
linear constraints:

x(F )− x(C \ F ) ≤ |F | − 1, C ∈ C(G), F ⊆ C, |F | odd
0 ≤ xe ≤ 1, e ∈ E

(3)

where C(G) denotes the family of cycles of G. Above, and throughout this paper, we use the
notation x(D) to represent

∑
e∈D xe.

Let R(G) denote the polytope in RE defined by (3). In general, the cut polytope P cut(G)
is strictly contained in R(G). However the two polytopes coincide when G is planar (this will
be proven in Section 6.3) and more generally when G is not contractible to K5 [8]. But there
are other graphs G for which P cut(G) coincides with R(G). An important result of Guenin
[29] characterizes these graphs.

Theorem 2.6. (Barahona [8]) R(G) has a compact extended formulation.

We give a proof of this result.

Lemma 2.7. Let G = (V, E) and G′ = (V, E′) be two graphs on the same nodeset such that
E ⊂ E′. Then R(G) is the projection of R(G′) onto RE.
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Proof. It is sufficient to prove the statement when E′ = E ∪ {e′}. We use Fourier’s method
to project out the variable xe′ . The inequalities defining R(G′) in which xe′ appears with
nonzero coefficient are

(a) xe′ ≤ 1;

(b) xe′ + x(F \ {e′})− x(C \ F ) ≤ |F | − 1 where C ∈ C(G′), e′ ∈ F ⊆ C, |F | odd;

(c) −xe′ ≤ 0;

(d) −xe′ + x(F )− x(C \ (F ∪ {e′})) ≤ |F | − 1 where C ∈ C(G′), e′ ∈ C \ F , |F | odd;

Fourier’s method sums each inequality of type (a) or (b) with an inequality of type (c)
or (d) to eliminate xe′ . It is easy to see that the only inequalities that are not redundant
are obtained by combining an inequality of type (b) with an inequality of type (d). Let C ′

and C ′′ be cycles of G′ containing e′, let F ′ ⊆ C ′, |F ′| odd, such that e′ ∈ F ′, and F ′′ ⊆ C ′′,
|F ′′| odd, such that e′ /∈ F ′′. Let C1, . . . , Ck be disjoint cycles whose union is C ′4C ′′. Let
F = F ′′4(F ′ \ {e′}). Note that |F | is odd. The inequality obtained by summing the two
inequalities determined by C ′, F ′ and C ′′, F ′′ is implied by the following inequalities, valid
for R(G):

x(Ci ∩ F )− x(Ci \ F ) ≤ |F ∩ Ci| − 1 if |F ∩ Ci| is odd

0 ≤ xe ≤ 1 e ∈ (C ′ ∪ C ′′) \ {e′}.
Therefore the only irredundant inequalities produced by Fourier’s method are the ones in (3).

Lemma 2.8. Let C ∈ C(G) be a cycle with a chord e = uv and F ⊆ C be a set of odd
cardinality. Then the inequality x(F )−x(C \F ) ≤ |F |−1 is implied by the other inequalities
in (3).

Proof. Let P1 and P2 be the two distinct paths in C between u and v, and let C1, C2 be
the cycles defined by P1 ∪ {e} and P2 ∪ {e}, respectively. By symmetry, we may assume
|F ∩ P1| is odd and |F ∩ P2| is even. Let F1 = F ∩ P1 and F2 = (F ∩ P2) ∪ {e}. Then
x(F ) − x(C \ F ) ≤ |F | − 1 is the sum of the two inequalities x(F1) − x(C1 \ F1) ≤ |F1| − 1
and x(F2)− x(C2 \ F2) ≤ |F2| − 1.

Let G′ = (V,E′) be the graph with the same nodeset as G such that E′ = E ∪{uv : uv /∈
E, u 6= v}. By Lemma 2.7, R(G) is the projection onto RE of R(G′). By Lemma 2.8, R(G′)
is defined by the following system of inequalities

xe1 + xe2 + xe3 ≤ 2
xe1 − xe2 − xe3 ≤ 0

−xe1 + xe2 − xe3 ≤ 0
−xe1 − xe2 + xe3 ≤ 0





{e1, e2, e3} triangle of G′

xe = 0 e loop of G′

xe1 = xe2 e1, e2 parallel edges of G′.

Indeed, the only chordless cycles of G′ are loops, parallel edges and triangles. One can
easily see that the system (3) implies xe = 0 for every loop e of G and xe1 = xe2 for every
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pair of parallel edges e1, e2 of G. Furthermore, since every nonloop edge e ∈ E′ is contained
in a triangle of G′, the inequalities 0 ≤ xe ≤ 1 are easily seen to be redundant for the above
system.

Since xe1 = xe2 for each pair of parallel edges, we only need to consider the O(|V |3)
inequalities relative to triangles. Thus the extended formulation has O(|V |2) variables and
O(|V |3) constraints.

3 The Theorem of Minkowski-Weyl

We first present the Minkowski-Weyl theorem for cones.

3.1 Minkowski-Weyl for Cones

Theorem 3.1. For a set C ⊆ Rn, the following two conditions are equivalent:

1. There exists a matrix A such that C = {x ∈ Rn : Ax ≤ 0}.
2. There exists a matrix R such that C = {x ∈ Rn : x = Rµ for some µ ≥ 0}.
The next lemma shows that, in order to prove the equivalence between Conditions 1 and

2, it suffices to prove one of the two directions. If matrix A satisfies Condition 1 and matrix
R satisfies Condition 2, then the number of columns of A equals the number of rows of R.
Furthermore ARµ ≤ 0 for every µ ≥ 0, hence all entries of AR are nonpositive.

Lemma 3.2. {x : Ax ≤ 0} = {x : x = Rµ for some µ ≥ 0} if and only if {y : RT y ≤ 0} =
{y : y = AT ν for some ν ≥ 0}.
Proof. We only need to show that the first equality implies the second. By Corollary 2.2, the
set {x : x = Rµ for some µ ≥ 0} coincides with the set of vectors x for which xT y ≤ 0 holds
for every y satisfying RT y ≤ 0. Therefore

{x : Ax ≤ 0} = {x : xT y ≤ 0 for every y such that RT y ≤ 0}. (4)

We need to show that {y : RT y ≤ 0} = {y : y = AT ν for some ν ≥ 0}.
We first show {y : RT y ≤ 0} ⊆ {y : y = AT ν for some ν ≥ 0}. Let ȳ such that RT ȳ ≤ 0. By
(4), inequality ȳT x ≤ 0 is valid for Ax ≤ 0. By Farkas’ Lemma, it follows that there exists a
vector ν such that ȳ = AT ν and ν ≥ 0.
We show the reverse inclusion. Given ȳ such that ȳ = AT ν for some ν ≥ 0, RT ȳ = RT AT ν ≤
0, where the inequality follows from the property that AR has nonpositive entries.

Proof of Theorem 3.1
By Lemma 3.2, it suffices to prove that Condition 2 of the theorem implies 1. Consider
the cone Cµ = {(x, µ) ∈ Rn × Rq : x = Rµ, µ ≥ 0}. Then the implication states that
projx(Cµ) = {x ∈ Rn : Ax ≤ 0}. By Remark 2.4, the procedure of Fourier applied to the
system x = Rµ, µ ≥ 0 that defines Cµ computes a matrix A such that projx(Cµ) = {x ∈ Rn :
Ax ≤ 0}. 2
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3.2 Minkowski-Weyl for Polyhedra

Given a set S ⊆ Rn, let cone(S) = {µ1x1+. . .+µkxk : k ≥ 1, x1, . . . , xk ∈ S, µ1, . . . , µk ≥ 0}
be the cone generated by the elements in S. We adopt the convention that cone(∅) = {0} and
conv(∅) = ∅. The Minkowski sum A + B of sets A, B ⊆ Rn is the set {a + b : a ∈ A, b ∈ B}.
If A or B is empty, A + B is also empty.

Theorem 3.3. For a subset Q of Rn, the following two conditions are equivalent:

1. Q is a polyhedron, i.e., there is a matrix A and a vector b such that Q = {x ∈ Rn :
Ax ≤ b}.

2. There exist v1, . . . , vp ∈ Rn, r1, . . . , rq ∈ Rn such that Q = conv{v1, . . . , vp} + cone{r1,
. . . , rq}.

Proof. Given cone HQ := {(x, y) ∈ Rn×R : Ax− by ≤ 0, y ≥ 0}, then Q = {x : (x, 1) ∈ HQ}.
By Theorem 3.1, the cone HQ is finitely generated. Since y ≥ 0 for every vector (x, y) ∈ HQ,
we can assume that y = 0 or 1 for all the rays that generate HQ. That is,

HQ =
{(

x
y

)
∈ Rn × R :

(
x
y

)
∈ cone{

(
v1

1

)
, . . . ,

(
vk

1

)
,

(
r1

0

)
, . . . ,

(
rq

0

)
}
}

.

Since Q = {x : (x, 1) ∈ HQ}, this shows that

Q = {x ∈ Rn : x = v + r for some v ∈ conv{v1, . . . , vk} and r ∈ cone{r1, . . . , rq}}.

This equivalence also proves the converse statement.

We say that Ax ≤ b is an external description of Q, and v1, . . . , vp, r1, . . . , rq is an internal
description of Q. Note that an internal description of a polyhedron Q yields an extended
formulation in the variables (x, λ, µ) ∈ Rn × Rp × Rq:

Q = projx

{
(x, λ, µ) ∈ Rn × Rp × Rq :

x = λ1v
1 + · · ·+ λpv

p + µ1r
1 + · · ·+ µqr

q

λ1 + · · ·+ λp = 1, λ ≥ 0, µ ≥ 0

}
.

The cone {r ∈ Rn : r = µ1r
1 + · · · + µqr

q, µ ≥ 0} = {r ∈ Rn : Ar ≤ 0} is the recession
cone of Q.

Remark 3.4. It follows from polyhedral theory (see, e.g., [13]) that:

• A nonredundant external description of a polyhedron Q = conv(V ) + cone(R) is of the
form: Q = {x ∈ Rn : A=x = b=, A<x ≤ b<} where A=x = b= is a system of linearly
independent equations that defines the smallest affine subspace of Rn that contains Q
and every inequality in A<x ≤ b< defines a distinct facet of Q.

• If Q = {x ∈ Rn : Ax ≤ b} is pointed, then Q has a unique minimal internal description
Q = conv(V ) + cone(R) where V is the set of vertices of Q and R is the set of extreme
rays. We recall that Q is pointed if and only if A has rank n.
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• Given cone C = {x ∈ Rn : Ax ≤ 0}, let r1, . . . , rk be a set of generators of the linear
space L = {x ∈ Rn : Ax = 0}. A minimal internal description of C is obtained by taking
the rays r1, . . . , rk, the rays −r1 − · · · − rk and one ray in every face F containing L
that is minimal with this property.

Theorem 3.3 can be used to prove the following theorem of Meyer [39] (see also [13]).

Theorem 3.5. Given rational matrices A, G and a rational vector b, let P = {(x, y) :
Ax+Gy ≤ b} and S = {(x, y) ∈ P : x integral}. Then conv(S) is a polyhedron and, if S 6= ∅,
the recession cone of conv(S) is equal to the recession cone of P .

For a mixed integer set X of the form (1), the internal description of conv(X) typically
involves an exponential number of vertices and extreme rays. Column generation methods
solve mixed integer programs by working with a compact list that involves a subset of vertices
and extreme rays. The list is dynamically updated by solving an optimization problem that
produces a profitable new vertex or ray.

For some selected mixed integer sets X, the internal description of conv(X) provides a
compact extended formulation. We present such an example.

3.3 An application: The mixing set

The mixing set MIX is defined as follows

MIX = {(x0, . . . , xn) ∈ R× Zn : x0 + xt ≥ bt, t = 1, . . . , n, x0 ≥ 0}.
The mixing set was introduced by Günluk and Pochet [30] and it can be traced back

to work of Pochet and Wolsey [42] on a lot-sizing problem. A minimal external description
of the polyhedron Pmix = conv(MIX) was characterized by Günluk and Pochet [30]. Such
a description needs exponentially many inequalities whose coefficients may be large (the
”mixing inequalities” of Pochet and Wolsey [42]). However Pochet and Wolsey give a compact
extended formulation for Pmix.

Let ft = bt − bbtc. For simplicity of exposition, we assume here that 0 < f1 < · · · < fn.
Define f0 = 0.

The vertices and extreme rays of Pmix are easy to characterize.
For t = 0, . . . , n, let vt ∈ R× Rn be defined by

vt
i =





ft if i = 0
bbic if 1 ≤ i ≤ t
dbie if t + 1 ≤ i ≤ n.

One can verify that vt ∈ MIX.
Let r0 ∈ R × Rn be defined by r0

0 = 1, r0
i = −1, i = 1, . . . , n. For t = 1, . . . , n, let

rt ∈ R×Rn be defined by rt
t = 1, rt

i = 0 for i 6= t, 0 ≤ i ≤ n. The vectors r0, . . . , rn are rays
of Pmix.

Theorem 3.6. Pmix is the projection onto the space of x-variables of the polyhedron

{(x, λ, µ) ∈ Rn+1 × Rn+1 × Rn+1 : x =
n∑

t=0

λtv
t +

n∑

t=0

µtr
t,

n∑

t=0

λt = 1, λ ≥ 0, µ ≥ 0}.
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Proof. Note that, since the system of inequalities defining MIX has full column rank, the
polyhedron Pmix is pointed. By Remark 3.4 we only need to show that v0, . . . , vn are all the
vertices of Pmix and r0, . . . , rn are all its extreme rays. By Theorem 3.5, the recession cone
of Pmix is

{x ∈ Rn+1 : x0 + xt ≥ 0, t = 1, . . . , n; x0 ≥ 0}.
The extreme rays of this cone are the rays of the cone satisfying n linearly independent
inequalities at equality. Since the system defining the recession cone has n + 1 inequalities,
and they are linearly independent, the n + 1 extreme rays are easily seen to be the vectors
r0, . . . , rn.
Claim. Let x̄ be a vertex of Pmix. Either x̄0 = 0 or x̄0 = ft for some t = 1, . . . , n.

