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Abstract

Very recently, extended fractional cumulative residual entropy (EFCRE) has been proposed
by Foroghi et al. (2022). In this paper, we introduce extended fractional cumulative past
entropy (EFCPE), which is a dual of the EFCRE. The newly proposed measure depends on
the logarithm of fractional order and the cumulative distribution function (CDF). Various
properties of the EFCPE have been explored. This measure has been extended to the bi-
variate setup. Furthermore, the conditional EFCPE is studied and some of its properties are
provided. The EFCPE for inactivity time has been proposed. In addition, the extended frac-
tional cumulative paired φ-entropy has been introduced and studied. The proposed EFCPE
has been estimated using empirical CDF. Furthermore, the EFCPE is studied for coherent
systems. A validation of the proposed measure is provided using logistic map. Finally, an
application is reported.

Keywords: EFCPE; inverse Mittag-Leffler function; conditional EFCPE; cumulative paired
φ-entropy; empirical EFCPE; coherent system; logistic map.
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1 Introduction

The concept of entropy is applied to measure the disorder or randomness associated with a
system. It depends on randomness of the system’s states. The entropy of a system with cer-
tain number of states is maximum when the random states have equal probability. Its value
is zero (minimum) for a specific certain state of the system. The notion of entropy was first
proposed by Shannon (1948). Shannon developed the fundamental laws of data compression
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and transmission, which result the birth of the modern information theory. Later, Jaynes
(1957) proposed principle of maximum entropy, employed by several researchers in different
areas such as environmental engineering, water resources and hydrology. Rényi (1961) pro-
posed a one-parameter generalization of the Shannon entropy, which is additive in nature.
Tsallis (1988) developed a non-additive entropy, another one-parameter generalization of the
Shannon entropy.

Apart from these entropies, other types of generalizations of the Shannon entropy have
been proposed by several researchers. For example, Wang (2003) introduced incomplete
extensive fractional entropy and applied it to study the correlated electron systems in weak
coupling regime. Later, Ubriaco (2009) proposed fractional entropy using the concept of
fractional calculus. The author showed that the fractional entropy and Shannon entropy
share similar properties except additivity. Let a discrete type random variable X take values
xi with probabilities pi, i = 1, . . . , n. Then, the fractional entropy of X is given by

Sq(X) =

n
∑

i=1

pi(− log pi)
q, 0 ≤ q ≤ 1. (1.1)

It is shown by Ubriaco (2009) that the fractional entropy satisfies the Lesche and thermody-
namic stability criteria. Eq. (1.1) reduces to the Shannon entropy when q becomes 1. The
fractional entropy takes positive values. Further, it is concave and nonadditive in nature.

The concept of entropy for discrete type random variable can be written in the continuous
domain. For continuous case, the Shannon entropy is known as differential entropy. Let X be
a non-negative and absolutely continuous random variable with probability density function
(PDF) f(.). The fractional (differential) entropy of X is given by

Hq(X) =

∫ ∞

0

f(x)(− log f(x))qdx, 0 ≤ q ≤ 1. (1.2)

Recently, motivated by cumulative residual entropy (see Rao et al. (2004)), Xiong et al.
(2019) introduced the concept of fractional cumulative residual entropy of X , which is given
by

Eq(X) =

∫ ∞

0

F̄ (x)(− log F̄ (x))qdx, 0 ≤ q ≤ 1, (1.3)

where F̄ (.) is the survival function of X . The authors substituted the survival function in
place of PDF in (1.2) to get (1.3). A fractional generalized cumulative residual entropy was
proposed and studied by Di Crescenzo et al. (2021) (see Eq. (6)). Tahmasebi and Mohammadi
(2021) applied fractional cumulative residual entropy for the coherent system lifetimes hav-
ing identically distributed components. Very recently, Kayid and Shrahili (2022) considered
fractional cumulative residual entropy and explored some further properties of it.

Mittag-Leffler function (see Mittag-Leffler (1903)) arises naturally in the solution of frac-
tional order differential equations or fractional order integral equations. Particularly, it
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appears in the investigations of the fractional generalization of the kinetic equation, super-
diffusion transport and in the study of several complex systems. The Mittag-Leffler function
(MLF) is defined as

Eα(x) =

∞
∑

k=0

xk

(αk)!
, 0 < α < 1, (1.4)

where (αk)! = Γ(αk + 1) and Γ(.) is complete gamma function. It can be established that
the inverse of the MLF is the solution of the functional equation

f(xy) = f(x) + f(y), x, y > 0, (1.5)

where f(.) : R → R is a real-valued continuous function, which is not differentiable but has
only derivative of order α, 0 < α < 1. The inverse of MLF is also known as the fractional
order logarithmic function, denoted by Lnαx. Some of the important properties of Lnαx, for
0 < α < 1 are provided below (see Jumarie (2012)).

• Lnα1 = 0, Lnα0 = −∞, Lnαx < 0, for x < 1;

• 1(Lnα1)
1

α = 0 = 0(Lnα0)
1

α ;

• [Lnαuv]
1

α = [Lnαu]
1

α + [Lnαv]
1

α ;

• Lnα(x
b) = bαLnαx;

•
dα(Lnαx)

1
α

dxα = α!
((1−α)!)2

1
xα .

Recently, the complexity of ultraslow diffusion process has been studied by Liang (2018)
using both classical Shannon entropy and its general case with inverse MLF in conjunction
with the structural derivative. The author has observed that the inverse Mittag-Leffler tail
in the propagator of the ultraslow diffusion equation model adds more information to the
original distribution with larger entropy. Further, the smaller value of α in the inverse MLF
indicates more complicated of the underlying ultraslow diffusion and corresponds to higher
value of entropy. As a result, the proposed definition of fractional entropy based on inverse
MLF can be considered as an alternative measure to capture the information loss in ultraslow
diffusion. For details, please refer to Liang (2018). Based on the concept of inverse MLF,
Jumarie (2012) proposed a fractional entropy of order α of a discrete type random variable
X as

H̄α(X) = −
n

∑

i=1

pi(Lnαpi)
1

α , 0 < α < 1. (1.6)

