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Abstract. We show that the binary logarithm of the nonnegative rank
of a nonnegative matrix is, up to small constants, equal to the minimum
complexity of a randomized communication protocol computing the ma-
trix in expectation. We use this connection to prove new conditional
lower bounds on the sizes of extended formulations, in particular, for
perfect matching polytopes.
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1 Introduction

Extended formulations are a powerful tool for minimizing linear or, more gen-
erally, convex functions over polyhedra (see, e.g., Ziegler [19] for background on
polyhedra and polytopes). Consider a polyhedron P in R

d and a convex function
ϕ : Rd → R, that has to be minimized over P . If a small size linear description of
P is known, then minimizing ϕ over P can be done efficiently using an interior
point algorithm, or the simplex algorithm if ϕ is linear and theoretical efficiency
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is not required. However, P can potentially have many facets. Or worse: it can
be that no explicit complete linear description of P is known. This does not
necessarily make the optimization problem at hand difficult, since the existence
of an efficient algorithm solving the separation problem for P implies that op-
timizing over P can be done efficiently (see [9]). However, this result uses the
ellipsoid algorithm, which is useless practically.

Now suppose there exists a polyhedron Q in a higher dimensional space R
e

such that P is the image of Q under a linear projection π : R
e → R

d. The
polyhedron Q together with π define an extended formulation, or extension of
P . Minimizing ϕ over P amounts to minimizing ϕ◦π over Q. If Q has few facets,
then we can resort to an interior point algorithm or the simplex algorithm to
solve the optimization problem. Of course, one should also take into account the
size of the coefficients in the linear description of Q and in the matrix of π, but
we will ignore this here. The success of extended formulations is due to the fact
that a moderate increase in dimension can result in a dramatic decrease in the
number of facets. As we will see later in the paper, P may have exponentially
many facets, while Q only polynomially many (see also the recent surveys by
Conforti et al. [4] and by Kaibel [10] for other examples).

We define the size of an extension Q as the number of facets of Q, and the
extension complexity of a polyhedron P as the minimum size of any extension
of P . Following [7], we denote this by xc(P ). The extension complexity of a
polyhedron is a far better measure of how “complex” a polyhedron is than, for
instance, its number of facets or its number of vertices and extreme rays.

Because we mainly consider polytopes, we assume from now on that P is
bounded, that is, P is a polytope. This is not a major restriction. So consider
a polytope P in R

d with m facets and n vertices. Let h1, . . . , hm be m affine
functions on R

d such that h1(x) � 0, . . . , hm(x) � 0 are the facet-defining
inequalities of P . Let also v1, . . . , vn denote the vertices of P . The slack matrix
of P is the nonnegative m× n matrix S = S(P ) = (sij) with sij = hi(vj).

A rank-r nonnegative factorization of a nonnegative matrixM is an expression
of M as a product M = AB where A and B are nonnegative matrices with
r columns and r rows, respectively. The nonnegative rank of M , denoted by
rank+(M), is the minimum natural r such that M admits a rank-r nonnegative
factorization [3]. Observe that the nonnegative rank of M can also be defined
as the minimum natural r such that M is the sum of r nonnegative rank one
matrices. In a seminal paper, Yannakakis [18] proved, among other things, that
the extension complexity of a polytope is precisely the nonnegative rank of its
slack matrix (see also [7]).

Theorem 1. For all polytopes P , xc(P ) = rank+(S(P )).

Before going on, we sketch the proof of half of the theorem. Assuming P = {x ∈
R

d : Ex � g}, consider a rank r nonnegative factorization S(P ) = FV of the
slack matrix of P . Then it can be shown that Q := {(x, y) ∈ R

d+r : Ex+ Fy =
g, y � 0} is an extension of P . Notice that Q has at most r facets, and r extra
variables. Taking r = rank+(S(P )) implies xc(P ) � rank+(S(P )). Moreover,
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since P is a polytope, one can also assume that Q is bounded, as shown by the
following lemma, whose proof we postpone to the journal version of the paper.

Lemma 2. Let P = {x ∈ R
d : Ex � g} be a polytope, let S(P ) = FV be a rank-

r nonnegative factorization of the slack matrix of P with r := rank+(S(P )), and
let Q := {(x, y) ∈ R

d+r : Ex+ Fy = g, y � 0}. Then Q is bounded.