We first show x̄0 < 1. Suppose not. Then Pmix contains both points x̄ + r0 and x̄ − r0.
Since x̄ = 1

2((x̄ + r0) + (x̄− r0)), x̄ is not a vertex, a contradiction. Suppose now that x̄0 6= 0
and x̄0 6= ft, 1 ≤ t ≤ n. Since x̄1 . . . , x̄n are integer, x̄ does not satisfy at equality any of the
inequalities x0 + xt ≥ bt, 1 ≤ t ≤ n, x0 ≥ 0. Therefore (x̄0 ± ε, x̄1, . . . , x̄n) ∈ Pmix for ε > 0
sufficiently small, thus x̄ is not a vertex. This completes the proof of the claim.

A similar argument shows that x̄t = dbt − x̄0e, t = 1, . . . , n. Hence x̄ = vt for some
t ∈ {0, . . . , n}.

Note that the above extended formulation has 3n + 3 variables and 3n + 4 constraints. It
is therefore a compact formulation for Pmix.

4 Finiteness of the projection cone

Given a polyhedron Q = {(x, z) ∈ Rn×Rp : Ax+Bz ≤ b}, we recall from Section 2.1 that its
projection cone is CQ = {u ∈ Rm : uB = 0, u ≥ 0}. Since CQ is contained in the nonnegative
orthant, CQ is pointed. By Theorem 3.1 and Remark 3.4,

CQ = {u ∈ Rm : u = r1µ1 + · · ·+ rqµq, µ ≥ 0}

where r1, . . . , rq are the extreme rays of CQ. Theorem 2.1 implies the following.

Theorem 4.1. Given a polyhedron Q = {(x, z) ∈ Rn × Rp : Ax + Bz ≤ b}, let r1, . . . , rq

be the extreme rays of CQ. Then projx(Q) = {x ∈ Rn : rtAx ≤ rtb, 1 ≤ t ≤ q}. Therefore
projx(Q) is defined by a finite number of inequalities, i.e., it is a polyhedron.

Remark 4.2. Theorem 4.1 shows that the inequalities rtAx ≤ rtb, 1 ≤ t ≤ q are sufficient
to describe projx(Q). However, some of these inequalities might be redundant even though
r1, . . . , rq are extreme rays.

Avis and Fukuda [3] show that one can enumerate all feasible bases of a linear program
in standard form using Bland’s pivoting rule. By normalizing the sum of the components of
vectors in CQ, one can generate all extreme rays using this method.
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4.1 Perfectly matchable subgraphs of a bipartite graph

The results presented in this section are due to Balas and Pulleyblank [6, 7]. Let G = (V,E) be
an undirected graph. The perfectly matchable subgraph polytope of G, denoted by Pmatchable,
is the convex hull of the incidence vectors of all subsets V ′ of V such that the graph G[V ′]
induced by V ′ has a perfect matching. ( G[V ′] = (V ′, E′) denotes the graph where E′ ⊆ E is
the subset of edges that have both endnodes in V ′.)

A vector (x, z), x ∈ RV , z ∈ RE is the extended incidence vector of a perfectly matchable
subgraph of G induced by V ′ if x is the incidence vector of V ′ and z is the incidence vector
of a matching that saturates the nodes in V ′ and leaves exposed the nodes in V \ V ′. Note
that (x, z) ∈ RV ×RE is the extended incidence vector of a perfectly matchable subgraph of
G if and only if it satisfies ∑

e∈δ(v) ze = xv, v ∈ V

0 ≤ xv ≤ 1, v ∈ V
ze ≥ 0, integer, e ∈ E.

(5)

Let Qmatchable be the convex hull of extended incidence vectors of perfectly matchable
subgraphs of G.

Theorem 4.3. Let G = (V, E) be a bipartite graph. Then Qmatchable is the polytope


(x, z) ∈ RV × RE :

∑
e∈δ(v) ze = xv, v ∈ V

0 ≤ xv ≤ 1, v ∈ V
ze ≥ 0, e ∈ E



 . (6)

Proof. It is straightforward to check that any 0, 1-vector (x, z) in the polytope in (6) is an
extended incidence vector of a perfectly matchable subgraph of G. On the other hand, since
G is a bipartite graph, the constraint matrix that defines the above system of inequalities is
totally unimodular. Since the right-hand side is integral, it follows from a classical theorem
of Hoffman and Kruskal [32] that the polytope defined in (6) has 0,1 vertices, which by the
above argument are the incidence vectors of the members of Qmatchable.

Given U ⊆ V , let N(U) be the subset of nodes in V \ U having at least one neighbor in
U .

Theorem 4.4. Let G = (V,E) be a bipartite graph with bipartition V1, V2. The following is
an external description of Pmatchable



x ∈ RV :

∑
u∈V1

xu =
∑

v∈V2
xv,∑

u∈U xu ≤
∑

v∈N(U) xv, U ⊆ V1

0 ≤ xu ≤ 1, u ∈ V



 . (7)

Proof. Since Pmatchable = projx(Qmatchable) and by Theorem 4.3 the polytope Qmatchable has
the external description (6), the relevant projection cone is

C = {y ∈ RE : yu + yv ≥ 0, uv ∈ E}.
We may assume without loss of generality that G is connected. Since the edge-node incidence
matrix of a connected bipartite graph has rank |V | − 1 (this is well known and easy to check
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directly) and the lineality space L of C is the space {y ∈ RE : yu+yv = 0, uv ∈ E}, then L has
dimension 1. Thus L is generated by the vector ȳ defined by ȳu = −1, u ∈ V1, ȳv = 1, v ∈ V2.
By Remark 3.4, an internal description of C contains rays ȳ and −ȳ and both produce the
equation

∑
u∈V1

xu =
∑

v∈V2
xv.

Let F be a face of C that is minimal with the property that F ⊃ L, and let y∗ ∈ F \ L.
Since the lineality space of C is generated by ȳ, then F = {λy∗ + µȳ : λ, µ ∈ R, λ ≥ 0},
hence we may choose y∗ so that y∗v ≤ 0 for all v ∈ V1 and y∗v∗ = 0 for some v∗ ∈ V1.
Since y∗ is a ray in a minimal face of C, then y∗ satisfies at equality n − 2 linearly inde-
pendent inequalities defining C. Since G is bipartite, it is known that any set E= of edges
corresponding to linearly independent inequalities is acyclic. Since |E=| = |V | − 2, then
the graph (V, E=) is a forest with exactly two connected components, say F1, F2. One
can easily see that y∗u = −y∗v for all uv ∈ E(Fi), i = 1, 2. By symmetry, we may assume
v∗ ∈ V (F2). This shows that y∗u = 0, u ∈ V (F2), and we can assume y∗u = −1, u ∈ v(F1)∩V1,
y∗v = 1, v ∈ v(F1) ∩ V2.
Define U = V (F1) ∩ V1. Since y∗ ∈ C, then for every edge uv ∈ E with u ∈ U , y∗u + y∗v ≥ 0,
hence y∗v ≥ 1, which implies that v ∈ V (F1). This shows that N(U) ⊆ V (F1) ∩ V2. Hence
y∗u = −1, u ∈ U , y∗v = 1, v ∈ N(U), y∗w = 0, w ∈ V \ (U ∪ N(U)), and the corresponding
inequality in the projection is

∑
u∈U xu −

∑
v∈N(u) xv ≤ 0.

The above theorem can be extended to the case where G is non bipartite as follows. In (5),
substitute the variable sv = 1− xv, v ∈ V , obtaining

∑
e∈δ(v) ze + sv = 1, v ∈ V ;

sv ≥ 0, v ∈ V ;
ze ≥ 0, integer, e ∈ E.

Thus sv is just the slack variable of the degree inequality relative to v ∈ V in the system
∑

e∈δ(v) ze ≤ 1, v ∈ V ;
ze ≥ 0, integer, e ∈ E.

Since the feasible solutions of the latter system are the incidence vectors of matchings in G,
by the famous matching polytope theorem of Edmonds we obtain the following.

Theorem 4.5. The polytope Qmatchable is the set




(x, z) ∈ RV × RE :

∑
e∈δ(v) ze = xv, v ∈ V∑

e∈E(U) ze ≤ |U |−1
2 , U ⊆ V, |U | odd

0 ≤ xv ≤ 1, v ∈ V
ze ≥ 0, e ∈ E





. (8)

Notice, however, that the above extended formulation is not compact, since there is an
odd cut inequality for each U ⊆ V of odd cardinality. Nonetheless, since odd cut inequalities
can be separated in polynomial time [41], the problem of optimizing a linear function over
Qmatchable, and thus over Pmatchable, can be solved in polynomial time.

Balas and Pulleyblank [7] also project the above extended formulation onto the x-space
by characterizing the extreme rays of the projection cone, thus giving an explicit external
description of Pmatchable.
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4.2 The st-cut dominant

A polyhedron Q ⊆ Rn
+ is a dominant polyhedron if the recession cone of Q is the nonnegative

orthant Rn
+. So Q is a dominant polyhedron if and only if, for every c ∈ Rn, the linear

program min{cx : x ∈ Q} has a finite optimum if and only if c ≥ 0.
Given any polytope P ⊂ Rn, the dominant of P is the polyhedron P+ = P + Rn

+. Note
that, if c ∈ Rn is nonnegative, then min{cx : x ∈ P} = min{cx : x ∈ P+}.

Let D = (V,A) be a directed graph, and |A| = m, |V | = n. Given S ⊆ V , the set
δ+(S) = {(u, v) ∈ A : u ∈ S, v ∈ V \ S} is a cut of D. Given s, t ∈ V , a cut δ+(S) is an
st-cut if S separates s from t, that is s ∈ S, t /∈ S. We define δ−(S) = δ+(V \ S). Let
P st−cut(D) be the convex hull of incidence vectors of all the st-cuts of D and let P st−cut

+ (D)
be its dominant.

Minimizing a linear function over P st−cut(D) is NP -hard [37], therefore it is unlikely that
a tractable external formulation exists for P st−cut(D) (in the original space or extended).
On the other hand, minimizing a nonnegative linear function over P st−cut(D) is the same as
minimizing it over P st−cut

+ (D), which is the problem of computing a minimum capacity cut,
and can be done in polynomial time. The external description of P st−cut

+ (D) in the original
space is well known, and is due to Fulkerson [25] (see [46] Section 13.1).

Let Pst be the collection of all the directed paths from s to t.

Theorem 4.6.

P st−cut
+ (D) =

{
x ∈ RA :

∑

a∈P

xa ≥ 1, P ∈ Pst; xa ≥ 0, a ∈ A

}
.

Proof. Let R =
{
x ∈ RA :

∑
a∈P xa ≥ 1, P ∈ Pst; xa ≥ 0, a ∈ A

}
. Clearly P st−cut

+ (D) ⊆ R
and the recession cone of R is RA

+. Thus we only need to show that every vertex of R is
the incidence vector of an st-cut. To prove this, we show that given a nonnegative vector
c ∈ RA, the linear program min{∑a∈A caxa : x ∈ R} has an optimal solution which is the
incidence vector of an st-cut. Let δ+(S) be an st-cut such that c(δ+(S)) is smallest possible,
and let c∗ = c(δ+(S)). By the Max-flow Min-cut theorem, c∗ is also the maximum value of
an st-flow. By the path decomposition of flows (see for example [46]), there exists a set of
nonnegative multipliers vP , P ∈ Pst such that:

• ∑
P3a vP ≤ ca, a ∈ A;

• ∑
P∈Pst

vP = c∗.

Thus (vP )P∈P is a feasible solution for the dual of min{∑a∈A caxa :
∑

a∈P xa ≥ 1, P ∈
Pst; xa ≥ 0, a ∈ A} with value c∗. This shows that the incidence vector of δ+(S) is an
optimal solution of the above problem.

Clearly the previous description of P st−cut
+ (D) is not compact, since it has an inequality for

each st-path, and their number might be exponential. Next we describe a compact extended
formulation. Add the arc (t, s) to A (note that this does not change the st-cut polytope).
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Consider the polyhedron

Qst−cut =





(x, z) ∈ Rm+n :

zv − zu + x(u,v) ≥ 0, (u, v) ∈ A \ {(t, s)}
zs − zt + x(t,s) ≥ 1,

xa ≥ 0, a ∈ A
x(t,s) = 0





. (9)

Theorem 4.7.
P st−cut

+ (D) = projx(Qst−cut)

Proof. The projection cone associated to the external description (9) is

C = {f ∈ RA :
∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = 0, v ∈ V ; fa ≥ 0, a ∈ A}.

Therefore a vector f is in C if and only if f is a circulation of D. Since C is a pointed cone,
only extreme rays of C can produce facets of projx(Qst−cut). It is well known and easy to
prove that any extreme ray of C is the incidence vector of some directed cycle F of D.

This shows that an irredundant inequality for projx(Qst−cut) is either a nonnegativity
constraint xa ≥ 0 or an inequality

∑
a∈F xa ≥ α for some directed cycle F of D, where α = 1

if (t, s) ∈ F , α = 0 otherwise.
If α = 0 the inequality

∑
a∈F xa ≥ α is just the sum of the constraints xa ≥ 0, a ∈ F , and

is therefore redundant. When α = 1, let P = F \ {(t, s)}. Since x(t,s) = 0, the inequality∑
a∈F xa ≥ 1 is just

∑
a∈P xa ≥ 1. Hence projx(Qst−cut) = {x ∈ RA :

∑
a∈P xa ≥ 1, P ∈

Pst; xa ≥ 0, a ∈ A}, and the statement follows from Theorem 4.6.

Let G = (V, E) be an undirected graph. An st-cut in G is a cut δ(S) such that s ∈ S,
t /∈ S. The st-cut polytope P st−cut(G) is the convex hull of incidence vectors of st-cuts of G.
Let P st−cut

+ (G) be its dominant.
Let D = (V, A) be the digraph obtained from G by substituting every edge e = uv with

the pair of opposite arcs (u, v), (v, u). Then

P st−cut
+ (G) = {x ∈ RE : ∃ y ∈ P st−cut

+ (D) s.t. xuv = y(u,v) + y(v,u), uv ∈ E}.