Note that the fractional entropy given by (1.6) may be negative. For example, if we assume
α = 1/2, clearly, H̄α(X) takes negative values. Due to this reason, Zhang and Shang (2021)
proposed another form of the fractional entropy of order α as

Hα(X) =

n
∑

i=1

pi(−Lnαpi)
1

α , 0 < α < 1, (1.7)
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which is always non-negative. Motivated by the fractional entropy given by (1.7), and the
fractional cumulative residual entropy given by (1.3), Foroghi et al. (2022) proposed extended
version of the fractional cumulative residual entropy, which is given by

Eα(X) =

∫ ∞

0

F̄ (x)[−LnαF̄ (x)]
1

αdx, 0 < α < 1. (1.8)

The authors studied bivariate version of (1.8). Some bounds and stochastic ordering results
are also explored by Foroghi et al. (2022). We note that parallel to the fractional cumulative
residual entropy, the concept of fractional cumulative (past) entropy has been developed and
studied by Di Crescenzo et al. (2021). Recently, more results for the fractional cumulative
entropy have been obtained by Kayid and Shrahili (2022).

On the basis of the aforementioned findings, in this communication, we propose an ex-
tended version of the fractional cumulative past entropy. The newly proposed measure has
been defined in the next section similar to (1.8). In order to get the newly proposed mea-
sure, we replace the survival function by cumulative distribution function (CDF) F (.) of X
in (1.8). We remark that in recent years, there have been various attempts to introduce frac-
tional versions of the uncertainty measures. The fractional versions of entropies have found
some applications in the areas related to complex systems, where the classical Shannon en-
tropy has some limitations. Various important properties of the fractional calculus allow the
fractional uncertainty measures to capture long-range phenomena, higher sensitivity in sig-
nal evolution and nonlocal dependence in some random systems in better way. For example,
Zhang and Shang (2019) used discrete fractional cumulative residual entropy to analyze the
financial time-series data. For time-series data, Lopes and Machado (2020) computed values
of various fractional uncertainty measures. Wang and Shang (2020) proposed generalized
fractional cumulative residual distribution entropy and showed that it can capture the tiny
evolution of signal data better than generalized cumulative residual distribution entropy.

The rest of the paper is organized as follows. In the next section, we introduce the
concept of EFCPE and studied various properties of it. Bivariate EFCPE is proposed and its
properties are studied. Some bounds are obtained. Further, we propose conditional EFCPE
and dynamic version of the EFCPE. In Section 3, the concept of extended fractional paired
φ-entropy has been explored. The stability of the EFCPE has been discussed. Empirical
EFCPE is studied in Section 4. The proposed measure has been studied for coherent systems
in Section 5. Validation of the proposed measure using simulation on logistic map is provided
in Section 6. An application is also explained. Section 7 concludes the paper.

2 Extended fractional cumulative past entropy

In this section, we define EFCPE and discuss its various properties. The newly proposed
measure is useful to quantify information for the inactivity time of a system. The inactivity
time is the time elapsing between the failure of a system and the time when it is found to be
down. In other terms, our information measure, that will be called “EFCPE” is suitable to
measure information when uncertainty is related to the past. Further, note that the EFCPE
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is dual of the EFCRE and it is well known that the EFCRE measures information when
the uncertainty is related to future. Throughout the paper, we assume that the random
variables are non-negative and absolutely continuous.

Definition 2.1. Suppose X is a non-negative absolutely continuous random variable with
CDF F (.) and PDF f(.). Then, the EFCPE is defined as

E∗
α(X) (or E∗

α(F )) =

∫ ∞

0

F (x)[−LnαF (x)]
1

αdx = E

(

[−LnαF (X)]
1

α

r(X)

)

, 0 < α < 1, (2.1)

where r(.) = f(.)/F (.) denotes the reversed hazard rate of X.

Next, we present some basic properties of the EFCPE. We recall that similar properties
also hold for the measures proposed by Xiong et al. (2019), Di Crescenzo et al. (2021) and
Foroghi et al. (2022).

• In (2.1), the argument of the fractional order logarithmic function is F (x) = P (X ≤ x),
which guarantees that E∗

α(X) ≥ 0. Indeed, 0 ≤ E∗
α(X) ≤ ∞. For a degenerate random

variable X , E∗
α(X) = 0.

• Let X be a symmetric random variable with CDF F (.) and finite mean m = E(X).
Then, F (m+ x) = 1− F (m− x), for all x ∈ R. Thus, clearly, Eα(X) = E∗

α(X).

• Suppose that X is a non-negative absolutely continuous random variable with CDF
F (.) and Y = aX + b, where a > 0 and b ≥ 0. Then, we have E∗

α(Y ) = aE∗
α(X), which

implies that the newly proposed measure is shift-independent.

Utilizing the relation Lnαp ≈ log pα!, 0 < α < 1, (see p. 125 of Jumarie (2012)) where
α! = Γ(1 + α) and Γ(.) is a complete gamma function in (2.1), we get an approximation for
EFCPE, which is given by

E∗
α(X) ≈ (α!)

1

α

∫ ∞

0

F (x)[− logF (x)]
1

αdx = (α!)
1

αE

(

[− logF (X)]
1

α

r(X)

)

, 0 < α < 1. (2.2)

Foroghi et al. (2022) proposed a special type of EFCRE based on the concept of fractional
order logarithmic function. Similarly, herein, we propose a modified EFCPE, which is given
by

Ē∗
α(X) =

∫ ∞

0

F (x)[−LnαF (x)]dx ≈ −α!

∫ ∞

0

F (x) logF (x)dx = α!E∗(X), 0 < α < 1, (2.3)

where E∗(X) is known as the cumulative entropy (see Eq. (3) of Di Crescenzo and Longobardi
(2009)). Now, we obtain EFCPE for some well-known distributions, say uniform and Fréchet
distributions. Denote by Γ(.) the complete gamma function.

Example 2.1.
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(i) Let X follow uniform distribution in the interval [0, a] with CDF F (x) = x/a, 0 < x <

a. Then, E∗
α(X) ≈

a(α!)1/αΓ( 1

α
+1)

2
1
α+1

, 0 < α < 1.