In the work of Yannakakis [18] also appeared a connection between extended for-
mulations and communication complexity (the book of Kushilevitz and Nisan [13]
is a standard reference on communication complexity). Every deterministic com-
munication protocol computing a nonnegative matrix M (traditionally M is a
binary matrix) yields a nonnegative factorization of M , and thus an extended
formulation. Indeed, such a protocol defines a partition of the matrix into sub-
matrices whose entries are all equal. Notice that the rows and columns of such
a “monochromatic” submatrix are not necessarily consecutive. Each submatrix
yields a nonnegative rank one matrix, and the sum of the resulting matrices is
preciselyM . The rank of this nonnegative factorization ofM is at most 2c, where
c is the complexity of the protocol. When M is the slack matrix of a polytope
P , we obtain an extension of P .

Notably, Yannakakis [18] used this connection to obtain a quasipolynomial
size extended formulation for the stable set polytope of a n-vertex perfect graph
from a deterministic communication protocol computing the corresponding slack
matrix with polylogarithmic complexity.

The aim of this paper is to prove new results on extended formulations by
tightening the connection between extended formulations, nonnegative factor-
izations and communication complexity. In Section 2, we define the different
polytopes considered here, and describe their facets and vertices. In Section 3,
we discuss deterministic and randomized communication protocols and define
what it means for a randomized communication protocol with private random-
ness and nonnegative outputs to compute a given nonnegative matrix M in
expectation. Then we prove in Sections 4 and 5 that the minimum complexity
of a randomized protocol with nonnegative outputs computing M in expecta-
tion is, up to small additive constants, the binary logarithm of the nonnegative
rank of M . This is done in two parts. Let c denote the minimum complexity
of a randomized protocol computing M in expectation, and let r := rank+(M).
First, in Section 4, we prove the inequality lg r � c. (Throughout this paper,
lg denotes the binary logarithm.) Second, in Section 5, we prove the converse
inequality c � lg r +O(1). The two inequalities together imply lg r = c+ Θ(1).
By Theorem 1, we obtain a new characterization of the extension complexity of
polytopes. The above results were recently1 generalized to a correspondence be-
tween semidefinite extended formulations of a polytope P and quantum one-way
protocols computing the slack matrix S(P ) in expectation, see Fiorini et al. [8].
In the context of that work, this SDP-quantum correspondence eventually led

1 We point out that the present paper was completed roughly one year before [8] but
was only submitted one month later.
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to superpolynomial lower bounds on the extension complexity of the cut, stable
set and TSP polytopes [8].

Finally, in Section 6, we use this characterization to prove new results on ex-
tended formulations of perfect matching polytopes, a prominent family of poly-
topes for which the extension complexity is unknown. Yannakakis [18] proved
that every symmetric extension of the perfect matching polytope of the com-
plete graph Kn has exponential size (we do not formally define symmetric here;
the interested reader may refer to [18]). Here, we show roughly that there is a
tradeoff between the amount of randomness used by an extension of the perfect
matching polytope Kn, regarded as a randomized protocol, and the size of this
extension. In particular, we prove that if the protocol detects non-zero entries of
the slack matrix with constant probability, then the extension has exponential
size. A similar result holds for the spanning tree polytope of Kn.

2 Polytopes Relevant to This Work

Now we describe briefly various families of polytopes relevant to this paper. For
a more detailed presentation of those we refer the reader to Schrijver [16].

Let I be a finite ground set. The characteristic vector of a subset J ⊆ I is

the vector χJ ∈ R
I such that, for each i ∈ I, χJ

i =

{
1 if i ∈ J
0 if i /∈ J

. For x ∈ R
I ,

we let x(J) :=
∑

i∈J xi. Throughout this section, G = (V,E) denotes a (simple,
undirected) graph. For U ⊆ V , we denote the edges of the subgraph induced
by U as E[U ]. The cut defined by U , denoted as δ(U), is the set of edges of G
exactly one of whose endpoints is in U . In this paper, we will often take G to be
the complete graph Kn with vertex set V (Kn) = [n] := {1, . . . , n} and edge set
E(Kn) = {ij : i, j ∈ [n], i �= j}.