Therefore the compact extended formulation for P st−cut
+ (D) yields a compact extended for-

mulation for P st−cut
+ (G).

4.3 Arborescences and Trees

Let D = (V,A) be a digraph and let r ∈ V . An r-arborescence T in D is a subset of arcs such
that no arc in T enters r and, for every node v ∈ V \ {r}, there is a unique arc of T entering
v and there exists a directed path from r to v in (V, T ). An r-cut in D is a set δ+(S) where
r ∈ S and V \ S 6= ∅.

Let P arb
+ be the dominant of the convex hull of incidence vectors of r-arborescences. By

a well know theorem of Edmonds [21],

P arb
+ = {y ∈ RA : y(C) ≥ 1 for all r-cuts C; y ≥ 0}. (10)
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By the Max-flow Min-cut theorem, P arb
+ can be expressed as follows:

P arb
+ = {y ∈ RA : ∀ v ∈ V \ {r} ∃ rv-flow zv of value 1 s.t. zv ≤ y}

Indeed, for the inclusion “⊆”, let y be the incidence vector of an r-arborescence T . For
each arc e ∈ A and node v ∈ V \ {r}, let zv

e

zv
e =

{
1 if e is on the path from r to v in T
0 otherwise.

Then, for every v ∈ V \ {r}, zv is an rv-flow of value 1 such that zv ≤ y.
We show “⊇”. Let y ∈ RA be such that, for every v ∈ V \ {r}, there exists an rv-flow

zv of value 1 such that zv ≤ y. Suppose by contradiction y /∈ P arb
+ . Then, by Edmonds’

theorem, there exists an r-cut C = δ+(S) such that y(C) < 1. But then, given v ∈ V \ S,
there is no flow of value 1 from r to v satisfying the capacities ye, e ∈ A, a contradiction.

Thus P arb
+ is the projection onto the y-space of the set of feasible solutions of the system

0 ≤ zv
e ≤ ye v ∈ V \ {r}, e ∈ A∑

e∈δ+(r) zv
e = 1 v ∈ V \ {r}∑

e∈δ+(u) zv
e −

∑
e∈δ−(u) zv

e = 0 u, v ∈ V \ {r}, u 6= v.

Let G = (V, E) be an undirected graph. Let Π be the set of partitions of V . For every
P ∈ Π, let |P| denote the number of classes in the partition, and δ(P) be the set of edges
with endnodes in distinct classes of the partition. Edmonds [19] showed that the dominant
of the convex hull of incidence vectors of spanning trees P tree

+ is

P tree
+ = {x ∈ RE :

∑

e∈δ(P)

xe ≥ |P| − 1, P ∈ Π; x ≥ 0}.

Let D = (V, A) be the digraph obtained from G by substituting every edge e = uv with
the arcs (u, v), (v, u). Then

P tree
+ = {x ∈ RE : ∃ y ∈ P arb

+ s.t. xuv = y(u,v) + y(v,u), uv ∈ E}.

Therefore the compact extended formulation for P arb
+ yields a compact extended formulation

for P tree
+ .

4.4 Cuts

Let D = (V,A) be a digraph and r ∈ V . Here we observe how the compact extended
formulation for P arb

+ yields an extended formulation for the dominant of the convex hull of
r-cuts, P rcut

+ . This follows from the next result.

Lemma 4.8. Let R = {y ∈ Rn : ∃z s.t. Ay + Cz ≥ b} and P = {x ∈ Rn : yT x ≥
1 for all y ∈ R}. Let Q be the polyhedron defined by the system bT u ≥ 1, AT u = x, CT u =
0, u ≥ 0. Then P = projx(Q).
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Proof. Given x̄ ∈ Rn, x̄ is in P if and only if 1 ≤ min{x̄T y : y ∈ R} = min{x̄T y : Ay +Cz ≥
b}. By strong duality, this is equivalent to 1 ≤ max{bT u : AT u = x̄, CT u = 0, u ≥ 0}.

Edmonds’ theorem [21] states that

P rcut
+ = {x ∈ RA : xT y ≥ 1 for all y ∈ P arb

+ ; x ≥ 0}.
Since P arb

+ has a compact extended formulation, Lemma 4.8 shows how to derive an extended
formulation for P rcut

+ .

Let G = (V, E) be an undirected graph and let Rcut(G) be the convex hull of all incidence
vectors of cuts of G of the form δ(S), S, V \S 6= ∅. Note that the cut polytope P cut(G) defined
in Section 2.3 is the convex hull of Rcut(G) union the origin. The polyhedron Rcut

+ (G) which
is the dominant of Rcut(G) is the cut dominant. Let D = (V, A) be the digraph obtained
from G by substituting every edge e = uv with the arcs (u, v), (v, u). Then

Rcut
+ = {x ∈ RE : ∃ y ∈ P rcut

+ s.t. xuv = y(u,v) + y(v,u) uv ∈ E}.

Therefore the compact extended formulation for P rcut
+ yields a compact extended formulation

for Rcut
+ .

4.5 Cycle cone

Given an undirected graph G, the cycle cone of G, denoted by Ccycle, is the cone generated
by the incidence vectors of cycles of G. Seymour [47] shows that

Ccycle = {x ∈ RE : x ≥ 0, x(δ(S))−2xe ≥ 0 for all e ∈ E and S ⊂ V s.t. e ∈ δ(S)}. (11)

Barahona [9] constructs a compact extended formulation for Ccycle by observing the fol-
lowing. Let D = (V, A) be the digraph obtained from G by substituting every edge e = uv
with the arcs (u, v), (v, u).

Remark 4.9. A vector x ∈ RE is in Ccycle if and only if, for every uv ∈ E, there exists a
uv-flow yuv in D of value at least 2xuv such that 0 ≤ yuv ≤ x.

Proof. Given uv ∈ E, by the Max-flow Min-cut theorem a nonnegative vector x ∈ RE satisfies
x(δ(S))− 2xuv ≥ 0 for all S ⊂ V s.t. uv ∈ δ(S) if and only if there exists a uv-flow yuv in D
of value at least 2xuv such that 0 ≤ yuv ≤ x. Hence the statement follows from (11).

The above remark shows that the following system of inequalities is an extended formu-
lation for Ccycle.

0 ≤ yuv
e ≤ xe uv ∈ E, e ∈ A∑

e∈δ+(u) yuv
e ≥ 2xuv uv ∈ E∑

e∈δ+(w) yuv
e −∑

e∈δ−(w) yuv
e = 0 uv ∈ E, w 6= V \ {u, v}.

(12)

Note that the vertices of the polytope Ccycle∩{x ∈ RE :
∑

e∈E xe = 1} are of the form χC

|C|
for some cycle C, where χC denotes the incidence vector of C. Therefore, given w ∈ RE , the
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problem of finding a cycle of minimum mean weight, that is min{w(C)/|C| : C cycle of D}
can be reduced to solving the polynomial size linear program

min{
∑

e∈E

wexe :
∑

e∈E

xe = 1 and ∃ y s.t. (x, y) satisfies (12)}.

Barahona [9] shows that computing a maximum weight matching can be reduced to a
sequence of O(|E|2 log |V |) minimum mean weight cycles computations. Therefore, although
no compact extended formulation for the matching polytope is known, one can still efficiently
solve the matching problem with linear programming.

5 Union of Polyhedra

In this section, we prove a result of Balas [4], [5] about the union of k polyhedra and we give
several applications.

Theorem 5.1. (Balas [4], [5]) Given k polyhedra P i := {x ∈ Rn : Aix ≤ bi}, i ∈ K, let
ri
1, . . . , r

i
qi

be such that for i ∈ K, the cone Ci := {x : Aix ≤ 0} = cone{ri
1, . . . , r

i
qi
}.

If P i 6= ∅, let vi
1, . . . , v

i
pi

be such that P i = conv{vi
1, . . . , v

i
pi
}+ cone{ri

1, . . . , r
i
qi
}.

Consider the polyhedron

P = conv(
⋃

i:Pi 6=∅
{vi

1, . . . , v
i
pi
}) + cone(

⋃

i∈K

{ri
1, . . . , r

i
qi
}).

Then P is the projection onto the x-space of the polyhedron Y of points (x, x1, . . . , xk, δ) ∈
Rn × (Rn)k × Rk satisfying the system:

Aixi ≤ δibi i ∈ K∑
i∈K xi = x∑
i∈K δi = 1

δi ≥ 0 i ∈ K.

(13)

Proof. Given x̄i ∈ P i, the vector xi = x̄i, xj = 0, j 6= i, x = x̄i, δi = 1, δj = 0, j 6= i is in Y .
Therefore if Y = ∅, then ∪i∈KP i = ∅.
In the system defining Y , constraint

∑
i∈K δi = 1 forces at least one of δi to be positive.

Therefore if the system defining Y is feasible, at least one of the systems Aixi ≤ bi must be
feasible. This shows that Y = ∅ if and only if ∪i∈KP i = ∅.

Since P = ∅ whenever ∪i∈KP i = ∅, this shows that P = projx(Y ) whenever P is empty.
We now assume that P is nonempty, i.e., the index set K can be partitioned into a

nonempty set KN = {i : P i 6= ∅} and KE = K \KN .
Let x ∈ P . Then there exist points vi ∈ conv{vi

1, . . . , v
i
pi
}, i ∈ KN and rays ri ∈

cone{ri
1, . . . , r

i
qi
}, i ∈ K such that

x =
∑

i∈KN

δivi +
∑

i∈KN

ri +
∑

i∈KE

ri for some
∑

i∈KN

δi = 1, δi ≥ 0, i ∈ KN .

For i ∈ KN , define xi = δivi + ri and for i ∈ KE define xi = 0 + ri and δi = 0. Since
ri is a ray of Ci, then Aixi ≤ δibi for all i ∈ K. Therefore every x ∈ P can be completed
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with vectors xi, i ∈ K and scalars δi, i ∈ K such that (x, xi, δi, i ∈ K) ∈ Y . This shows
P ⊆ projx(Y ).

Let (x, x1, . . . , xk, δ) be a vector in Y . Define KP = {i ∈ K : δi > 0} and let zi = xi

δi , i ∈
KP . Then Aizi ≤ bi. So P i 6= ∅ in this case and zi ∈ conv{vi

1, . . . , v
i
pi
}+ cone{ri

1, . . . , r
i
qi
}.

For i ∈ K \ KP , Aixi ≤ 0, and therefore xi ∈ cone{ri
1, . . . , r

i
qi
}. Since x =

∑
i∈KP δizi +∑

i∈K\KP xi and
∑

i∈KP δi = 1, δi ≥ 0, then x ∈ conv(
⋃

i∈KP {vi
1, . . . , vi

pi
}) + cone(

⋃
i∈K{ri

1,

. . . , ri
qi
}) and therefore x ∈ P . This shows that projx(Y ) ⊆ P and the proof is complete.

Remark 5.2. Theorem 5.1 shows that the system of inequalities defining Y gives an extended
formulation of the polyhedron P that uses O(k(n+1)) variables and the size of its formulation
is approximately the sum of the sizes of the formulations that define the polyhedra P i. So if k
is small and the formulations defining the polyhedra P i are compact, the formulation defining
Y is also compact.

We now give some examples: We will not always give an explicit description of the system
Y . We only give the compact external descriptions of a small number k of polyhedra P i and
show that the internal descriptions of the polyhedra P i and P satisfy the condition of Theorem
5.1.

5.1 All even subsets

We consider here the set:

EV ENn = {x ∈ {0, 1}n : x has an even number of 1s}
Jeroslow [34] proves the following:

Theorem 5.3. Let S be the family of subsets of N = {1, . . . , n} having odd cardinality. Then

conv(EV ENn) =
{

x ∈ Rn :
∑

i∈S xi −
∑

i∈N\S xi ≤ |S| − 1, S ∈ S
0 ≤ xi ≤ 1, i ∈ N

}
.

Proof. Let xE be an optimal vector for the program:

max
∑

i∈N

cixi : x ∈ conv(EV ENn) (14)

and let E be the even subset of N represented by xE . Consider the pair of dual linear
programs:

max
∑

i∈N cixi∑
i∈S xi −

∑
i∈N\S xi ≤ |S| − 1 S ∈ S

xi ≤ 1 i ∈ N
xi ≥ 0 i ∈ N

(P )

min
∑

S∈S(|S| − 1)yS +
∑

i∈N zi∑
S∈S,S3i yS −

∑
S∈S,S 63i yS + zi ≥ ci i ∈ N

zi ≥ 0 i ∈ N
yS ≥ 0 S ∈ S.

(D)
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We show that (D) admits a feasible solution (y∗, z∗) having value
∑

i∈N cix
E
i . Since xE

is feasible for (P ), this shows that xE and (y∗, z∗) are optimal solutions for (P ) and (D).
Since xE is optimal for the program (14), it is easy to see that E satisfies one of the following
three cases:

Case 1: ci ≥ 0, i ∈ E and ci ≤ 0, i ∈ N \ E.
The vector (y∗, z∗) satisfying the above requirement is:

y∗S = 0, S ∈ S, z∗i = max{ci, 0}, i ∈ N.

Case 2: There is an element i∗ ∈ E such that ci∗ < 0 and ci + ci∗ ≥ 0, i ∈ E \ {i∗},
ci∗ ≥ ci, i ∈ N \ E.

Let S∗ = E \ {i∗}. The vector (y∗, z∗) satisfying the above requirement is:

y∗S∗ = −ci∗ , y∗S = 0, S ∈ S \ {S∗}, z∗i = max{ci + ci∗ , 0}, i ∈ N.

Case 3: There is an element i∗ ∈ N\E such that ci∗ > 0 and ci+ci∗ ≤ 0, i ∈ N\(E∪{i∗}),
ci ≥ ci∗ , i ∈ E. Let S∗ = E ∪ {i∗}. The vector (y∗, z∗) satisfying the above requirement is:

y∗S∗ = ci∗ , y∗S = 0, S ∈ S \ {S∗}, z∗i = max{ci − ci∗ , 0}, i ∈ N.