(ii) Let X follow Fréchet distribution with CDF F (x) = e−bx−a
, x > 0, a, b > 0. Then,

E∗
α(X) ≈

(α!)1/αb1/aΓ( 1

α
− 1

a
)

a
, provided 0 < α < min{1, a}.
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Figure 1: (a) Graph of EFCPE for uniform distribution in the interval (0, 1) as in Example
2.1(i) when 0 < α < 1. (b) Magnified view of the graph as described in Figure (a) when
α ∈ (0.3, 1). (c) Graph of the EFCPE for Fréchet distribution with a = 1 and b = 1 as in
Example 2.1(ii) when 0 < α < 1.

Suppose a multi-component system is constructed in such a way that each of its compo-
nents’ lifetimes depend on the lifetimes of the other components. To analyze uncertainty
of such system, it is required to extend the concept of uncertainty measure from univariate
setup to the higher-dimensional setup. Kundu and Kundu (2017) proposed bivariate exten-
sion of the cumulative past entropy due to Di Crescenzo and Longobardi (2009) and studied
its properties. Generalized version of the cumulative past entropy due to Kundu and Nanda
(2016) was extended in the bivariate setup by Kundu and Kundu (2018). Along the lines
of these researches, here, we propose bivariate EFCPE. Consider a random vector (X, Y ),
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where X and Y are non-negative random variables with respective supports [0, s1] and [0, s2].
The random variables X and Y can be considered as the lifetimes of the components of a
system having two components. Let the joint CDF ofX and Y be F (., .). Then, the bivariate
EFCPE is defined as

E∗
α(X, Y ) =

∫ s2

0

∫ s1

0

F (x, y)[−LnαF (x, y)]
1

αdxdy, 0 < α < 1. (2.4)

Similar to (2.3), a modified bivariate EFCPE is defined as

Ē∗
α(X, Y ) =

∫ s2

0

∫ s1

0

F (x, y)[−LnαF (x, y)]dxdy ≈ −α!Ē∗(X, Y ), (2.5)

where Ē∗(X, Y ) is known as the bivariate cumulative past entropy (see Eq. (7) of Kundu and Kundu
(2017)).

Example 2.2. Let X and Y be the lifetimes of two components of a system with joint
probability density function given by

f(x, y) =

{

2, if 0 < x < 1, 0 < y < x

0, otherwise.
(2.6)

Now, using the result in Example 2.1 of Kundu and Kundu (2017), it can be obtained that

Ē∗
α(X, Y ) ≈ α!

(

1− log 2

4

)

.

In the following proposition, we present a relation between E∗
α(X, Y ) and Ē∗

α(X, Y ).

Proposition 2.1. Let (X, Y ) be a random vector, where X and Y are non-negative random
variables with respective supports [0, s1] and [0, s2]. Then, for 0 < α < 1, we have

E∗
α(X, Y ) ≥ [Ē∗

α(X, Y )]
1

α .

Proof. The proof is similar to that of Proposition 2.6. Thus, it is omitted.

Denote the conditional distribution of Y given X = x as FY |X=x(y|x) = P (Y ≤ y|X = x)
and the conditional EFCPE by E∗

α(Y |X). Below, we show that the bivariate EFCPE can be
expressed in terms of the weighted EFCPE of X , the conditional EFCPE of Y given X and
the weighted conditional EFCPE of Y given X. In the proof, we use the following property
of the fractional order logarithmic function:

[Lnαuv]
1

α = [Lnαu]
1

α + [Lnαv]
1

α , 0 < α < 1. (2.7)

7



Theorem 2.1. Suppose X and Y are non-negative absolutely continuous random variables
with marginal CDFs FX(x) and FY (y), respectively and (X, Y ) is a random vector with joint
CDF F (x, y). Then,

E∗
α(X, Y ) = E

∗,FY |X=x(y|x)
α (X) + E∗

α(Y |X)− E∗,F̄X(x)
α (Y |X), 0 < α < 1,

where E
∗,F̄X(x)
α (Y |X) =

∫ s2
0

∫ s1
0

F̄X(x)FY |X=x(y|x)[−LnαFY |X=x(y|x)]
1

αdxdy is known as the

weighted conditional EFCPE with weight function F̄X(x) = 1−FX(x) and E
∗,FY |X=x(y|x)
α (X) =

∫ s2
0

∫ s1
0

FY |X=x(y|x)FX(x)[−LnαFX(x)]
1

αdxdy is known as the weighted EFCPE with weight
function FY |X=x(y|x).

Proof. From the definition of bivariate EFCPE, we have

E∗
α(X, Y ) =

∫ s2

0

∫ s1

0

F (x, y)[−LnαF (x, y)]
1

αdxdy

=

∫ s2

0

∫ s1

0

F (x, y)[−LnαFX(x)]
1

αdxdy

+

∫ s2

0

∫ s1

0

F (x, y)[−LnαFY |X=x(y|x)]
1

αdxdy

=

∫ s2

0

∫ s1

0

FX(x)FY |X=x(y|x)[−LnαFX(x)]
1

αdxdy

+

∫ s2

0

∫ s1

0

FY |X=x(y|x)[−LnαFY |X=x(y|x)]
1

αdxdy

−

∫ s2

0

∫ s1

0

F̄X(x)FY |X=x(y|x)[−LnαFY |X=x(y|x)]
1

αdxdy

= E
∗,FY |X=x(y|x)
α (X) + E∗

α(Y |X)− E∗,F̄X(x)
α (Y |X).

Hence, the result follows.

Now, assume that X and Y are independent, that is, F (x, y) = FX(x)FY (y). Then, we
have

E∗
α(X, Y ) =

∫ s2

0

∫ s1

0

FX(x)FY (y)[−LnαFX(x)FY (y)]
1

αdxdy

=

∫ s2

0

∫ s1

0

FX(x)FY (y)[−LnαFX(x)]
1

αdxdy

+

∫ s2

0

∫ s1

0

FX(x)FY (y)[−LnαFY (y)]
1

αdxdy

= E∗
α(X)

∫ s2

0

FY (y)dy + E∗
α(Y )

∫ s1

0

FX(x)dx. (2.8)

Proposition 2.2. Assume that two independent random variables X and Y have supports
[0, s1] and [0, s2], respectively. Then, we have

E∗
α(X, Y ) = E∗

α(X)[s2 −E(Y )] + E∗
α(Y )[s1 −E(X)], 0 < α < 1. (2.9)
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Proof. The proof is straightforward, and hence it is omitted.