A spanning tree of G is a tree T (i.e. a simple, connected graph without cycles)
whose set of vertices and edges respectively satisfy V (T ) = V and E(T ) ⊆
E. The spanning tree polytope Pspanning tree(G) of G is the convex hull of the
characteristic vectors of the spanning trees of G. Edmonds [6] showed that this
polytope admits the following linear description (see also [16], page 861):

x(E[U ]) � |U | − 1 for nonempty U ⊆ V,
x(E) = |V | − 1,

xe � 0 for e ∈ E.

A perfect matching of G is set of edgesM ⊆ E such that every vertex ofG is inci-
dent to exactly one edge inM . The perfect matching polytope Pperfect matching(G)
of the graph G is the convex hull of the characteristic vectors of the perfect
matchings of G. Edmonds [5] showed that the perfect matching polytope of G
can be described as follows (see also [16], page 438):

x(δ(U)) � 1 for U ⊆ V with |U | odd,
x(δ(v)) = 1 for v ∈ V,

xe � 0 for e ∈ E.
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3 Communication Complexity

Let X , Y and Z be arbitrary finite sets with Z ⊆ R+, and let f : X × Y → Z
be a function. Suppose that there are two players Alice and Bob who wish to
compute f(x, y) for some inputs x ∈ X and y ∈ Y . Alice knows only x and Bob
only y. Hence, they must exchange information to be able to compute the value
of f(x, y), even though each player possesses unlimited computational power.

The communication is carried out as a protocol that is agreed on beforehand
by Alice and Bob, on the sole basis of the function f . At each step of the protocol,
one of the player has the token. He/she sends a bit to the other, that depends
only on his/her input and on previously exchanged bits. The transmitted bit
determines which player has the token in the next step. This is repeated until
the value of f on (x, y) is known to both players. The minimum number of bits
exchanged between the players in the worst case to be able to evaluate f by any
protocol is called the communication complexity of f.

In this section we describe deterministic protocols briefly and then randomized
protocols (with private random bits). In the literature, a randomized protocol is
said to compute a function f if for all inputs (x, y) ∈ X×Y the protocol outputs
the correct value, namely f(x, y), with high probability. Here we consider a new
notion of computation where the value output by the protocol on input (x, y)
has to equal f(x, y) in expectation. For a thorough description of deterministic
as well as randomized protocols (with the usual notion of computation) we refer
the reader to the book by Kushilevitz and Nisan [13].

3.1 Deterministic Protocols

A protocol is best viewed as a rooted binary tree where each internal node is
marked either Alice or Bob. The leaves have values associated with them. An
execution of the protocol on a particular input is a root-to-leaf path in the tree.
At a node owned by Alice, following the path to the left subtree corresponds to
Alice sending a zero to Bob and taking the right subtree corresponds to Alice
sending a one to Bob; and similarly for nodes owned by Bob. In case the protocol
is deterministic, to each input (x, y) ∈ X × Y corresponds a unique path from
the root to one of the leaves, and the value at that leaf is f(x, y). Thus none of
the players use any randomness to decide which bits to send to the other player.

More formally, we define a deterministic protocol as a rooted binary tree
with some extra information attached to its nodes. Each internal node has a
type, which is either X or Y . To each node v of type X is attached a function
pv : X → {0, 1}; to each node v of type Y is attached a function qv : Y → {0, 1};
and to each leaf v is attached a number λv ∈ R+, called the value of that leaf.
An execution of the protocol on input (x, y) ∈ X × Y is a root-to-leaf path that
starts at the root and descends to a leaf. At any internal node v of type X the
execution follows the edge to the left child if pv(x) = 0 and to the right child if
pv(x) = 1. Similarly, at any internal node v of type Y , the execution follows the
edge to the left child if qv(y) = 0 and to the right child if qv(x) = 1. The value of
the execution is the value of the leaf attained by the execution. A deterministic
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protocol is said to compute the function f if for each input pair (x, y) the value
of the execution of the protocol is exactly f(x, y). The complexity of a protocol
is the height of the corresponding tree.