The formulation of conv(EV ENn) given in Theorem 5.3 is not compact. However, The-
orem 5.1 gives us the means of obtaining a compact extended formulation. We present it
next.

Let Sk = {x ∈ {0, 1}n : x has k 1s}. It is straightforward to see that conv(Sk) = {x ∈
Rn : 0 ≤ xi ≤ 1, i ∈ N ;

∑
i∈N xi = k} (Easy direct proof, total unimodularity).

Let N ev = {0 ≤ k ≤ n, k even}. Since EV ENn =
⋃

k∈Nev Sk, Theorem 5.1 implies that

conv(EV ENn) = projx(Q)

where Q is the polytope defined by the following system

xi −
∑

k∈Nev xk
i = 0 i ∈ N∑

i∈N xk
i = kλk k ∈ N ev

∑
k∈Nev λk = 1

xk
i ≤ λk i ∈ N, k ∈ N ev

xk
i ≥ 0 i ∈ N, k ∈ N ev

λk ≥ 0 k ∈ N ev.
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5.2 Cut Dominant

Given an undirected graph G = (V, E), the cut dominant polyhedron Rcut
+ (G) has been de-

fined in Section 4.4. We provide another extended formulation for Rcut
+ (G) using Theorem 5.1.

Let V cut be the set of incidence vectors of cuts of G of the form δ(S), S, V \ S 6= ∅. Let
s ∈ V . For every t ∈ V \ {s}, let us denote by V st−cut the set of incidence vectors of st-cuts
of G. Then

V cut =
⋃

t∈V \{s}
V st−cut

therefore
Rcut

+ (G) = conv(
⋃

t∈V \{s}
P st−cut

+ (G)).

Since P st−cut
+ (G) has a compact extended formulation, discussed in Section 4.2, Theorem 5.1

gives a compact extended formulation for Rcut
+ (G). Using Remark 5.2, we observe that this

extended formulation has O(|V ||E|) variables and O(|V ||E|) constraints.

To the best of our knowledge, the most compact extended formulation for the cut dom-
inant in a dense graph is currently the one given by Carr et al. [12], and it uses O(|V |2)
variables and O(|V |3) constraints.

An external description of Rcut
+ (G) in the original space is not known. Describing the

facets of Rcut
+ (G) is equivalent to describing the vertices of the subtour relaxation of the

Graphical Traveling Salesman polytope, which is the blocking polyhedron [25].

5.3 An approximate formulation for the knapsack set

Consider the 0− 1 knapsack set K(n, b) with n items and capacity b:

K(n, b) = {x ∈ {0, 1}n :
n∑

i=1

aixi ≤ b}.

Given a vector c ∈ Rn, let

W ∗ = max{
n∑

i=1

cixi : x ∈ K(n, b)}.

Ibarra and Kim [33], and Lawler [38] gave a fully polynomial-time approximation scheme
for the knapsack problem, i.e., an algorithm that, for any given ε > 0, returns a feasible
solution whose value is at least (1− ε)W ∗ in time polynomial in n and ε−1. This prompts a
question, posed by Van Vyve and Wolsey [49], of whether there exists a system of inequalities
Ax + Bz ≤ d, of size polynomial in n and ε−1, such that

(i) conv(K(n, b)) ⊆ {x ∈ Rn : ∃z s.t. Ax + Bz ≤ d},
(ii) for every c ∈ Rn, W ∗ ≥ (1− ε)max{∑n

i=1 cixi : Ax + Bz ≤ d}.
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Note that (i) and (ii) are equivalent to saying that, given Q = {x ∈ Rn : ∃z s.t. Ax + Bz ≤
d}, (1− ε)Q ⊆ conv(K(n, b)) ⊆ Q.

The above question is still open. However, Bienstock [10] proved that there exists a
system Ax + Bz ≤ d satisfying (i) and (ii) whose size is polynomial in n if ε is fixed. More
precisely, the formulation has O(ε−1n1+dε−1e) variables and constraints.

The formulation is based on Theorem 5.1. The idea is to give a family F of O(ndε−1e)
polytopes inside the unit cube such that K(n, b) ⊆ ∪Q∈FQ and, for every c ∈ Rn, W ∗ ≥
(1− ε)max{∑n

i=1 cixi : x ∈ Q} for every Q ∈ F .
Let us denote H = dε−1e. The family F has a member QS for each set S ⊆ {1, . . . , n}

of cardinality at most H such that
∑

i∈S ai ≤ b. Note that the number of these sets S is
O(HnH).

The polytope QS is defined as follows:

• If |S| < H, QS = {x ∈ Rn : xj = 1, j ∈ S; xj = 0, j /∈ S},
• If |S| = H,

QS =





x ∈ Rn :

∑n
j=1 ajxj ≤ b

0 ≤ xj ≤ 1 j = 1, . . . , n
xj = 1 j ∈ S
xj = 0 j /∈ S s.t. aj > mini∈S ai





.

It is clear that K(n, b) is contained in the union of the QS . Indeed, given x̄ ∈ K(n, b), let
supt(x) = {i : xi = 1}. If |supt(x̄)| < H, then if S = supt(x̄), QS = {x̄}. If |supt(x̄)| ≥ H,
let S be the set of the indices in supt(x̄) relative to the H largest elements aj , j ∈ supt(x̄).
Then x̄ ∈ QS .

Let P = conv(∪QS∈FQS). Note that, for every QS ∈ F , QS is a polytope expressed
by O(n) linear inequalities. Thus, by Balas’ Theorem 5.1, the system of inequalities (13)
gives an extended formulation for P with n + |F|n + |F| variables and |F|O(n) + n + 1 + |F|
constraints. Both numbers are of order O(ε−1n1+dε−1e).

Theorem 5.4. For every c ∈ Rn,

max{
n∑

i=1

cixi : x ∈ K(n, b)} ≥ (1− ε)max{
n∑

i=1

cixi : x ∈ P}.

Proof. Let c ∈ Rn and let W ∗ = max{∑n
i=1 cixi : x ∈ K(n, b)}.

We only need to show that, given S ⊆ {1, . . . , n} of cardinality at most H such that∑
i∈S ai ≤ b, we have W ∗ ≥ (1− ε)max{∑n

i=1 cixi : x ∈ QS}.
If |S| < H, then the result holds trivially since QS consists of the point x̄ such that

supt(x̄) = S, and x̄ ∈ K(n, b).
Suppose now |S| = H. We may assume that, among all such sets, S is chosen so that

max{∑n
i=1 cixi : x ∈ QS} is largest possible. Let x̃ be an optimal basic solution for the

above problem. We may assume x̃ is not integral, otherwise the statement follows.
Thus there exists exactly one index q such that 0 < x̃q < 1. Since x̃q > 0 and x̃ ∈ QS ,

it follows that aq ≤ mini∈S ai. We next show that cq ≤ mini∈S ci. If not, then let p ∈ S
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such that cp < cq. Let x̂ be the vector defined by x̂p = x̃q, x̂q = 1, and x̂j = x̃j , 1 ≤ j ≤ n,
j 6= p, q. Let S′ = S \{p}∪{q}. Since ap ≥ aq, it follows x̂ ∈ QS′ . Furthermore, since cp < cq,∑n

i=1 cix̃i <
∑n

i=1 cix̂i, contradicting our choice of S.
We define the vector x̄ by x̄j = bx̃jc, j = 1, . . . , n. Clearly x̄ ∈ K(n, b). Furthermore,

since cq ≤ mini∈S ci, we have
∑n

i=1 cix̃i −
∑n

i=1 cix̄i∑n
i=1 cix̃i

≤ cq

Hcq
≤ ε

and therefore (1− ε)
∑n

i=1 cix̃i ≤
∑n

i=1 cix̄i ≤ W ∗.

Bienstock and McClosky [11] give further approximate extended formulations for knapsack
and fixed charge network flow problems based on disjunctions. Van Vyve and Wolsey [49]
give extended approximate formulations for several lot-sizing problems.

5.4 Continuous mixing set

The set of vertices of some selected mixed-integer sets can sometimes be partitioned into few
subsets in which the continuous variables take specified fractional values. The convex hull of
each of the subsets can then be found by applying the theory of (pure) Integer Programming.

We illustrate this by considering the continuous mixing set, defined as the following mixed-
integer set:

XCMIX = {(s, y, x) ∈ R+ × Rn
+ × Zn

+ : s + yt + xt ≥ bt, 1 ≤ t ≤ n}.

Miller and Wolsey [40] gave a compact extended formulation for the polyhedron conv(XCMIX)
and characterized the vertices and rays. It follows from their work that the internal descrip-
tion of conv(XCMIX) has exponential size. Van Vyve [48] has provided a new more compact
extended formulation that only involves O(n) additional variables, and has shown that the
separation problem in the original space can be solved by flow techniques.

Remark 5.5. Let (s∗, y∗, x∗) be a vertex of conv(XCMIX). Then (s∗, y∗) is a vertex of the
polyhedron Q = {(s, y) ∈ R+ × Rn

+ : s + yt ≥ bt − x∗t , 1 ≤ t ≤ n}.
Define b0 = 0.

Lemma 5.6. Let (s∗, y∗, x∗) be a vertex of conv(XCMIX). Then

1. s∗ ≡ bt mod 1 for some 0 ≤ t ≤ n.

2. For 1 ≤ t ≤ n, either y∗t = 0 or y∗t ≡ bt − s mod 1.

3. The 2n + 1 extreme rays of conv(XCMIX) are: (1, 0, 0), (0, ej , 0) and (0, 0, ej).

Proof. Assume first that s∗ > 0. Let T be the set of indices of the inequalities s+yt +xt ≥ bt

that are satisfied at equality by (s∗, y∗, x∗).
We claim that T is nonempty and y∗t = 0 for at least one t ∈ T . If not, let eT be the incidence
vector of the set T . Then for some ε > 0, the polyhedron Q defined in Remark 5.5 contains
both (s∗, y∗)± ε(1, eT ), showing that (s∗, r∗) is not a vertex of Q, a contradiction to Remark
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5.5 and the claim is proved.
Let t∗ be such that s∗ + y∗t∗ + x∗t∗ = bt∗ and y∗t∗ = 0, then s∗ ≡ bt∗ mod 1 and Statement 1 is
proved.
Statement 2 follows immediately from Remark 5.5 and the statement about extreme rays is
immediate.

For 0 ≤ i ≤ n, define Xi = {(s, y, x) ∈ XCMIX : s ≡ bi mod 1}. By Lemma 5.6, the
set of vertices of polyhedron conv(XCMIX) is the union of the sets of vertices of polyhe-
dra conv(Xi) and the recession cones of conv(XCMIX) and conv(Xi) coincide. Therefore a
compact formulation for conv(Xi) can be used to derive a compact extended formulation for
conv(XCMIX).
For 1 ≤ t ≤ n and 0 ≤ i ≤ n, let fti = (bt − fi)− bbt − fic.
Theorem 5.7. The following set of inequalities gives a formulation for conv(Xi):

s ≥ fi

s + yt + xt ≥ bt, 1 ≤ t ≤ n

yt + fti(xt + s) ≥ fti(dbt − fie+ fi), 1 ≤ t ≤ n

s ∈ R+, y ∈ Rn
+, x ∈ Rn

+.

Proof. We model the condition s ≡ fi mod 1 with s = σ + fi, σ ∈ Z+. Substituting for s in
the set of inequalities defining XCMIX , we obtain:

σ + yt + xt ≥ bt − fi for t = 1, . . . , n

σ ∈ Z+, y ∈ Rn
+, x ∈ Zn

+.

By Lemma 5.6, in a vertex of the convex hull of this set, either yt ≡ 0 mod 1 or yt ≡ fti mod 1.
This leads us to write yt = µt + ftiδt with µt ∈ Z+, δt ∈ {0, 1}. Substituting for yt in the
above system, we obtain :

σ + µt + ftiδt + xt ≥ bt − fi for t = 1, . . . , n

σ ∈ Z+, µ ∈ Zn
+, δ ∈ {0, 1}n, x ∈ Zn

+.

Applying Chvátal-Gomory rounding to the above system, an equivalent, but tighter, set of
inequalities is:

σ + µt + dftieδt + xt ≥ dbt − fie, 1 ≤ t ≤ n

σ ∈ Z+, δ ∈ {0, 1}n, µ ∈ Zn
+, x ∈ Zn

+.

Observe now that the matrix defining the above system is a totally unimodular matrix, and
the requirements vector and bounds are integer. It follows from the theorem of Hoffman
and Kruskal [32] that we can replace the integrality requirements with variable bounds, and
obtain a formulation for the above set. This yields the following extended formulation for
conv(Xi):

s = σ + fi

yt = µt + ftiδt for t = 1, . . . , n

σ + µt + dftieδt + xt ≥ dbt − fie , 1 ≤ t ≤ n

σ ∈ R+, µ ∈ Rn
+, δ ∈ [0, 1]n, x ∈ Rn

+.
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Projecting back into the original s, r, y space using Fourier’s method, eliminating first σ, then
µ and finally δ, it is easily checked that one obtains the set of inequalities in the statement
of the theorem.

The above theorem is a simplified version of a result that appears in [15].

6 The size of an extended formulation

Yannakakis [50] gives a sharp bound on the size of an extended formulation of a polytope.
We extend this result to polyhedra. Let P be a polyhedron, and

P = {x ∈ Rn : A=x = b=, A<x ≤ b<} = conv{v1, . . . , vp}+ cone{r1, . . . , rq}

where the above external and internal descriptions of P are non-redundant. Thus A=x = b=

is a system of independent equalities describing the affine hull of P and each row of A<x ≤ b<

defines a facet of P . Let CP = {x ∈ Rn : A=x = 0, A<x ≤ 0} = cone{r1, . . . , rq} be the
recession cone of P .