Further, assume that X and Y have a common support [0, l] and a common mean µ.
Then, (2.9) reduces to

E∗
α(X, Y ) = [l − µ][E∗

α(X) + E∗
α(Y )], 0 < α < 1. (2.10)

The relation apart from the multiplicative constant (l − µ) given by (2.10) is similar to
the Shannon’s differential entropy of two-dimensional random variable (X, Y ), when X and
Y are independent. Let X and Y be independent and have beta distributions with equal
parameters. Then, clearly l − µ = 1

2
. Thus, the bivariate EFCPE can be expressed as the

arithmetic mean of the EFCPEs.

Proposition 2.3. Let X1, . . . , Xn be independent and identically distributed random vari-
ables with a common CDF F (x) and a common mean µ = E(X1) < ∞. Further, we assume
that the random variables have a common support [0, l]. Then, we have

E∗
α(X1, . . . , Xn) = n[l − µ]n−1E∗

α(X1), 0 < α < 1.

Proof. The proof is simple, and thus it is omitted.

Similar to the univariate EFCPE, it can be established that the bivariate EFCPE is also
a shift-independent measure. That is, for Yi = aiXi + bi, i = 1, 2, ai > 0 and bi ≥ 0, we
have

E∗
α(Y1, Y2) = a1a2E

∗
α(X1, X2), 0 < α < 1. (2.11)

Next, analogous to the concept of mutual information, we propose the concept of extended
fractional cumulative past mutual information between two random variables X and Y. The
mutual information between two random variables X and Y with joint PDF f(x, y) and
marginal PDFs fX(x) and fY (y) is given by

M(X, Y ) =

∫ s2

0

∫ s1

0

f(x, y) log
f(x, y)

fX(x)fY (y)
dxdy. (2.12)

Foroghi et al. (2022) introduced the concept of fractional cumulative residual mutual in-
formation. Analogously, here we propose fractional cumulative past mutual information
(FCPMI) between two random variables X and Y with respective marginal distribution
functions FX(x) and FY (y).

Definition 2.2. Let X and Y with respective supports [0, s1] and [0, s2] be two non-negative
absolutely continuous random variables with joint distribution function F (x, y). Then, for
0 < α < 1, the FCPMI between X and Y is given by

I(X, Y ) =

∫ s2

0

∫ s1

0

F (x, y)

[

−Lnα
F (x, y)

FX(x)FY (y)

]
1

α

dxdy. (2.13)
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From the above definition, it is clear that the FCPMI is symmetric, nonnegative and
vanishes when X and Y are independent. From (2.13), we have

I(X, Y ) =

∫ s2

0

∫ s1

0

F (x, y)
[

−LnαFY |X=x(y|x)
]

1

α dxdy

−

∫ s2

0

∫ s1

0

F (x, y) [−LnαFY (y)]
1

α dxdy

= J1 − J2, (2.14)

where

J1 =

∫ s2

0

∫ s1

0

FY |X=x(y|x)FX(x)
[

−LnαFY |X=x(y|x)
]

1

α dxdy = E∗,FX(x)
α (Y |X) (2.15)

and

J2 =

∫ s2

0

∫ s1

0

FY (y)FX|Y=y(x|y) [−LnαFY (y)]
1

α dxdy = s1E
∗
α(Y )− E∗,E(X|Y )

α (Y ). (2.16)

Thus, using (2.14)-(2.16), it is easy to get the following proposition.

Proposition 2.4. For the random variables X and Y as in Definition 2.2, the FCPMI
between X and Y is represented as

M(X, Y ) = E∗,FX(x)
α (Y |X)− s1E

∗
α(Y ) + E∗,E(X|Y )

α (Y ).

Next, we propose a result which shows that the EFCPE of X is expressed in terms of the
reversed hazard rate r(.) of X . We recall that r(u) = f(u)/F (u), for the values of u such
that F (u) is a strictly positive real number.

Proposition 2.5. Suppose X is a non-negative absolutely continuous random variable with
finite EFCPE. Then, for 0 < α < 1,

E∗
α(X) = E(τα(X)) ≈ (α!)

1

αE(τ ∗α(X)), (2.17)

where τα(t) =
∫∞

t
(−LnαF (x))

1

αdx and τ ∗α(t) =
∫∞

t
[− logF (x)]

1

αdx =
∫∞

t

[∫∞

x
r(t)dt

]
1

α dx.

Proof. Using F (x) =
∫ x

0
f(t)dt, from (2.1), we have

E∗
α(X) =

∫ ∞

0

∫ x

0

f(t)[−LnαF (x)]
1

αdtdx

=

∫ ∞

0

(
∫ ∞

t

[−LnαF (x)]
1

αdx

)

f(t)dt

≈ (α!)
1

α

∫ ∞

0

(
∫ ∞

t

[− logF (x)]
1

αdx

)

f(t)dt, (2.18)

where the second equality in (2.18) is obtained using Fubini’s theorem and the final approx-
imation is due to Lnαu ≈ log uα!, for 0 < α < 1. Thus, the result follows.

10



Now, we evaluate the approximate numerical values of E∗
α(X) and Ē∗

α(X), respectively
given by (2.1) and (2.3) for some specific values of α of uniform distribution in support
(0, 1). The numerical values are given in Table 1, which show that E∗

α(X) and Ē∗
α(X) do not

have any inequality in general. In the following result, we establish an inequality between
E∗
α(X) and [Ē∗

α(X)]
1

α .

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E∗
α(X) 1076.07 1.22353 0.32030 0.21782 0.08701 0.19640 0.20388 0.21793 0.23322

Ē∗
α(X) 0.23784 0.22954 0.22436 0.22182 0.22156 0.22338 0.22716 0.23285 0.24044

Table 1: Approximate values of E∗
α(X) (see Example 2.1) and Ē∗

α(X)(≈ α!
4
) for uniform

distribution in the interval (0, 1), for some specific values of α.