These formal definitions capture the informal ones given above. Observe that
the nodes of type X are assigned to Alice, and those of type Y to Bob. Observe
also that Alice and Bob have unlimited resources for performing their part of
the computation. It is only the communication between the two players that is
accounted for. When presenting a protocol, we shall often say that one of the two
players sends an integer k rather than a binary value. This should be interpreted
as the player sending the binary encoding of k or, in terms of the tree, as a
sequence of �log k� nodes of the same type. Similarly, when we say that a node
has k ∈ Z+ children, and account for �log k� in the height of the tree.

Given an ordering x1, . . . , xm of the elements of X , and y1, . . . , yn of the
elements of Y , we can visualize the function f : X × Y → Z as a m × n
nonnegative matrix M = M(f) = (mij) such that mij = f(xi, yj) for all (i, j) ∈
[m]× [n]. Now consider a deterministic protocol computing f . Each of its leaves
v determines a subset of rows R = Rv and columns C = Cv such that any input
(xi, yj), the execution of the protocol on (xi, yj) ends at leaf v if and only if
i ∈ R and j ∈ C, that is, (i, j) ∈ R × C. On each of the inputs (xi, yj) with
(i, j) ∈ R × C, the function f evaluates to same value, namely the value at
leaf v. The set R × C is called a rectangle. When v varies among the leaves of
the protocol, the rectangles Rv × Cv form a partition of [m] × [n]. It is easy
to see that such a partition can be used to write M as a sum of nonnegative
rank one matrices, one for each leaf. In fact, for each leaf v, define a m × n
matrix Mv whose entry in the ith row and jth column is given by f(xi, yj) if
i ∈ Rv and j ∈ Cv, and 0 otherwise. Thus the support of Mv is Rv × Cv. Each
of these matrices has rank at most one and we have that M =

∑
v∈L Mv, where

L denotes the set of leaves of the protocol.
If M is the slack matrix of a polytope P , it follows from Theorem 1 that

P has an extension of size at most |L| � 2c, where c is the complexity of the
protocol. This was first observed by Yannakakis [18]. He proved the existence of
a nO(log n) size extension for the stable set polytope of a n-vertex perfect graph
by giving a O(log2 n) complexity deterministic protocol for computing its slack
matrix.

3.2 Randomized Protocols

Randomized protocols are similar to deterministic ones except the players are
allowed to use random bits to decide what to send to the other player. As men-
tioned earlier, the notion of computation “in expectation” that we define here
differs from the usual notion of computation “with high probability”.

Let X and Y be finite sets. A randomized protocol with private random bits
and nonnegative outputs (or shortly, a randomized protocol) is a rooted binary
tree with some extra information attached to the nodes. Each internal node has
a type, which is either X or Y . To each node v of type X is attached a function
pv : X → [0, 1]; to each node v of type Y is attached a function qv : Y → [0, 1];
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and to each leaf v is attached a nonnegative number λv ∈ R+, called the value
of that leaf. The functions pv and qv define transition probabilities.

An execution of the protocol on input (x, y) ∈ X×Y is a random root-to-leaf
path that starts at the root and descends to the left child of an internal node v
with probability pv(x) if v is of type X and qv(y) if v is of type Y , and to the
right child of v with the complementary probability 1 − pv(x) if v is of type X
and 1− qv(y) if v is of type Y . The value of the execution is the value of the leaf
attained by the execution.

For each fixed input (x, y) ∈ X × Y , the value of an execution on input
(x, y) is a random variable. We say that the protocol computes a function f :
X × Y → R+ in expectation if the expectation of this random variable on each
(x, y) ∈ X × Y is precisely f(x, y). The complexity of a protocol is the height
of the corresponding tree. Note that one player, say Alice, choosing and sending
a number in {1, . . . , k} with some probability function depending on x can be
modeled within this framework with a tree of height �log k�. As observed in
Section 3.1, we can regard a function f : X × Y → R+ as a nonnegative matrix
M = M(f) with m = |X | rows and n = |Y | columns. Below, as is natural, we
will not make a distinction between these two types of objects.

4 Factorizations from Protocols

Theorem 3. If there exists a randomized protocol of complexity c computing a
matrix M ∈ R

X×Y
+ in expectation, then the nonnegative rank of M is at most

2c.

Proof. Each node v of the protocol has a corresponding traversal probability
matrix Pv ∈ R

X×Y
+ such that, for all inputs (x, y) ∈ X×Y , the entry Pv(x, y) is

the probability that an execution on input (x, y) goes through node v. We claim
that Pv is always a rank one matrix.