Let m be the number of rows of A<. We define the slack matrix of vertices of P to be the
m× p matrix SV whose ij-entry is b<

i − a<
i vj , that is, the slack taken by vj in the inequality

a<
i x ≤ b<

i ; and the slack matrix of rays of P to be the m × q matrix SR whose ik-entry is
−a<

i rk, that is, the slack taken by rk in the inequality a<
i x ≤ 0 that defines CP . Note that

SV , SR are nonnegative matrices.
Let t be the smallest number such that:

• SV = FW , where F , W are nonnegative matrices of size m× t and t× p.

• SR = FY , where Y is a nonnegative matrix of size t× q.

Observe that t is independent of the particular external description of P , that is, it
is invariant upon multiplying rows of A<x ≤ b< by positive numbers, and adding linear
combinations of the equations in A=x = b=.

Theorem 6.1. The minimum number of variables and constraints that defines a polyhedron
Q such that projx(Q) = P is of order Θ(t + n).

Proof. Assume SV = FW , SR = FY where F , W , Y are nonnegative matrices of dimension
m× t, t×p and t×q respectively. We show that P has an extended formulation with Θ(t+n)
variables and constraints.
Consider the polyhedron

Q = {(x, z) ∈ Rn × Rt : A=x = b=, A<x + Fz = b<, z ≥ 0}.

Since F ≥ 0 and z ≥ 0, projx(Q) ⊆ P . Given point vj ∈ P , the corresponding column wj of

W is a nonnegative vector satisfying Fwj = b−Avj . Therefore
(

vj

wj

)
∈ Q for 1 ≤ j ≤ p.

Note that the recession cone of Q is CQ = {(x, z) ∈ Rn × Rt : A=x = 0, A<x + Fz =
0, z ≥ 0}. Given ray rk ∈ CP , the corresponding column yk of Y is a nonnegative vector
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satisfying Frk = −Ark. Therefore
(

rk

yk

)
∈ CQ for 1 ≤ k ≤ q. This shows P ⊆ projx(Q) and

therefore projx(Q) = P .
Finally, since Q ⊆ Rn × Rt, at most t + n of the equations A=x = b=, A<x + Fz = b<

defining Q are linearly independent, therefore Q can be described with Θ(t+n) variables and
constraints.

To prove the other direction of the theorem, consider a system of inequalities that defines
a polyhedron Q′ such that projx(Q′) = P . At the cost of at most doubling the number of
variables and constraints, we can assume that

Q′ = {(x, z) ∈ Rn × Rk : Rx + Sz = d, z ≥ 0}. (15)

We need to show that t ≤ k. Since projx(Q′) = P ,

• Every facet-inducing inequality a<
i x ≤ b<

i can be obtained from the system (15); that
is, there is a vector ui such that uiS ≥ 0, uiR = a<

i , uid = b<
i .

• Every vector vj , 1 ≤ j ≤ p, can be completed with a nonnegative vector wj such that(
vj

wj

)
∈ Q′.

• Let CQ′ = {(x, z) ∈ Rn × Rk : Rx + Sz = 0, z ≥ 0} be the recession cone of Q′.
Every vector rk, 1 ≤ k ≤ q, can be completed with a nonnegative vector yk such that(

rk

yk

)
∈ CQ′ .

Let f i = uiS and let F be the m× k nonnegative matrix whose rows are the vectors f i. Let
W be the k × p nonnegative matrix whose columns are the vectors wj . Let Y be the k × q
nonnegative matrix whose columns are the vectors yk. Then SV = FW and SR = FY and
by definition of t, we have t ≤ k.

6.1 The spanning tree polytope

Given an undirected graph G = (V, E), |V | = n, |E| = m, the spanning tree polytope SP (G)
is the convex hull of the incidence vectors of the spanning trees of G. For S ⊆ V , let E(S)
denote the set of edges with both ends in S. Edmonds [20] showed that

SP (G) =



x ∈ Rm :

∑
e∈E xe = n− 1,∑

e∈E(S) xe ≤ |S| − 1, S ⊂ V

xe ≥ 0, e ∈ E



 .

The slack matrix corresponding to the inequalities
∑

e∈E(S) xe ≤ |S| − 1 can be described
as follows: Given a node set S ⊂ V and a spanning tree T , the slack of the corresponding
constraint is the number of connected components of the forest induced by S on T minus 1.
An equivalent description is the following. Given a node k ∈ V , let Ak be the arborescence
obtained by rooting T at k. Then one can readily verify that, if k ∈ S, the slack is the
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number of nodes of S \ {k} whose father in Ak is not in S. So, if we let λkij = 1 if j is the
father of i in Ak, 0 otherwise, i, j, k ∈ V , the slack sST for S ⊂ V and spanning tree T is

sST =
∑

i∈S, j∈V \S
λkij .

This yields a factorization of the slack matrix SV = (sST ) into nonnegative matrices
SV = FW as follows. For every S ⊂ V , choose an element kS ∈ S, and let fS be the vector
with V × V × V entries, where

fS
kij =

{
1 if k = kS , i ∈ S, j ∈ V \ S;
0 otherwise.

For every tree T , let wT be the vector with V × V × V entries, where wT
kij = λkij . Let F be

the matrix with rows fS , S ⊂ V , and W be the matrix with columns wT for every tree T of
G. Then SV = FW .

It can be shown that F and W yield the following extended formulation for the polytope
SP (G). Namely SP (G) = projx(Q) where Q is the set of points (x, λ) satisfying

∑
i,j∈V xij = n− 1,

xij ≥ 0, ij ∈ E,
xij = λkij + λkji, 1 ≤ i, j, k ≤ n∑

j λkij = 1, 1 ≤ i, k ≤ n, i 6= k

λkij ≥ 0, λkkj = 0, λkii = 0, 1 ≤ i, j, k ≤ n.

6.2 Matchings

Let Kn = (V,E) be the complete undirected graph on n nodes, where n is even. The perfect
matching polytope Pmatching of order n is the convex hull of perfect matchings of Kn. One of
the fundamental results in polyhedral combinatorics is Edmonds’ perfect matching polytope
theorem [18], showing that Pmatching is the set of solutions of the system

∑
e∈δ(v) xe = 1 v ∈ V∑
e∈δ(U) xe ≥ 1 U ⊂ V, |U | odd

xe ≥ 0 e ∈ E.

An outstanding open question is whether there exists a compact extended formulation for
the perfect matching polytope. Yannakakis [50] gives a partial negative answer by showing
that there is no subexponential size symmetric extended formulation for Pmatching. Next we
give the precise statement.

Let V = {1, . . . , n}. Given a permutation π of V and a vector x ∈ RE , let π(x) ∈ RE be
the vector defined by (π(x))ij = xπ(i)π(j), 1 ≤ i < j ≤ n.

Let Ax + By ≤ c be an extended formulation for Pmatching, where B is a matrix with
q columns. Given a permutation σ of {1, . . . , q} and y ∈ Rq, we denote by σ(y) the vector
in Rq defined by (σ(y))i = yσ(i). The formulation Ax + By ≤ c is symmetric if, for every
permutation π of V , there exists a permutation σ of {1, . . . , q} such that, for every x ∈ RE

and y ∈ Rq, Ax + By ≤ c if and only if Aπ(x) + Bσ(y) ≤ c.
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Theorem 6.2. (Yannakakis [50]) For every positive even integer n, let f(n) denote the
minimum number of variables and constraints of a symmetric extended formulation for the
perfect matching polytope of order n. Then f(n) ∈ Ω

(
n

n/4

)
.

Yannakakis [50] shows that an analogous result holds for the traveling salesman polytope,
that is the convex hull of all Hamiltonian cycles of Kn.

It is unclear how strong the symmetry assumption is. Yannakakis [50] conjectures that
Theorem 6.2 should hold even without the symmetry assumption, stating that he feels that
“asymmetry does not help much”. However, recently, Kaibel, Pashkovich and Theis [35] gave
examples where symmetry can indeed make a huge difference. Consider the family M`(n)
of matchings of Kn with exactly ` edges, and let P `

match(n) be the convex hull of incidence
vectors of M`(n). They show that, for ` = blog nc, there is no symmetric compact extended
formulation for P `

match(n), while these polytopes have a compact extended formulation (which
must therefore be asymmetric).

Theorem 6.3. (Kaibel et al. [35]) There is a constant c > 0 such that, for every n and
every 1 ≤ ` ≤ n/2, the size of a symmetric extended formulation for P `

match(n) is at least
c
(

n
b(`−1)/2c

)
.

In particular, Theorem 6.3 implies that, for Ω(log n) ≤ ` ≤ n/2, there is no compact
symmetric extended formulation for P `

match(n). The proof follows Yannakakis’ method for
proving Theorem 6.2. Conversely, they show the following.

Theorem 6.4. (Kaibel et al. [35]) For every n and every 1 ≤ ` ≤ n/2, there exists an
extended formulation for P `

match(n) of size bounded by 2O(`)n2 log n.

In particular, Theorem 6.4 implies that, for ` ≤ blog nc, there is a compact extended
formulation for P `

match(n). The proof is based on the following lemma.

Lemma 6.5. (Alon et al. [2])There are maps φ1, . . . , φq(n,r) : [n] → [r] with q(n, r) ≤
2O(r) log n such that, for every W ⊆ [n] with |W | = r, there is some i ∈ [q(n, r)] for which
the map φi is bijective on W .

To prove Theorem 6.4, let φ1, . . . , φq(n,r) be as in Lemma 6.5, with r = 2`, and let
q = q(n, r). Let Mi = {M ∈ M`(n) : φi is bijective on V (M)} (where V (M) denotes the
set of vertices covered by M), and let Pi be the convex hull of incidence vectors of Mi. By
the choice of φ1, . . . , φq(n,r), M`(n) =

⋃q
i=1Mi, and thus P `

match(n) = conv(P1 ∪ . . . ∪ Pq).
Kaibel et al. then show that

Pi =



x ∈ RE

+ :
xe = 0 e ∈ E \ Ei

x(δ(φ−1(t))) = 1 t = 1, . . . , 2`
x(Ei(φ−1(S))) ≤ (|S| − 1)/2 S ⊆ [2`], |S| odd



 ,

where Ei = E \⋃2`
j=1 E(φ−1

i (j)). We do not report the proof of this latter fact here.
Finally, since P `

match(n) = conv(P1 ∪ . . . ∪ Pq), we may apply Balas’ union of polyhedra
(Theorem 5.1) to obtain an extended formulation for P `

match(n). Note that the number of
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variables and inequalities in the description of Pi is bounded by 2O(`) +n2, thus the extended
formulation given by Theorem 5.1 has at most 2O(`)n2 log n variables and constraints.

Kaibel et al. [35] apply similar techniques to show that there is no compact symmetric
extended formulation for the polytope of cycles with blog nc edges (i.e. the convex hull
of incidence vectors of cycles of length blog nc in Kn), while there are compact extended
formulations that are not symmetric.

6.3 Matchings in planar graphs

While Yannakakis [50] shows that no symmetric subexponential formulation for the match-
ing polytope exists, Barahona [8] describes a compact formulation for the perfect matching
polytope of planar graphs.

Let G = (V, E) be an undirected graph and T ⊆ V a set of even cardinality. A set J ⊆ E
is a T -join if T is the set of nodes of odd degree of the graph (V, J). The T -join polytope
P TJ(G) is the convex hull of incidence vectors of T -joins. An external description of the
T -join polytope in the original space of variables is known (see, e.g., [46] Corollary 29.2e p.
491).

Note that the perfect matchings of G are the V -joins of cardinality |V |/2. Furthermore,
any V -join of G has cardinality at least |V |/2. Therefore the perfect matching polytope of G
is the face of P V J(G) defined by the hyperplane {x ∈ RE :

∑
e∈E xe = |V |/2}.

We describe Barahona’s compact extended formulation for P V J(G) when G is a planar
graph.

A well-known fact about T -joins is that the symmetric difference of two T -joins is a ∅-join
(that is, a disjoint union of cycles) and the symmetric difference of a T -join and a ∅-join
is a T -join. This implies that, given a V -join J∗ of G, any other V -join is the symmetric
difference of J∗ and some ∅-join. Thus

P V J(G) =
{

y ∈ RE : ∃x ∈ P ∅J(G) s.t.
ye = xe, e ∈ E \ J∗

ye = 1− xe, e ∈ J∗

}
.

Thus a compact extended formulation for P ∅J(G) provides a compact extended formula-
tion for P V J(G). Edmonds and Johnson [22] showed that, for any graph G (not necessarily
planar),

P ∅J(G) =
{

x ∈ RE :
x(F )− x(δ(S) \ F ) ≤ |F | − 1, S ⊂ V, F ⊆ δ(S), |F | odd

0 ≤ xe ≤ 1, e ∈ E

}
. (16)

Note that, in the above description, an inequality associated with a set S ⊂ V is irredundant
only if δ(S) is a minimal nonempty cut. That is, the graphs induced by S and V \S are both
connected.

If G is planar, let G∗ = (V ∗, E∗) be the dual of a plane representation of G. For each edge
e ∈ E, let φ(e) be the edge of G∗ joining the (possibly identical) nodes representing the two
faces of the plane representation of G having e on their boundaries. Given S ⊂ V , the set
{φ(e) : e ∈ δ(S)} is an ∅-join of G∗, and viceversa, given an ∅-join J of G, {φ(e) : e ∈ J} is
a cut of G∗. In particular, simple cycles of G∗ are in one-to-one correspondence with minimal
nonempty cuts of G.
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For every x ∈ RE , we denote by φ(x) the vector in RE∗ whose component indexed by
φ(e) is xe, for all e ∈ E. Therefore

P ∅J(G) = {x ∈ RE : φ(x) ∈ P cut(G∗)}, (17)

where P cut(G∗) denotes the cut polytope of G∗. Recall that the polytope R(G∗), defined in
Section 2.3, is the following:

{
x ∈ RE∗ :

x(F )− x(C \ F ) ≤ |F | − 1, C ∈ C(G∗), F ⊆ C, |F | odd
0 ≤ xe ≤ 1, e ∈ E∗

}

where C(G∗) denotes the family of cycles of G∗. By (16) and (17), we have that P cut(G∗) =
R(G∗).