Proposition 2.6. Let X be a non-negative absolutely continuous random variable with
E∗
α(X) < ∞. Then, for 0 < α < 1, we have E∗

α(X) ≥ [Ē∗
α(X)]

1

α , where Ē∗
α(X) is given

by (2.3).

Proof. To prove the proposition, we note that for 0 < α < 1, F (x) ≥ [F (x)]
1

α holds. Thus,

E∗
α(X) =

∫ ∞

0

F (x)[−LnαF (x)]
1

αdx ≥

∫ ∞

0

[−F (x)LnαF (x)]
1

αdx. (2.19)

Moreover, for 0 < α < 1, it is easy to show that φ(x) = x
1

α is convex with respect to x.
Using this and the Jensen’s inequality in (2.19), the desired result easily follows.

Using similar arguments as in Proposition 2.6, one can obtain that

Ē∗
α(X) = E[Wα(X)], (2.20)

where Wα(t) = −
∫∞

t
LnαF (x)dx. Differentiating Wα(t) with respect to t twice, we obtain

W ′′
α(t) =

d

dt
LnαF (t). (2.21)

It is known that Lnαx is the inverse of MLF, say g(x), that is, Lnαx = g−1(x), implies
LnαF (x) = g−1(F (x)). Thus, from (2.21), for α ∈ (0, 1), we obtain

W ′′
α(t) =

d

dt
g−1(F (t))

=
f(t)

g′[g−1(F (t))]
, (2.22)

which is clearly non-negative, since g′(.) ≥ 0. Thus, Wα(t) is convex with respect to t > 0.
This observation yields a lower bound of Ē∗

α(X), which is given by

Ē∗
α(X) ≥ Wα(µ), (2.23)
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where µ = E(X).
Gini index is well-known in social welfare studies for income inequality. It is also well-

known that for a more polarized society, the value of Gini index must be higher. The Gini
index of a distribution with mean µ = E(X) < ∞ is defined as

Gini(X) = 1−

∫∞

0
F̄ 2(x)dx

∫∞

0
F̄ (x)dx

= 1−

∫∞

0
F̄ 2(x)dx

µ
. (2.24)

Below, we obtain a lower bound of the modified EFCPE given by (2.2).

Proposition 2.7. For a non-negative absolutely continuous random variable X with finite
mean µ, we have

Ē∗
α(X) ≥ α!µGini(X), 0 < α < 1. (2.25)

Proof. From (2.3), we have

Ē∗
α(X) =

∫ ∞

0

F (x)[−LnαF (x)]dx

≈ −α!

∫ ∞

0

F (x) logF (x)dx

= α!

∫ ∞

0

F (x)| logF (x)|dx. (2.26)

Now, the rest of the proof follows using the inequality x(1 − x) ≤ x| log x|, for 0 < x < 1.
Thus, it is omitted.

Various stochastic orders have been proposed in the literature in order to compare distri-
butions. In the following, we find some relationships between existing stochastic orderings
and the uncertainty ordering on the basis of the newly proposed measure given by (2.1). A
non-negative random variable X with CDF F (.) and PDF f(.) is said to be smaller than Y
with CDF G(.) and PDF g(.) in the sense of

• dispersive ordering, denoted by X ≤disp Y if f(F−1(v)) ≥ g(G−1(v)), for all v ∈ (0, 1),
where F−1(.) and G−1(.) are right continuous inverses of F (.) and G(.), respectively;

• decreasing convex order, denoted by X ≤dcx Y if E(φ(X)) ≤ E(φ(Y )), for all decreas-
ing convex functions φ(.).

For details, please refer to Shaked and Shanthikumar (2007).

Theorem 2.2. For two non-negative absolutely continuous random variables X and Y, we
have

(i) X ≤disp Y ⇒ E∗
α(X) ≤ E∗

α(Y );

(ii) X ≤dcx Y ⇒ Ē∗
α(X) ≤ Ē∗

α(Y ),

12



where 0 < α < 1.

Proof. (i) The proof is analogous to Lemma 3 of Klein et al. (2016), and thus it is omitted.
(ii) The proof follows using the fact that the functionWα(x) is decreasing convex with respect
to x.

The result in Theorem 2.2(i) ensures that the newly proposed EFCPE can be considered
as a dispervive measure. The following example is an illustration of Theorem 2.2(i).

Example 2.3. Consider two random variables X and Y with respective CDFs F (x) =
1− (1+x)−k1, x > 0, k1 > 0 and G(x) = 1− (1+x)−k2, x > 0, k2 > 0, with k1 > k2. Then,
it is not hard to see that X is smaller than Y in hazard rate ordering. For details on hazard
rate ordering, please refer to Shaked and Shanthikumar (2007). Further, X has decreasing
failure rate. Thus, due to Bagai and Kochar (1986), it can be concluded that X ≤disp Y.
Now,

E∗
α(X) ≈ (α!)

1

α

∫ ∞

0

(

1−
1

(1 + x)k1

)[

− log

(

1−
1

(1 + x)k1

)]
1

α

dx (2.27)

and

E∗
α(Y ) ≈ (α!)

1

α

∫ ∞

0

(

1−
1

(1 + x)k2

)[

− log

(

1−
1

(1 + x)k2

)]
1

α

dx. (2.28)

In order to validate the result in Theorem 2.2(i), we present some values of E∗
α(X) and E∗

α(Y ),
for some values of α in Table 2. Here, we have assumed that k1 = 0.7 and k2 = 0.5.

α 0.2 0.3 0.4 0.5 0.6 0.8 1

E∗
α(Y ) 3.54 1.72 3.13 1.6×104 1.02×101169 4.2× 102624 1.02×103498

E∗
α(X) 2.31 0.93 1.06 1.82 4.63 1.03× 10441 4.5× 102100

Table 2: Approximate values for E∗
α(X) and E∗

α(Y ), for some specific values of α.

We recall that the Shannon entropy of the sum of two independent random variables
is larger than that of either. Similar observation was noticed by Rao et al. (2004) and
Di Crescenzo and Longobardi (2009) for cumulative residual entropy and cumulative past
entropy, respectively. Here, in the next theorem, we establish a similar result for EFCPE.
The proof is similar to that of Theorem 3.2 of Di Crescenzo and Toomaj (2017). Thus, we
omit it.