We prove this by induction on the depth of a node, starting from the root.
When v is the root, Pv is an all-one matrix because all executions start at the
root. Thus Pv = 11T is a rank one matrix in this case.

Next, consider a node u of depth at least one and its parent v. Without loss of
generality, we assume that v is of type X , that is, v is assigned to Alice. Assume
that Pv = pqT for some nonnegative vectors p ∈ R

X and q ∈ R
Y . Then we have

Pu = p′qT where p′(x) = p(x)pv(x) for x ∈ X in case u is the left child of v, and
p′(x) = p(x)(1 − pv(x)) for x ∈ X in case u is the right child of v. This proves
the claim.

Finally, let L be the set of all leaves of the protocol and λv be the value at leaf
v. Because the protocol computes M in expectation, for all inputs (x, y) ∈ X×Y
we have M(x, y) =

∑
v∈L λvPv(x, y). Thus, M =

∑
v∈L λvPv. Since the claim

holds, each term in this last sum is a nonnegative rank one matrix. The theorem
follows. 	

Recall that the polytopes considered in this paper have some facet-defining in-
equalities enforcing nonnegativity of the variables along with other facet-defining
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inequalities. The next lemma (whose simple proof we skip) will allow us to ignore
the rows corresponding to nonnegativity inequalities, and focus on the non-trivial
parts of the slack matrices considered here.

Lemma 4. Let P ⊆ R
d
+ be a polytope and let S′(P ) denote the submatrix of

S(P ) obtained by deleting the rows corresponding to nonnegativity inequalities.
If there is a complexity c randomized protocol for computing S′(P ) in expectation,
then there is a complexity 1 +max{c, �lg d�} randomized protocol for computing
S(P ) in expectation.

For the protocols constructed here, we always have c � �lg d�. Because of
Lemma 4, we can thus ignore the nonnegativity inequalities without blowing
up the size of any extension by more than a factor of two. Moreover, in terms
of lower bounds, it is always safe to ignore inequalities because the nonnegative
rank of a matrix cannot increase when rows are deleted. We conclude this section
with two examples: the first one is a reinterpretation of a well-known O(n3) size
extended formulation for the spanning tree polytopes due to Martin [14]. The
second one concerns the perfect matching polytopes and is implicit in Kaibel et
al. [11].

Example 1. Let P denote the spanning tree polytope of the complete graph Kn,
see Section 2. The (non-trivial part of the) slack matrix of P has one column
per spanning tree T and one row per proper nonempty subset U of vertices. The
slack of T with respect to the inequality that corresponds to U is the number of
connected components of the subgraph of T induced by U (denoted by T [U ] below)
minus one.

In terms of the corresponding communication problem, Alice has a proper
nonempty set U and Bob a spanning tree T . Together, they wish to compute the
slack of the pair (U, T ). Alice sends the name of some (arbitrarily chosen) vertex
u in U . Then Bob picks an edge e of T uniformly at random and sends to Alice
the endpoints v and w of e as an ordered pair of vertices (v, w), where the order
is chosen in such a way that w is on the unique path from v to u in the tree.
That is, she makes sure that the directed edge (v, w) “points” towards the root
u. Then Alice checks that v ∈ U and w /∈ U , in which case she outputs n − 1;
otherwise she outputs 0.

The resulting randomized protocol is clearly of complexity 3 lgn+O(1). More-
over, it computes the slack matrix in expectation because for each connected
component of T [U ] distinct from that which contains u, there is exactly one
directed edge (v, w) that will lead Alice to output a non-zero value. Since she
outputs (n − 1) in this case, the expected value of the protocol on pair (U, T ) is
(n− 1) · (k− 1)/(n− 1) = k− 1, where k is the number of connected components
of T [U ]. The corresponding extended formulation has size O(n3).

For the next example, we will need the fact that one can cover the complete
graph Kn with k = O(2n/2poly(n)) balanced complete bipartite graphs G1,. . . ,
Gk in such a way that every perfect matching of Kn is a perfect matching of at
least one of the Gi’s. Given a matching M of Kn and X ⊆ [n], we say that X
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is compatible with M if all the edges of M have exactly one end in X . We say
that X ⊆ [n] is an (n/2)-subset of [n] if |X | = n/2. We defer the proof of the
following lemma to the journal version of the paper.