In Section 2.3 we described a compact extended formulation for R(G∗). By the above
discussion, this gives a compact extended formulation for the matching polytope of planar
graphs.

Gerards [26] gives a compact extended formulation for the matching polytope in graphs
with bounded genus.

6.4 Stable sets

Given an undirected graph G = (V,E) the stable set polytope P stab(G) is the convex hull
of the incidence vectors of the stable sets of G. Since optimizing a linear function over
P stab(G) is an NP-hard problem [37], a complete external description of P stab(G) may not
be obtainable. However several families of valid inequalities are known. We consider the
following inequalities.

0 ≤ xv ≤ 1 v ∈ V (18)
xvi + xvj ≤ 1 vivj ∈ E (19)

x(C) ≤ |C| − 1
2

C is an odd cycle of G (20)

x(K) ≤ 1 K is a clique of G (21)

Let P oc(G) = {x ∈ RV : x satisfies (18), (19) and (20)} and PK(G) = {x ∈ RV :
x satisfies (18) and (21)} (inequalities (19) are implied by (21) and (18)).

A graph G is t-perfect if P stab(G) = P oc(G) and G is perfect if P stab(G) = PK(G). The
class of perfect graphs is extremely rich and includes bipartite graphs and comparability
graphs among many others.

Consider the polytope

Qoc(G) =





(x, o, e) ∈ RV × RV 2 × RV 2
:

0 ≤ xvi ≤ 1 vi ∈ V
0 ≤ oij ≤ 1− xvi − xvj vivj ∈ E

oij ≤ oik + ekj vivk ∈ E, vj ∈ V
eij ≤ oik + okj vivk ∈ E, vj ∈ V

oii ≥ 1 vi ∈ V





.
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Theorem 6.6. (Yannakakis [50]) Polytope P oc(G) is the projection of Qoc(G) onto the x-
space.

Proof. Assign length 1−xvi −xvj to each edge vivj of G. If x satisfies (19), these lengths are
nonnegative. Furthermore a vector x violates constraints (20) if and only if G contains an
odd cycle C having length < 1. Define oij and eij to be the shortest lengths of an odd and
even walk, respectively, between vi and vj (multiple traversals of edges or nodes allowed). If
no such walk exists, assign a high value to the corresponding variable oij or eij . It is easy to
see that these definitions of oij and eij are consistent with the constraints defining Qoc(G),
except possibly for oii ≥ 1.

Furthermore G contains an odd cycle of length < 1 if and only if oii < 1 for some vi ∈ V ,
but this contradicts oii ≥ 1, vi ∈ V . Therefore P oc(G) ⊆ projx(Qoc(G)).

It is easy to see that the constraints defining Qoc(G) force oij and eij to be lower bounds
on the shortest lengths of an odd and even path between vi and vj respectively. Therefore
P oc(G) ⊇ projx(Qoc(G)).

A graph G = (V, E) is a comparability graph if there exists a partial order > on V =
{v1, . . . , vn}, such that vivj ∈ E if and only if vi > vj or vj > vi. Cliques of G correspond to
chains vi > vj > · · · > vk and stable sets of G correspond to sets of mutually incomparable
elements.

It is well known that comparability graphs are perfect (see Schrijver [46] Corollary 66.2a),
hence P stab(G) = PK(G). We consider the slack matrix SV of PK(G) when G is a compara-
bility graph and we disregard constraints (18). Since the rows and columns of SV correspond
to cliques and stable sets, then the entry of SV corresponding to clique K and stable set I is
1 if K ∩ I = ∅, 0 otherwise.

Given a clique K = {v1, . . . , vk} , where v1 > · · · > vk, consider the subsets

{v1} ⊂ V, {(vivi+1), 1 ≤ i ≤ k − 1} ⊂ V × V, {vk} ⊂ V.

Consider the vector in {0, 1}|V | × {0, 1}|V |2 × {0, 1}|V | that contains in sequence the inci-
dence vectors of the above three subsets and let fK be its transpose. Let F be the matrix
whose rows are the vectors fK , for all cliques K of G.

We say that v precedes u if v > u. Given a stable set I, consider the subsets

{v 6∈ I : v does not precede any node of I} ⊂ V
{(vivj) : vi > vj , vi precedes some node of I, vj 6∈ I and does not precede any node of I}
⊂ V × V
{v : v precedes some node of I} ⊂ V .

Let wI be the vector in {0, 1}|V |×{0, 1}|V |2×{0, 1}|V | that contains the incidence vectors
of the above three subsets in sequence and let W be the matrix whose columns are the vectors
wI , for all stable sets I of G.

Theorem 6.7. (Yannakakis[50]) The stable set polytope of a comparability graph G = (V, E)
admits an extended formulation of size o(|V |2).
Proof. Given clique K = {v1, . . . , vk} where v1 > . . . > vk and stable set I such that K∩I = ∅,
exactly one of the following alternatives occurs:
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1. v1 does not precede a node of I in the partial order >.

2. vi precedes some node of I while vi+1 does not precede a node of I.

3. vk precedes some node of I.

By construction, this shows that fkwi = 1 if Ki ∩ Ij = ∅ and fkwi = 0 otherwise.
Therefore SV = FW , and F , W are 0, 1-matrices. By Theorem 6.1, this gives a compact
extended formulation for P stab(G) when G is a comparability graph.

Yannakakis also gives an extended formulation of size |V |o(log(|V |) for P stab(G) when G is
perfect. This is subexponential size.

6.5 The Permutahedron

The permutahedron Πn ⊆ Rn is the convex hull of all vectors that can be obtained by
permuting the coordinates of the vector (1, 2, . . . , n).

It is well known (see Ziegler [51] or Goemans [28]) that Πn is the set of all x ∈ Rn

satisfying ∑n
i=1 xi =

(
n+1

2

)

∑
i∈S xi ≥ (|S|+1

2

)
S ⊂ {1, . . . , n}.

It can be shown that the above is an irredundant external description of Πn.
Goemans [28] shows that the size of a smallest extended formulation for Πn is of order

Θ(n log n). We report here his elegant geometric argument showing that any extended for-
mulation for Πn has at least log(n!) facets. This shows that any extended formulation has at
least O(n log(n)) constraints.

Indeed, let Q be a polyhedron in Rn×Rq whose projection onto the space Rn×{0} is Πn,
and let f be the number of facets of Q. Since each vertex of Πn is the projection of some face
of Q, the number of faces of Q is at least the number of vertices of Πn, that is n!. Since each
face of Q is uniquely determined as the intersection of a subset of the facets of Q, Q has at
most 2f faces. Hence n! ≤ 2f .

Goemans [28] also gives an extended formulation for the permutahedron with O(n log(n))
variables and constraints. The extended formulation is based on sorting networks. We recall
that a comparison network is comprised of wires and comparators. Each wire lies on a
horizontal line between an input and a output wire. There are n such lines, thus there are n
input wires a1, . . . , an and n output wires b1, . . . , bn. Each wire x carries a value v(x). Each
comparator is depicted as a vertical line and consists of two input wires x′, x′′ and two output
wires y′, y′′, and v(y′) = min{v(x′), v(x′′)} while v(y′′) = max{v(x′), v(x′′)}. Note that the
number of wires is n plus twice the number of comparators.

A sorting network is a comparison network such that, for any possible choice of v(a1), . . . ,
v(an), we have v(b1) ≤ v(b2) ≤ . . . ≤ v(bn). We refer the reader to [17] for an introduction
to comparison and sorting networks. Figure 1 depicts a sorting network for n = 4.

Given a comparison network N with n lines, we say that a permutation π of {1, . . . , n}
is feasible for N if, once we set v(ai) = πi for i = 1, . . . , n, then v(bi) = i for i = 1, . . . , n. In
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Figure 1: A sorting network with 4 lines, 5 comparators and 14 wires.

particular, N is a sorting network if and only if all permutations of {1, . . . , n} are feasible for
N .

Let P (N) be the convex hull of the vectors that are a feasible permutation for N of the
components of the vector (1, 2, . . . , n). When N is a sorting network, P (N) = Πn.

We give an extended formulation for P (N). The extended formulation has a variable for
each wire and 5 constraints for each comparator. Ajtai, Komlós, and Szemerédi [1] show that
there exist sorting networks with n input wires with O(n log n) comparators. This gives an
extended formulation for Πn with O(n log n) variables and constraints.

Let wi1, . . . , wihi be the wires in line i. Wires wi1 are the input wires, while wires wihi

are the output wires. We denote each comparator as a pair {(i, j), (i′, j′)} whose input wires
are wij and wi′j′ and whose output wires are wi,j+1 and wi′,j′+1.

For each wire wij , we have an auxiliary variable yij , 1 ≤ i ≤ n, 1 ≤ j ≤ hi. For
i = 1, . . . , n, we set

yihi = i. (22)

For each comparator {(i, j), (i′, j′)}, where i < i′, we have the following 5 constraints.
(Only the first 3 are necessary).

yij + yi′j′ = yi,j+1 + yi′,j′+1

yij ≥ yi,j+1

yi′j′ ≥ yi,j+1

yij ≤ yi′,j′+1 (23)
yi′j′ ≤ yi′,j′+1.

Note that, if π is a feasible permutation for N , and we set v(ai) = πi, i = 1, . . . , n, then the
solution defined by yij = v(wij), 1 ≤ i ≤ n, 1 ≤ j ≤ hi is feasible for the system defined
by (22) for each i and (23) for each comparator {(i, j), (i′, j′)}, where i < i′.

Theorem 6.8. Let N be a comparison network and Q(N) be the polyhedron defined by (22)
for i = 1, . . . , n and (23) for each comparator {(i, j), (i′, j′)}, where i < i′. The polytope
P (N) is the projection of Q(N) onto the space of variables y11, . . . , yn1.
In particular, if N is a sorting network, Πn is the projection of Q(N) onto the space of
variables y11, . . . , yn1.
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Proof. Let ȳ be a vertex of Q(N). We will show that (ȳ11, . . . , ȳn1) is a feasible permutation
for N . We prove this by induction on the number c of comparators. The result is trivial if
c = 0, since the identity is the unique feasible permutation and (22) implies ȳi1 = i.

Let us assume that c ≥ 1. By definition of a comparison network (since comparators
correspond to vertical lines), there exists a comparator of the form {(h, 1)(k, 1)}, h < k. We
first observe that either ȳh1 = ȳh2 and ȳk1 = ȳk2, or ȳh1 = ȳk2 and ȳk1 = ȳh2. If not, then
ȳh1 > ȳh2, ȳk1 < ȳk2, ȳh1 < ȳk2, and ȳk1 > ȳh2, because ȳh1 + ȳk1 = ȳh2 + ȳk2. Then, for
ε > 0 small enough, the vectors y′ and y′′ defined next are in Q(N) and ȳ = 1

2(y′ + y′′),
contradicting that ȳ is a vertex of Q(N):

y′ij =





ȳh1 − ε if i = h, j = 1
ȳk1 + ε if i = k, j = 1
ȳij otherwise.

y′′ij =





ȳh1 + ε if i = h, j = 1
ȳk1 − ε if i = k, j = 1
ȳij otherwise.

Therefore, ȳh2 = min{ȳh1, ȳk1} and ȳk2 = max{ȳh1, ȳk1}.
Let N ′ be the comparison network obtained from N by deleting the comparator {(h, 1)(k, 1)}

and wires wh1 and wk1. Note that wires wh2 and wk2 become input wires of N ′.
Let ỹ be the vector obtained from ȳ by removing the components indexed by (h, 1) and

(k, 1). Clearly ỹ ∈ Q(N ′). We show that ỹ is a vertex of Q(N ′). Suppose not, then there
exist two points y′ and y′′ of Q(N ′) distinct from ỹ such that ỹ = 1

2(y′ + y′′). Let ȳ′ be
defined by ȳ′ij = y′ij for every (i, j) 6= (h, 1), (k, 1), ȳ′h1 = y′h2 and ȳ′k1 = y′k2 if ȳh1 = ȳh2 and
ȳk1 = ȳk2, ȳ′h1 = y′k2 and ȳ′k1 = y′h2 if ȳh1 = ȳk2 and ȳk1 = ȳh2. If we define ȳ′′ analogously,
then ȳ = 1

2(ȳ′ + ȳ′′), contradicting the fact that ȳ is a vertex of Q(N). Thus, by induction,
(ỹ11, . . . , ỹh−1,1, ỹh2, ỹh+1,1, . . . , ỹk−1,1, ỹk2, ỹk+1,1, . . . , ỹn1) is a feasible permutation for N ′.
Therefore (ȳ11, . . . , ȳn1) is a feasible permutation for N .

A O(n2) extended formulation for Πn is much simpler to describe. We introduce auxiliary
binary variables δij , i = 1, . . . , n, j = 1, . . . , n, such that δij = 1 if and only if xi = j. Let Qn

be the polyhedron containing all points (x, δ) ∈ Rn × Rn×n satisfying the following system:

xi =
∑n

j=1 jδij , 1 ≤ i ≤ n∑n
j=1 δij = 1, 1 ≤ i ≤ n∑n
i=1 δij = 1, 1 ≤ j ≤ n
δij ≥ 0, 1 ≤ i, j ≤ n.

(24)

Theorem 6.9. The polytope Πn is the projection of Qn in the x-space.

Proof. The first set of equations in the system (24) defines x. Let Aδ ≥ b be the system
comprising all inequalities not involving x. The matrix A is the node-edge incidence matrix
of a bipartite graph thus it is totally unimodular. Since b is an integral vector, the polytope
Qn is integral. This proves the theorem.