Proposition 2.8. For non-negative and independent random variables X and Y with re-
spective CDFs F (.) and G(.), we have

E∗
α(X + Y ) ≥ max{E∗

α(X), E∗
α(Y )}, (2.29)

if X and Y have log-concave density functions.
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Example 2.4. Let X and Y be two independent random variables with a common CDF
F (x) = x, 0 < x < 1. Then, the CDF of Z = X + Y can be obtained as

K(x) =

{

x2

2
, if 0 < x ≤ 1,

1− (x−2)2

2
, if 1 ≤ x < 2.

(2.30)

Thus, from (2.2)

E∗
α(X + Y ) ≈ (α!)

1

α

∫ 1

0

x2

2

[

− log
x2

2

]
1

α

dx

+(α!)
1

α

∫ 2

1

(

1−
(x− 2)2

2

)[

− log

(

1−
(x− 2)2

2

)]
1

α

dx (2.31)

and

E∗
α(X) or E∗

α(Y ) ≈ (α!)
1

α

∫ 1

0

x [− log x]
1

α dx =
(α!)1/αΓ( 1

α
+ 1)

2
1

α
+1

. (2.32)

Further, in order to validate Proposition 2.8, we present the values of E∗
α(X + Y ) and

max{E∗
α(X), E∗

α(Y )} for some specific values of α in Table 3.

α 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1

E∗
α(X + Y ) 4.86 0.79 0.43 0.34 0.31 0.32 0.34 0.36

max{E∗
α(X), E∗

α(Y )} 1.22 0.32 0.22 0.20 0.19 0.22 0.23 0.24

Table 3: Approximate values for E∗
α(X+Y ) and max{E∗

α(X), E∗
α(Y )}, for some specific values

of α as in Example 2.4.

Next, we consider proportional reversed hazard rate model and obtain the EFCPE. Let Xδ

and X be two non-negative random variables with respective CDFs Fδ(.) and F (.). Further,
assume that they have proportional reversed hazard rate model, that is, Fδ(x) = [F (x)]δ, for
some constant δ > 0. Using the relation Lnα(u

c) = cαLnα(u), for 0 < α < 1, the EFCPE of
Xδ can be written as

E∗
α(Xδ) = δ

∫ ∞

0

[F (x)]δ[−LnαF (x)]
1

α , 0 < α < 1. (2.33)

Now, let δ ≥ 1. Then, [F (x)]δ ≤ F (x), which implies that

E∗
α(Xδ) ≤ δE∗

α(X). (2.34)

Let δ = n be a natural number, where n > 1. Further, let X1, . . . , Xn be the component
lifetimes of a parallel system, independently distributed with a common CDF F (.). Then,
Fδ(x) represents the CDF of the lifetime of a parallel system. So, it is easy to observe that
(2.34) is useful to get an upper bound of the EFCPE of the lifetime of a parallel system.
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2.1 Conditional EFCPE

This subsection focuses on the development of the conditional EFCPE and its properties.
Let (Ω,F ,P) be a probability space and a non-negative absolutely continuous random vari-
able X is defined on it. Here, Ω is the sample space, F is the σ-field of subsets of Ω and P
is the probability measure. Further, we denote the conditional expectation of X given a sub
σ-field G as E(X|G), where G ⊂ F . In this following definition, we present the conditional
EFCPE of X .

Definition 2.3. Suppose a non-negative absolutely continuous random variable X has CDF
F (.). Then, the conditional EFCPE for given a σ-field F is defined as

E∗
α(X|F) =

∫

R+

P (X ≤ x|F)[−Lnα(P (X ≤ x|F))]
1

αdx

≈ (α!)
1

α

∫

R+

E[IX≤x|F ][− log(E[IX≤x|F ])]
1

αdx, 0 < α < 1,

where IX≤x is an indicator function.

We remark that E∗
α(X|F) measures the uncertainty of a random variable X with respect

to F . For instance, assume that a σ-field F has been generated by another random variable
Y . Then, we have

E∗
α(X|F) = K1(Y ) =

∫

R+

P (X ≤ x|Y = y)[−Lnα(P (X ≤ x|Y = y))]
1

αdx. (2.35)

The conditional version of the modified EFCPE given by (2.3) is defined as

Ē∗
α(X|F) =

∫

R+

P (X ≤ x|F)[−Lnα(P (X ≤ x|F))]dx, 0 < α < 1, (2.36)

Now, suppose F is a trivial field, that is, F = {∅,Ω}. Then, it can be shown that

• E∗
α(X|F) = E∗

α(X);

• Ē∗
α(X|F) = Ē∗

α(X).

The following result provides a bound of the conditional EFCPE in terms of the measure
defined in (2.36).

Proposition 2.9. For a non-negative and absolutely continuous random variable X with
CDF F (.), we have

E∗
α(X|F) ≥ [Ē∗

α(X|F)]
1

α , 0 < α < 1. (2.37)

Proof. The proof is analogous to that of Proposition 2.6, and thus it is not presented here.
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Proposition 2.10. Consider a Markov chain U → V → W. Then,

E∗
α(W |V, U) = E∗

α(W |V ).

Proof. The proof follows using the concept of Markovian property. Thus, it is omitted.

The next result explores the condition, under which the expected conditional EFCPE
vanishes. For the concept of F -measurable, please refer to Rao et al. (2004).

Theorem 2.3. For finite E(|X|p), p ≥ 1 and a σ-field F , we have E(E∗
α(X|F)) = 0 if and

only if X is F-measurable.

Proof. We omit the proof since it is similar to Theorem 3.5 of Foroghi et al. (2022).

Theorem 2.4. Let X be any random variable and F be a σ-field. Then, we get E(E∗
α(X|F)) ≤

E∗
α(X|F), for 0 < α < 1 and equality holds iff X is independent of F .

Proof. The proof is analogous to Theorem 7 of Rao et al. (2004), and thus it is omitted.