Lemma 5. Let n be an even positive integer. There exists a collection of k =
O(2n/2

√
n lnn) (n/2)−subsets X1,. . . , Xk of [n] such that for every perfect

matching M of Kn at least one of the subsets Xi is compatible with M .

Example 2. Assume that n is even and let P denote the perfect matching poly-
tope of the complete graph Kn with vertex set [n], see Section 2. The (non-trivial
part of the) slack matrix of P has one column per perfect matching M , and its
rows correspond to odd sets U ⊆ [n]. The entry for a pair (U,M) is |δ(U)∩M |−1
(recall that δ(U) denotes the set of edges that have one endpoint in U and the
other endpoint in U , the complement of U).

We describe a randomized protocol for computing the slack matrix in expec-
tation, of complexity at most (1/2 + ε)n, where ε > 0 can be made as small
as desired by taking n large. First, Bob finds an (n/2)-subset X ⊆ [n] that is
compatible with his matching M , and tells the name of this subset to Alice, see
Lemma 5. Then Alice checks which of X and X contains the least number of ver-
tices of her odd set U . Without loss of generality, assume it is X. If U ∩X = ∅

then, because U ⊆ X̄ and X is compatible with M , Alice can correctly infer that
the slack is |U | − 1, and outputs this number. Otherwise, she picks a vertex u of
U ∩X uniformly at random and send its name to Bob. He replies by sending the
name of u′, the mate of u in the matching M . Alice then checks whether u′ is in
U or not. If u′ is not in U , then she outputs |U | − 1. Otherwise u′ is in U , and
she outputs |U | − 1 − 2|U ∩X |. Telling the name of X can be done in at most
n/2 + lg

√
n+ lg lg n+O(1) bits, see Lemma 5. The extra amount of communi-

cation is 2 lgn+ O(1) bits. In total, at most (1/2 + ε)n bits are exchanged, for
n sufficiently large (ε > 0 can be chosen arbitrarily). One easily checks that the
expected value output by Alice (in the case U ∩X �= ∅) is |δ(U)∩M | − 1, hence
we conclude that the protocol correctly computes the slack matrix of the perfect
matching polytope.

The resulting extension has size at most 2(1/2+ε)n � (1.42)n, whereas the main
result of Yannakakis [18] gives a lower bound of

(
n

n/4

)
� (1.74)n for the size of

any symmetric extension. (The two previous inequalities hold for sufficiently
small ε > 0 and sufficiently large n.)

5 Protocols from Factorizations

Theorem 6. If the nonnegative rank of matrix M ∈ R
m×n
+ has a rank r non-

negative factorization, then there exists a randomized protocol computing M in
expectation, whose complexity is at most lg r +O(1).

Proof. Let A ∈ R
m×r
+ and B ∈ R

r×n
+ be nonnegative matrices such that M =

AB. Let Δ denote the maximum row sum of A. Thus, M = (A/Δ)(ΔB). Let

Â denote the m × (r + 1) matrix obtained from A/Δ by appending a column
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whose entries are chosen so that each row-sum of Â is precisely 1. Thus Â is row-
stochastic. Let B̂ denote the (r+1)×n matrix obtained from ΔB by appending

a zero row. Notice that M = ÂB̂.
The protocol is as follows: Alice knows a row index i, and Bob knows a column

index j. Together they want to compute M(i, j) in expectation, by exchanging
as few bits as possible. They proceed as follows: Alice selects a column index
k ∈ [r + 1] according to the probabilities found in row i of matrix Â, sends

this index to Bob, and Bob outputs the entry of B̂ in row k and column j.
This randomized protocol computes the matrix M in expectation. Indeed, the
expected value on input (i, j) is

∑r+1
k=1 Â(i, k)B̂(k, j) = M(i, j). the number of

bits exchanged is �lg(r + 1)�, thus the complexity is at most lg r +O(1). 	


6 New Lower Bound for Perfect Matching Polytopes

We have seen that every extension of a polytope P corresponds to a randomized
protocol computing its slack matrix S(P ) in expectation and vice-versa. Now we
show in particular that for the perfect matching polytope if we restrict ourselves
only to those extensions that can determine with a constant probability whether
or not an entry in the slack matrix is zero (e.g. deterministic protocols), then
every extension has an exponential size.