7 Dynamic Programming

7.1 The knapsack problem

The 0−1 knapsack set K(n, b) with n items and capacity b has been introduced in Section 5.3.
The knapsack problem is max {∑n

i=1 cixi : x ∈ K(n, b)}.
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For k ≤ n and 0 ≤ b′ ≤ b, let f(k, b′) be the optimal value of the knapsack problem over
the set K(k, b′) and using the first k items: Then f(k, b′) can be computed using the following
recursion:

f(k, b′) = max{f(k − 1, b′), f(k − 1, b′ − ak) + ck}.
Consider the acyclic network N(V, A), where the vertices vk,b′ represent all possible states
f(k, b′), 0 ≤ k ≤ n, 0 ≤ b′ ≤ b and the edges are vk−1,b′vk,b′ having weight 0 and vk−1,b′−ak

vk,b′

having weight ck. We call Ak the set of arcs with weight ck. The computation of f(n, b) by
the above recursion is equivalent to the computation of a path P of minimum weight from
v0,0 to vn,b in the network N(V, A). Note that xk = 1 if P ∩Ak 6= ∅. Consider the polyhedron
Q defined by the following inequalities:

xk =
∑

a∈Ak
za, 1 ≤ k ≤ n∑

a∈δ−(v0,0) za −
∑

δ+(v0,0) za = −1
∑

a∈δ−(vn,b)
za −

∑
δ+(vn,b)

za = 1
∑

δ−(vk,b′ )
za −

∑
δ+(vk,b′ )

za = 0, vk,b′ ∈ V \ {v0,0, vn,b}
za ≥ 0, a ∈ A.

Theorem 7.1. Let K(n, b) = {x ∈ {0, 1}n :
∑n

i=1 aixi ≤ b}. Then conv(K(n, b)) =
projx(Q).

Proof. In the system of inequalities defining Q, disregard the first set of equations, that define
xk. The remaining system is the path polytope, since D = (V, A) does not contain directed
cycles.

7.2 Stable sets in Distance Claw-free graphs

The results in this section appear in [44]. Given an undirected graph G = (V, E), we denote
with α(G) the stability number of G, i.e., the maximum number of pairwise nonadjacent
nodes of G. Given v ∈ V , let Ni(v) be the set of nodes of G at distance exactly i from v and
Gi(v) the subgraph of G induced by Ni(v). A graph G is claw-free if α(G1(v)) ≤ 2 for every
v ∈ V . This is equivalent to the fact that G does not contain a claw as induced subgraph. G
is distance claw-free if α(G1(v)) ≤ 2 and α(G2(v)) ≤ 2 for every v ∈ V .

Lemma 7.2. If G is a distance claw-free graph, then α(Gi(v)) ≤ 2 for every v ∈ V and
distance i.

Proof. Assume not and choose v such that for a minimum i, Gi(v) contains three pairwise
nonadjacent nodes x1, x2, x3. Since G is distance claw-free, i > 2. So no pair xi, xj has a
common neighbor t, in Ni−1(v), else t would be the center of a claw. Let y1, y2, y3 ∈ Ni−1(v)
be neighbors of x1, x2, x3 respectively. As just observed, the nodes y1, y2, y3 are distinct. By
minimality of i, we may assume that y1y2 ∈ E and let z ∈ Ni−2(v) be a neighbor of y1.
Now zy2 ∈ E, else y1 is the center of a claw. This shows that z and y3 are nonadjacent, else
{x1, x2, x3} ∈ N2(z), a contradiction to G being distance claw-free. This shows that y3 is not
adjacent to y1 or y2, else y1 or y2 would be the center of a claw.
Let P be a shortest path between z and y3 whose intermediate nodes lie in

⋃
0≤k≤i−2 Nk(v) and

let w be the node at distance 2 from z in P . Then {x1, x2, w} ∈ N2(z), again a contradiction
to G being distance claw-free.
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We now introduce a Dynamic Programming recursion to compute a maximum weight
stable set in a (general) graph G and use it to derive an extended formulation for the stable
set polytope of G. If G is distance claw-free, we use the above lemma to show that the
recursion runs in polynomial time and the associated extended formulation is compact.

Given a connected graph G = (V,E) and v ∈ V , let d be the largest value i for which
Ni(v) 6= ∅. Let S the family of the stable sets of G and Si the family of stable sets of Gi(v).
Consider a directed acyclic graph D whose nodes are {vi

S : S ∈ Si, 0 ≤ i ≤ d} together with
s ant t.
The arcs are:

• sv0
∅ and sv0

v

• vi
S∩Ni(v)v

i+1
S∩Ni+1(v) for each stable set S contained in Ni(v) ∪Ni+1(v).

• vd
St for each stable set S in Sd.

The weight of an arc is the weight of the stable set represented by the head of the arc. It
is now clear that there is a bijection between the family S of stable sets in G and the set of
directed paths from s to t in D that preserves the weight.

If G contains a node v such that α(Gi(v)) ≤ k, 1 ≤ i ≤ d, the size of the digraph D is
polynomial in the size of G and therefore a stable set of maximum weight can be efficiently
computed by shortest path techniques.
This is the case if G is distance claw-free since, by Lemma 7.2 for every node v, α(Gi(v)) ≤
2, 1 ≤ i ≤ d.

An extended formulation can be derived in a manner that is similar to the one introduced
for the knapsack problem: xu = 1 whenever the optimal stable set contains node u. Define Au

to be the subset of arcs of D whose head represents a stable set containing u. This happens
whenever the maximum weight path contains an arc a ∈ Au. So by adding the equations
xu =

∑
a∈Au

za, u ∈ V (G) to the path formulation one obtains an extended formulation.
This formulation is compact whenever the size of D is polynomial in the size of G and this
is the case for distance claw-free graphs.
Giles and Trotter [27] show that if G is a distance claw-free graph, the external description
of the stable set polytope of G in the original space contains complicated inequalities.

7.3 Packing and partitioning orbitopes

Let m,n be two positive integers. The packing orbitope O≤
m,n is the convex hull of all m× n

0, 1-matrices with at most a nonzero element in each row and whose columns are in lexi-
cographic decreasing order. The partitioning orbitope O=

m,n is the convex hull of all m × n
0, 1-matrices with exactly one nonzero element in each row and whose columns are in lexico-
graphic decreasing order.

Packing and partitioning orbitopes have been introduced and studied by Kaibel and
Pfetsch [36] who characterized the facet inducing inequalities. These inequalities can be
added in the formulation of certain combinatorial optimization problems in order to break
symmetries. An example is the formulation for graph coloring with binary variables xij

assuming value 1 if and only if color j is assigned to node i.
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Faenza and Kaibel [23] gave a compact extended formulation for packing and partitioning
orbitopes. This formulation is based on a dynamic programming algorithm to maximize a
linear function over the packing or partitioning orbitope. Here we restrict ourselves to packing
orbitopes, since O=

mn is a face of O≤
mn.

We first illustrate this algorithm, which reduces the problem to a longest path computation
in an auxiliary acyclic digraph. Given a cost matrix c ∈ Rmn, we want to find a 0, 1 matrix
x ∈ Rmn maximizing cx =

∑m
i=1

∑n
j=1 cijxij such that x has at most a 1 in each row and its

columns are in lexicographic decreasing order.
We construct a digraph D = (V, A) where V = {(i, j) : 0 ≤ i ≤ m, 0 ≤ j ≤ n} and A is

the union of the set A↓ containing an arc (i, j)↓ = ((i, j), (i + 1, j)) for every 0 ≤ i ≤ m− 1,
0 ≤ j ≤ n, and the set A↘ containing an arc (i, j)↘ = ((i, j), (i + 1, j + 1)) for every
0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. Note that D is acyclic. We assign lengths to the arcs as
follows: `(ij)↓ = max{0, c(i+1)1, . . . , c(i+1)j} and `(ij)↘ = c(i+1)(j+1).

Next we show that, given an optimal matrix x, cx is the length of a longest path in D
from (0, 0) to {(m, 0), . . . , (m,n)}. Since D is acyclic, a longest path can be computed in
polynomial time.

Let P be the longest path from (0, 0) to the set of nodes {(m, 0), . . . , (m,n)}. We construct
an m×n 0, 1-matrix x as follows. For every arc of the form (i−1, j−1)↘ ∈ P , we set xij = 1.
For every arc (i − 1, j)↓ ∈ P , let k = arg max{cih : 1 ≤ h ≤ j}; if cik > 0, we set xik = 1.
All other entries of x are set to 0. Note that, by construction of D, ` and x, x is a 0, 1
matrix with at most a 1 per row and whose columns are in lexicographic decreasing order.
Furthermore, cx =

∑
e∈P `e.

Viceversa, given a 0, 1 matrix x with at most a 1 per row and whose columns are in
lexicographic decreasing order, we construct a path P in D from (0, 0) to {(m, 0), . . . , (m,n)}
as follows. For every 1 ≤ i ≤ m and 1 ≤ j ≤ n such that xij = 1 and xhj = 0 for every
1 ≤ h ≤ i−1, P contains the arc (i−1, j−1)↘. All other arcs in P are in A↓. By construction
of D, since the columns of x are in lexicographic decreasing order, there exists a unique such
path P . By construction cx ≤ ∑

e∈P `e.

The extended formulation proposed by Faenza and Kaibel [23] is as follows. Let F ⊂ RA

be the convex hull of the incidence vectors of paths in D from (0, 0) to {(m, 0), . . . , (m,n)}.
Note that, since D is acyclic, F is the set of unit flows from (0, 0) to {(m, 0), . . . , (m,n)}.
Thus F is described by m(n + 1)− 1 flow-conservation equations, |A| nonnegativity bounds
and by the equation y(0,0)↓ + y(0,0)↘ = 1.

The formulations has a variable xij for 0 ≤ i ≤ m and 0 ≤ j ≤ n and a variable ye for
every e ∈ A. The variables xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, are the original variables. Variables
x0j , j = 0, . . . , n, xi0, i = 1, . . . , m, are dummy variables, while the variables ye, e ∈ A, are
0, 1-variables representing paths from (0, 0) to {(m, 0), . . . , (m,n)}. Given (i, j), 0 ≤ i ≤ m,
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0 ≤ j ≤ n, let Sij = {(i, h) : j ≤ h ≤ n}. The constraints are

x00 = 1, x0j = 0 j = 1, . . . , n

xij ≥ y(i−1,j−1)↘ i = 1, . . . , m, j = 1, . . . , n, (25)
∑

(i,h)∈Sij

xih ≤
∑

e∈δ−(Sij)

ye i = 1, . . . , m, j = 0, . . . , n, (26)

y ∈ F

x ≥ 0.

Constraints (25) ensure that, whenever (i− 1, j − 1) ↘ is in the path defined by y, xij = 1.
Constraints (26) ensure that, for given (i, j), whenever the path defined by y does not contain
any node (i, h), j ≤ h ≤ n, xih = 0 for all h ≥ j. Furthermore, since y ∈ F , by construction
of D we have

∑
e∈δ−(Si0) ye = 1, hence constraints (26) relative to (i, 0), i = 1 . . . , m become∑n

h=0 xih ≤ 1.
It follows from the construction of D = (V, A) and from the previous discussion that

a 0, 1-vector (xij)1≤i≤m, 1≤j≤n is in O≤
mn if and only if it is the projection of a 0, 1-vector

(x, y) ∈ R(m+1)(n+1) × RA satisfying the above constraints.

Theorem 7.3. (Faenza and Kaibel [23]) Let Q ⊂ R(n+1)(m+1)×RA be the polyhedron defined
by the above constraints. Then O≤

mn is the projection of Q onto the space of the variables xij,
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. We will show that Q is integral. It suffices to prove that, given any vector (c, d) ∈
R(m+1)(n+1) × RA, the problem max{cx + dy : (x, y) ∈ Q} has an optimal solution that is
integral. Since x00 = 1, we may assume c00 = 0. We define two vectors c↓ and c↘ in RA that
are zero in all components except:

c↘
(i−1,j−1)↘ = cij 1 ≤ i ≤ m, 1 ≤ j ≤ n,

c↓
(i−1,j)↓ = max{0, ci1, . . . , cij} 1 ≤ i ≤ m, 0 ≤ j ≤ n.

We show that the following hold:

i) For every (x, y) ∈ Q, cx + dy ≤ (d + c↘ + c↓)y;

ii) For every integral y ∈ F , there exists x ∈ {0, 1}(m+1)(n+1) such that (x, y) ∈ Q and
cx + dy = (d + c↘ + c↓)y.

The above two properties imply the theorem. Indeed, since F is an integral polyhedron, there
exists an optimal integral solution y∗ for the problem max{(d + c↘ + c↓)y : y ∈ F}. By
i), for every (x, y) ∈ Q, cx + dy ≤ (d + c↘ + c↓)y ≤ (d + c↘ + c↓)y∗. By ii), there exists
x∗ ∈ {0, 1}(m+1)(n+1) such that (x∗, y∗) ∈ Q and cx∗ + dy∗ = (d + c↘ + c↓)y∗. Thus (x∗, y∗)
is an optimal integral solution for max{cx + dy : (x, y) ∈ Q}.

We show ii). Let y ∈ F . We define x ∈ {0, 1}(m+1)(n+1) such that x is zero everywhere
except:
¦ x00 = 1,
¦ For every (i, j) such that y(i−1,j−1)↘ = 1, xij = 1 (1 ≤ i ≤ m, 1 ≤ j ≤ n),
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¦ For every (i, j) such that y(i−1,j)↓ = 1, xik = 1 where k = arg max{0, ci1, . . . , cij} (1 ≤ i ≤ m,
0 ≤ j ≤ n).
One can readily verify that (x, y) ∈ Q and cx + dy = (d + c↘ + c↓)y.

We now prove i). Define x′ ∈ R(m+1)(n+1) by x′ij = xij−y(i−1,j−1)↘ , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
and x′ij = xij if i = 0 or j = 0. By (25), x′ ≥ 0. By construction, c(x− x′) = c↘y.