2.2 Dynamic version of EFCPE

For modelling lifetime data, the concepts of residual and past lifetimes have been widely
used by several researchers. In reliability theory, the residual lifetime means the additional
lifetime of a system given that the system has survived until time t. The past lifetime
is a dual concept of the residual lifetime. Suppose the system has already failed at time
t > 0. Then, the past lifetime, denoted by Xt = [t −X|X ≤ t], represents the time elapsed
after failure till time t. Di Crescenzo et al. (2021) introduced dynamic fractional generalized
cumulative residual entropy for the residual lifetime (see Eq. (28)). Foroghi et al. (2022)
proposed extended fractional cumulative residual entropy for residual lifetime. In this flow
of research, here we consider EFCPE for past lifetime and study some properties.

Definition 2.4. Let X be the lifetime of a system with CDF F (.) and Xt = [t−X|X ≤ t] be

the past lifetime with CDF FXt(x) =
F (x)
F (t)

, x < t. Then, for 0 < α < 1, the dynamic EFCPE
is

E∗
α(Xt) = E∗

α(X ; t) =

∫ t

0

F (x)

F (t)

[

− Lnα
F (x)

F (t)

]
1

α

dx, t > 0, (2.38)

We note that (2.38) can be approximately written as

E∗
α(Xt) ≈ (α!)

1

α

∫ t

0

F (x)

F (t)

[

− log
F (x)

F (t)

]
1

α

dx, t > 0, (2.39)

Note that when t tends to infinity, then the dynamic EFCPE reduces to the EFCPE
given in Definition 2.1. Similar to the concept of dynamic EFCPE, the dynamic version of
modified EFCPE is given by

Ē∗
α(Xt) = Ē∗

α(X ; t) = −

∫ t

0

F (x)

F (t)

[

Lnα
F (x)

F (t)

]

dx ≈ −α!

∫ t

0

F (x)

F (t)

[

log
F (x)

F (t)

]

dx, 0 < α < 1.

(2.40)
We have the following observations, which are similar to EFCPE.
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• Suppose that X is a random variable with support [0, a], and symmetric with respect
to a

2
, that is, F (x) = F̄ (a− x), for all 0 ≤ x ≤ a. Then,

E∗
α(X ; t) = Eα(X ; a− t), 0 ≤ t ≤ a, 0 < α < 1,

where Eα(X ; a− t) =
∫ a

a−t
F̄ (x)

F̄ (a−t)

[

−Lnα
F̄ (x)

F̄ (a−t)

]
1

αdx is known as the dynamic fractional

cumulative residual entropy.

• Consider Y = aX + b with a > 0 and b ≥ 0. Then, we obtain

E∗
α(Y ; t) = aE∗

α

(

X ;
t− b

a

)

, t ≥ b, 0 < α < 1.

The following proposition presents an alternative way of representation of the dynamic
EFCPE.

Proposition 2.11. Let X be a non-negative absolutely continuous random variable with
CDF F (.). Then,

E∗
α(X ; t) = E[Tα(X ; t)|X ≤ t] ≈ (α!)

1

αE[T ∗
α(X ; t)|X ≤ t], 0 < α < 1,

where Tα(x; t) =
∫ t

x
[−Lnα

F (z)
F (t)

]
1

αdz and T ∗
α(x; t) =

∫ t

x
[− log F (z)

F (t)
]
1

αdz.

Proof. The proof is similar to Proposition 2.5. Thus, it is not presented here.

Next, we obtain bounds of the dynamic EFCPE.

Proposition 2.12. Let X be a non-negative absolutely continuous random variable with
CDF F (.). Then, for 0 < α < 1, we have

(i) E∗
α(X ; t) ≥ [Ē∗

α(X ; t)]
1

α , where Ē∗
α(X ; t) is given by (2.40);

(ii) E∗
α(X ; t) ≥ µ(t)[−Lnα(1/F (t))]

1

α .

Proof.

(i) The proof of Part (i) follows easily from that of Proposition 2.6.

(ii) Making use of (2.7) , the dynamic EFCPE given by (2.38) can be rewritten as

E∗
α(X ; t) =

1

F (t)

∫ t

0

F (x)[−LnαF (x)]
1

αdx+ [−Lnα(1/F (t))]
1

αµ(t), (2.41)

where µ(t) =
∫ t

0
F (x)
F (t)

dx is known as the mean inactiving time of X . Moreover, the first

integral term in the right hand side of (2.41) is non-negative. Thus, we have

E∗
α(X ; t) ≥ µ(t)[−Lnα(1/F (t))]

1

α .

Hence, the theorem is proved.

Let Xδ and X be two non-negative random variables with respective CDFs Fδ(.) and F (.),
satisfying proportional reversed hazard rate model. Then, we obtain

E∗
α(Xδ; t) ≤ δE∗

α(X ; t), for δ ≥ 1.

17



3 Extended fractional cumulative paired φ-entropy

We note that the φ-entropy was introduced by Burbea and Rao (1982). Recently, Klein et al.
(2016) mentioned with some reasons that it is doubtful for φ-entropy to be a dispersive
measure. These authors have introduced a generalized measure, known as the cumulative
φ-entropy. In this section, we propose extended fractional cumulative paired φ-entropy.

Definition 3.1. Let X be a non-negative absolutely continuous random variable with CDF
F (.) and reliability function F̄ (.). Then, the extended fractional cumulative paired φ-entropy
is defined as

PEα(X) =

∫ ∞

0

F̄ (x)[−LnαF̄ (x)]
1

αdx+

∫ ∞

0

F (x)[−LnαF (x)]
1

αdx

= Eα(X) + E∗
α(X), 0 < α < 1,

where Eα(X) =
∫∞

0
F̄ (x)[−LnαF̄ (x)]

1

αdx is the extended fractional cumulative residual en-
tropy.

By using the approximation Lnαp ≈ log pα!, 0 < α < 1, we can obtain an extended version
of a modified extended fractional cumulative paired φ-entropy as

PE∗
α(X) ≈ (α!)

1

α

[
∫ ∞

0

F̄ (x)[− log F̄ (x)]
1

αdx+

∫ ∞

0

F (x)[− logF (x)]
1

αdx

]

, 0 < α < 1.

Next, we obtain extended fractional cumulative paired φ-entropy for the affine transfor-
mation Y = aX + b, a > 0 and b ≥ 0.