6.1 A Reduction from the Set Disjointness Problem

The set disjointness problem is the following communication problem: Alice and
Bob each are given a subset of [n]. They wish to determine whether the two
subsets intersect or not. In other words, Alice and Bob have to compute the set
disjointness function DISJ defined by DISJ(A,B) = 1 if A and B are disjoint
subsets of [n], and DISJ(A,B) = 0 if A and B are non-disjoint subsets of [n].
It is known that any randomized protocol that computes the disjointness func-
tion with high probability (that is, the probability that the value output by the
protocol is correct is, for each input, bounded from below by a constant strictly
greater than 0) has Ω(n) complexity, see, e.g., Kushilevitz and Nisan [13], Babai
et. al. [1], Kalyanasundaram and Schnitger [12], and Razborov [15].

To each matrix M ∈ R
X×Y
+ , we associate the following communication prob-

lem, that we call the support problem: Alice is given a row x of M and Bob a
column y of M . They wish to determine whether M(x, y) = 0 or M(x, y) > 0.
In the first case, they output 0 and in the second case they output 1.

Lemma 7. There is a reduction from the set disjointness problem for subsets of
[n] to the support problem for the slack matrix of the perfect matching polytope for
perfect matchings of K�, where � � 3n+8, that uses O(1) extra communication.

Proof. Let A and B be the sets respectively given to Alice and Bob. After sending
1 bit to Alice, Bob and Alice can make sure that both B and its complement
[n]−B contain an even number of elements (eventually adding dummy elements
to the initial ground set [n]). Let k � n + 2 denote the number of elements
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currently in the ground set, and let � := 3k + 2 � 3n+ 8. We define an odd set
U and a perfect matching M as follows. First, we let

U := {i : i ∈ A} ∪ {i+ k : i ∈ A} ∪ {3k + 1}.

Second, M is obtained by adding matching edges to the partial matching {{i, i+
k} : i ∈ [k] − B} ∪ {{i + k, i + 2k} : i ∈ B} ∪ {{3k + 1, 3k + 2}} in such a way
that each of the extra edges matches two consecutive unmatched vertices both
in {i : i ∈ [k]} or both in {i+2k : i ∈ [k]}. It can be easily verified that A and B
are disjoint if and only if the slack for (U,M) is zero. The theorem follows. 	


6.2 The New Lower Bound

Theorem 8. Consider an extended formulation for the perfect matching poly-
tope of Kn and a corresponding randomized protocol computing the slack matrix
of this polytope in expectation. If the probability that the protocol outputs a non-
zero value, given a pair (U,M) with positive slack, is at least p(n), then the pro-
tocol has complexity Ω(np(n)) and the extended formulation has size 2Ω(np(n)).

Proof. Let c be the complexity of the randomized protocol computing the (non-
trivial part of the) slack matrix of the perfect matching polytope of Kn in
expectation. From this protocol, we obtain a new randomized protocol for the
corresponding support problem by �1/p(n)� independent executions of the given
protocol, and outputting 1 if at least one of the executions led to a non-zero
value or 0 otherwise. The new protocol is such that, for all pairs (U,M) with a
positive slack, the probability of outputting a zero value is at most

(1− p(n))
1

p(n) � 1

e
,

where e is the Euler’s number. Thus, there is constant probability that the
value returned by the algorithm is positive. This gives a randomized protocol of
complexity O(c/p(n)) the outputs the correct solution to the support problem
for the slack matrix of the perfect matching polytope with high probability. The
theorem follows directly from Lemma 7 and from the fact that the set disjointness
problem has randomized communication complexity Ω(n). 	


A statement analogous to Theorem 8 holds for the spanning tree polytope of
Kn as well, even though for this polytope an extended formulation of size O(n3)
exists. We defer details to the journal version of the paper.

Theorem 9. Consider an extended formulation for the spanning tree polytope
of Kn and a corresponding protocol computing the slack matrix of this polytope.
If the probability that the protocol outputs a non-zero value, given a pair (U, T )
with positive slack, is at least p(n), then the protocol has complexity Ω(np(n))
and the extended formulation has size 2Ω(np(n)).
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