It suffices to show c↓y ≥ cx′, since this implies (d+c↘+c↓)y ≥ dy+c(x−x′)+cx′ = cx+dy.
We prove that, for i = 1, . . . , n,

n∑

j=0

cijx
′
ij ≤

n∑

j=0

c↓
(i−1,j)↓y(i−1,j)↓ , (27)

which implies c↓y ≥ cx′. Observe first that, for 1 ≤ i ≤ m and 0 ≤ j ≤ n

n∑

h=j

x′ih =
n∑

h=j

xih−
n∑

h=max{1,j}
y(i−1,h−1)↘ =

∑

(i,h)∈Sij

xih−
∑

e∈δ−(Sij)

ye+
n∑

h=j

y(i−1,h)↓ ≤
n∑

h=j

y(i−1,h)↓

where the last inequality follows from (26).
By construction, 0 ≤ c↓

(i−1,0)↓ ≤ c↓
(i−1,1)↓ ≤ . . . ≤ c↓

(i−1,n)↓ and cij ≤ c↓
(i−1,j)↓ for 1 ≤ i ≤ m,

0 ≤ j ≤ n. Now inequality (27) is implied by the following claim.

Let w, z ∈ Rq such that w ≥ 0 and
∑q

i=j wi ≤
∑q

i=j zi for j = 1, . . . , q. For every α, β ∈ Rq

such that 0 ≤ β1 ≤ β2 ≤ . . . ≤ βq and α ≤ β, the inequality
∑q

i=1 αiwi ≤
∑q

i=1 βizi holds.

The above claim is proved by induction on q, the case q = 1 being trivial. Suppose q > 1.
By inductive hypothesis

∑q
i=2(αi − β1)wi ≤

∑q
i=2(βi − β1)zi. Since α1 ≤ β1 and w1 ≥ 0,∑q

i=1(αi − β1)wi ≤
∑q

i=1(βi − β1)zi. Hence
∑q

i=1 αiwi −
∑q

i=1 βizi ≤ β1
∑q

i=1(wi − zi) ≤ 0,
where the last inequality follows from β1 ≥ 0 and

∑q
i=1 wi ≤

∑q
i=1 zi.

8 Variable discretization

Most of the results exposed in this survey deal with integer or 0/1-variables. Over the
last decade, progress in characterizing the convex hull of structured mixed integer sets has
been achieved by “discretizing” the continuous variables. That is, continuous variables are
expressed as a combination of few auxiliary integer variables, thus reducing the original
problem to a pure integer one. This approach has been particularly successful in several
problems arising in lot-sizing [42], [30], [40], [48], [14] (see [43] for a survey).

We describe a framework that unifies many of the problems studied in the papers refer-
enced above. This framework was proposed in [14]. Here we follow the presentation given
in [16]. The problem is an extension to the mixed-integer case of the classic vertex covering
in bipartite graphs.

Given a bipartite graph G = (U ∪V, E) a set I ⊆ U ∪V and rational numbers bij , ij ∈ E,
we define the set of mixed integer vertex covers as

S(G,I) = {x ∈ RU∪V : xi + xj ≥ bij , ij ∈ E; xi ∈ Z, i ∈ I}.
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Let k be a positive integer such that bij = bbijc+ hij

k for some integer hij between 0 and
k − 1 for each ij ∈ E,.

Next we present an extended formulation for conv(S(G,I)) which is polynomial on |V (G)|,
|E| and k. Thus, when k is polynomial in the input size, the formulation is compact. The size
of this formulation can be improved by studying the possible fractional parts taken by the
continuous variables at points lying on a minimal face of conv(S(G,I)) (see [14]). In particular,
this formulation can be made compact when G is a tree, irrespective of k. Most problems
studied in the literature are of this type.

Let V (G) = U ∪V and L = V (G) \ I. For any vector x ∈ RV (G), we denote by xI and xL

its restrictions to the components indexed by I and L respectively.

Remark 8.1. Every point of S(G,I) is a convex combination of points x1, . . . , xh ∈ S(G,I)

such that kx` is integral for ` = 1, . . . , h.

Proof. The constraint matrix of the system xi + xj ≥ bij , ij ∈ E is the edge-node incidence
matrix A of G. Since G is bipartite, A is totally unimodular. Let x̄ ∈ S(G,I). By defi-
nition of S(G,I), x̄I is integral. Furthermore, z̄ = kx̄L is in the polyhedron Q defined by
ALz ≥ k(b−AI x̄I), where AL and AI are the column submatrices of A indexed by L and I,
respectively. Since AL is totally unimodular and k(b − AI x̄I) is an integral vector, Q is an
integral polyhedron. Hence z̄ is a convex combination of integral points z1, . . . , zh of Q. Let
xi = (x̄I , k

−1zi) ∈ S(G,I), then x̄ is a convex combination of x1, . . . , xh.

Remark 8.2. The polyhedron conv(S(G,I)) is not pointed. Indeed the dimension of its lin-
eality space is the number of connected components of G. A basis of the lineality space is
given by the vectors, defined by each component C, of the form xi = 1, i ∈ U ∩ C, xi = −1,
i ∈ V ∩ C, xi = 0, i /∈ C.
Remark 8.1 shows that every minimal face of conv(S(G,I)) contains a point x that is 1/k-
integral, namely kx is an integral vector.

Consider a point x̄ of conv(S(G,I)) with kx̄ is integral. Thus x̄i = bx̄ic + ri
k for some

integer ri, i ∈ U ∪V . For every i ∈ U ∪V , define µ̄t
i = bx̄ic for t = 0, . . . , k− ri− 1, µ̄t

i = dx̄ie
for t = k− ri, . . . , k− 1. Then x̄i = 1

k (µ̄0
i + · · ·+ µ̄k−1

i ) where µ̄0
i , . . . , µ̄

k−1
i ∈ Z. Furthermore,

if i ∈ I, then x̄i is integer and µ̄0
i = . . . = µ̄k−1

i .
Therefore we associate k auxiliary integer variables µ0

i , . . . , µ
k−1
i to each variable xi, i ∈

V (G). This allows us to define conv(S(G,I)) as the projection of a polyhedron in the (x, µ)
space, as follows.

Theorem 8.3. The polyhedron conv(S(G,I)) is the projection onto the space of the x-variables
of the polyhedron QI defined as the set of points (x, µ) satisfying

xi − 1
k
(µ0

i + · · ·+ µk−1
i ) = 0 i ∈ U ∪ V (28)

µt
i + µ

k−hij−1−t
j ≥ bbijc t = 0, . . . , k − hij − 1 ij ∈ E (29)

µt
i + µ

2k−hij−1−t
j ≥ dbije t = k − hij , . . . , k − 1 ij ∈ E (30)

µt−1
i − µt

i = 0 t = 1, . . . , k − 1, i ∈ I. (31)
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Figure 2: Representation of the extended formulation of a single inequality xi + xj ≥ bij .
Each edge joins the node corresponding to variable µt

i on the left to the node corresponding
to variable µ

qijt

j on the right. Edges at the top group represent inequalities (29), while edges
below represent inequalities (30).

We will need the following result of Heller and Tompkins.

Theorem 8.4 (Heller and Tompkins [31]). Let A be a 0,±1-matrix with at most two nonzero
entries per row. The matrix A is totally unimodular if and only if the columns of A can be
partitioned into two sets R and B such that the sum of the columns in R minus the sum of
the columns in B is a 0,±1-vector.

For ease of notation, given an edge ij ∈ E and an index t, 0 ≤ t ≤ k − 1, we define

qijt =
{

k − hij − 1− t, t = 0, . . . , k − hij − 1;
2k − hij − 1− t, t = k − hij , . . . , k − 1.

Proof of Theorem 8.3. We first show that the projection of QI onto the x-space is contained
in conv(S(G,I)). Notice that, given ij ∈ E, summing all inequalities (29)-(30) relative to ij,

dividing them by k and adding the equations xi −
∑k−1

t=0
µt

i
k = 0 and xj −

∑k−1
t=0

µt
j

k = 0, one
obtains xi + xj ≥ bij . Therefore xi + xj ≥ bij is valid for the projection of QI .

Let M be the constraint matrix of the system defined by (29),(30),(31). Then M is a
0,±1 matrix with exactly two nonzero elements in each row, and the sum of the columns of
M corresponding to nodes in U minus the sum of the columns corresponding to nodes in V
yields the vector of all zeroes. By Theorem 8.4, matrix M is totally unimodular.

Consider a point (x̄, µ̄) ofQI . We wish to show that x̄ ∈ conv(S(G,I)). Since the constraint
matrix M of the system defined by (29),(30),(31) is totally unimodular, and the right-hand-
side of such system is integral, µ̄ can be written as a convex combination of integral vectors
µ1, . . . , µh satisfying (29),(30),(31). Let x1, . . . , xh be the vector defined by µ1, . . . , µh in the
system of equations (28). By (31), x1

I , . . . , x
h
I are integral vectors, therefore x1, . . . , xh ∈

S(G,I). Furthermore x̄ is a convex combination of x1, . . . , xh, thus x̄ ∈ conv(S(G,I)).

Conversely, we show that conv(S(G,I)) is contained in the projection of QI onto the x-
space. By Remark 8.1, given a point x̄ of S(G,I) such that kx̄ is integral, we only need to
show that there is a vector µ̄ such that (x̄, µ̄) ∈ QI . Since kx̄ is integral, x̄i = bx̄ic + ri

k for
some integer ri, i ∈ U ∪ V . Also, x̄i ∈ Z for every i ∈ I, thus ri = 0 for every i ∈ I. For
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every i ∈ U ∪ V , define µ̄t
i = bx̄ic for t = 0, . . . , k − ri − 1, µ̄t

i = dx̄ie for t = k − ri, . . . , k − 1.
Clearly (x̄, µ̄) satisfies (28) and (31). We now show that µ̄ satisfies (29),(30). In fact, given
ij ∈ E and an index t, 0 ≤ t ≤ k − 1, observe that the vector µ̄ defined above satisfies

1
k
(µ̄0

i + . . . + µ̄k−1
i ) +

1
k
(µ̄0

j + . . . + µ̄k−1
j ) ≥ bij ;

1
k
µ̄t

i −
1
k
µ̄`

i ≥ 0, ` = 0, . . . , t− 1;

1
k
µ̄t

i −
1
k
µ̄`

i ≥ − 1
k , ` = t + 1, . . . , k − 1;

1
k
µ̄

qijt

j − 1
k
µ̄`

j ≥ 0, ` = 0, . . . , qijt − 1;

1
k
µ̄

qijt

j − 1
k
µ̄`

j ≥ − 1
k , ` = qijt + 1, . . . , k − 1.

Summing all these inequalities, we obtain

µ̄t
i + µ̄

qijt

j ≥ bij − 1
k
(2k − 2− t− qijt).

For t = 0, . . . , k−hij−1, this gives µ̄t
i+µ̄

qijt

j ≥ bij−1− 1
k (hij−1), that is µ̄t

i+µ̄
qijt

j ≥ bbijc−1+ 1
k .

Since µ̄ is integral, it satisfies (29).
For t = k−hij , . . . , k−1, this gives µ̄t

i+µ̄
qijt

j ≥ bij− 1
k (hij−1), that is µ̄t

i+µ̄
qijt

j ≥ bbijc+ 1
k .

Since µ̄ is integral, it satisfies (30).2

Remark 8.5. Observe that constraints (31) are equivalent to xi = µ1
i = . . . = µk−1

i for i ∈ I.
Therefore, for i ∈ I, the variables µt

i, t = 0, . . . , k−1 can be eliminated in the system defining
QI by replacing them with variable xi. The constraint matrix of the system obtained from
(29),(30), ij ∈ E, by the above substitution is again totally unimodular.

Example. The mixing set [42] is the set

XMIX
n = {(x0, x) ∈ R× Zn : x0 + xi ≥ bi, i = 1, . . . , n}.

Let bi = hi
k , i = 1, . . . , n, where k and h1, . . . , hn are integer. After replacement of each

variable µt
i, i = 1, . . . , k, t = 0, . . . , k − 1 by the variable xi as explained in Remark 8.5, the

extended formulation for conv(XMIX
n ) given in Theorem 8.3 becomes

kx0 − µ0
0 − · · · − µk−1

0 = 0,
µt

0 + xi ≥ bbic, t = 0, . . . , k − hi − 1, i = 1, . . . , n;
µt

0 + xi ≥ dbie, t = k − hi, . . . , k − 1, i = 1, . . . , n.

Figure 3 depicts the constraints defining XMIX
n and the corresponding extended formu-

lation. ¥

Remark 8.6. The extended formulation in Theorem 8.3 has O(k|U ∪ V |) variables and
O(k|E|) constraints. Therefore its size is pseudopolynomial, but in general not polynomial, in
the size of the encoding of S(G,I). In fact one can construct counterexamples to polynomiality
[14].
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Figure 3: Mixing set and extended formulation.

The extended formulation in Theorem 8.3 can be turned into a formulation of polynomial
size whenever we have the property that every point in conv(S(G,I)) can be expressed as
convex combination of points of S(G,I) in which the fractional parts of the coordinates of
these points can take only “a small number” of possible values. More formally.

Remark 8.7. Suppose we are given L ⊂ {0, . . . , k − 1} with the property that

conv(S(G,I)) = conv(S(G,I) ∩ {x : k(xi − bxic) ∈ L}).

(By Lemma 8.1, the set {0, . . . , k − 1} has the above property.)
The extended formulation presented in Section 2 can be turned into an extended formula-

tion of size polynomial in |L| by setting µt
i = µt−1

i whenever k − t 6∈ L and then eliminating
variables and duplicate constraints.
In particular, whenever such a set |L| is known whose size is polynomial in the input data,
this yields a polynomial size extended formulation.

Conforti et al. [14] give bounds on the smallest size of a set L satisfying the conditions of
Remark 8.7. Given any such set L, they also give an extended formulation for conv(S(G,I))
that has |L||V (G)| additional variables. It can be seen that such an extended formulation
is that given in Remark 8.7, with the additional constraints µt

i − µt−1
i ≥ 0, t = 1, . . . , k − 1,

µ0
i − µk−1

i ≥ −1.

9 Conclusion

This survey presented a number of tools for deriving and studying extended formulations:
Projection, Minkowski-Weyl, union of polyhedra, dynamic programming, and variable dis-
cretization. In each case, we showed how to use the tool in one or several applications. A
theorem of Yannakakis gives a lower bound on the size of an extended formulation. This
result does not seem to be well known and it certainly deserves greater recognition.

Acknowledgments: We thank Marco DiSumma for his valuable comments.
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