Proposition 3.1. Suppose X is a non-negative absolutely continuous random variable with
CDF F (.) and survival function F̄ (.). Then, for a > 0 and b ≥ 0,

PEα(aX + b) = |a|PEα(X), 0 < α < 1. (3.1)

Proof. It is already observed that E∗
α(aX + b) = |a|E∗

α(X). Utilizing this and Proposition 2.7
of Foroghi et al. (2022), we obtain

PEα(aX + b) = Eα(aX + b) + E∗
α(aX + b)

= |a|Eα(X) + |a|E∗
α(X)

= |a|(Eα(X) + E∗
α(X)),

which completes the proof.

The following proposition shows that the dispersive order between two distributions pre-
serves the uncertainty order on the basis of the cumulative paired φ-entropy.

Proposition 3.2. Let X and Y be two non-negative absolutely continuous random variables
with CDFs F (.) and G(.) and its survival functions F̄ (.) and Ḡ(.), respectively. Then, X ≤disp

Y ⇒ PEα(X) ≤ PEα(Y ), 0 < α < 1.
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Proof. Using Theorem 2.2(i) and Proposition 2.16 of Foroghi et al. (2022), the desired result
follows. Thus, the details are omitted.

Next, we establish a result similar to Proposition 2.8. The proof is omitted since it is
analogous to Theorem 3.2 of Di Crescenzo and Toomaj (2017).

Proposition 3.3. Consider X and Y two non-negative independent continuous random
variables with CDFs F (.) and G(.) and survival functions F̄ (.) and Ḡ(.), respectively. Then,

PEα(X + Y ) ≥ max{PEα(X),PEα(Y )}, 0 < α < 1.

4 Empirical EFCPE

In this section, we propose empirical estimators of the EFCPE. We consider a random sam-
ple (X1, . . . , Xn) drawn from a population with CDF F (.). The order statistics corresponding
to (X1, . . . , Xn) are denoted by X1:n ≤ X2:n ≤ ... ≤ Xn:n, where X1:n = min(X1, . . . , Xn)
and Xn:n = max(X1, . . . , Xn). The empirical CDF is given by

F̃n(x) =











0, if x < X1:n,
K
n
, if XK:n ≤ x < XK+1:n

1, if x ≥ Xn:n,

(4.1)

where K = 1, . . . , n− 1. Now, making use of (4.1), the EFCPE can be written as

E∗
α(F̃n) =

∫ ∞

0

F̃n(x)[−LnαF̃n(x)]
1

αdx (4.2)

≈ (α!)
1

α

∫ ∞

0

F̃n(x)[− log F̃n(x)]
1

αdx

= (α!)
1

α

n−1
∑

i=1

∫ Xi+1:n

Xi:n

F̃n(x)[− log F̃n(x)]
1

αdx

= (α!)
1

α

n−1
∑

i=1

Ui

(

i

n

)(

− log
i

n

)
1

α

, (4.3)

where Ui = Xi+1:n − Xi:n, i = 1, . . . , n − 1. The following theorem establishes that the
empirical EFCPE converges to the EFCPE as n tends to infinity.

Theorem 4.1. Let X be a non-negative random variable with CDF F (.) and E(|X|p) < ∞,
for p > 1. Then, we obtain

E∗
α(F̃n)

a.s
−→ E∗

α(F ), as n −→ ∞,

where E∗
α(F ) is given by (2.1).
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Proof. In order to establish the desired result, we consider

|E∗
α(F̃n)− E∗

α(F )| = |E∗
α(F̃n)− E∗

α(F ) + A1
α(F̃n)− A1

α(F̃n) + A2
α(Fn)− A2

α(Fn)|

≤ |E∗
α(F̃n)− A1

α(F̃n)|+ |E∗
α(F )−A2

α(Fn)|+ |A1
α(F̃n)− A2

α(Fn)|

= T1 + T2 + T3, (say), (4.4)

where the inequality follows from the well-known triangle inequality, and

A1
α(F̃n) = (−α!)

1

α

∫ ∞

0

F̃n(x)[log F̃n(x)]
1

αdx,

A2
α(Fn) = (−α!)

1

α

∫ ∞

0

Fn(x)[logFn(x)]
1

αdx.

Clearly, T1 < ǫ1 and T2 < ǫ2, since E∗
α(F̃n) ≈ A1

α(F̃n) and E∗
α(F ) ≈ A2

α(Fn), respectively,
where ǫ1 and ǫ2 are strictly positive small real numbers. Further, to show that T3 < ǫ3,
where ǫ3 > 0, we consider

E∗
α(F̃n)

(−1)
1

α (α!)
1

α

≈

∫ ∞

0

F̃n(x)[log F̃n(x)]
1

αdx

=

∫ 1

0

F̃n(x)[log F̃n(x)]
1

αdx+

∫ ∞

1

F̃n(x)[log F̃n(x)]
1

αdx

= I1 + I2 (say).

Now, the rest of the proof follows using Theorem 14 (taking ϕ(x) = 1) of Tahmasebi et al.
(2020). This completes the proof.

Next, we consider examples dealing with random samples from exponential and uniform
distributions.

Example 4.1. Consider a random sample drawn from exponential distribution with param-
eter λ. From Pyke (1965), it is well-known that the sample spacings are independent and Ui

is exponentially distributed with parameter λ(n− i). Thus, using (4.2), we have

E[E∗
α(F̃n)] ≈ (α!)

1

α

n−1
∑

i=1

1

λ(n− i)

(

i

n

)(

− log
i

n

)
1

α

and

V ar[E∗
α(F̃n)] ≈ (α!)

2

α

n−1
∑

i=1

1

λ2(n− i)2

(

i

n

)2(

− log
i

n

)
2

α

.

The values of expectation and variance of E∗
α(F̃n) are presented in Table 4 for different

values of λ, n and α. Here, we have considered n = 5, 10, 20, 50, λ = 0.3, 0.7, 1.5 and
α = 0.3, 0.4, 0.7, 0.9, 1. From the tabulated values, we observe that E[E∗

α(F̃n)] increases
and V ar[E∗

α(F̃n)] decreases with respect to n.

20



λ n
E[E∗

0.3(F̃n)] E[E∗
0.4(F̃n)] E[E∗

0.7(F̃n)] E[E∗
0.9(F̃n)] E[E∗

1 (F̃n)]
(

V ar[E∗
0.3(F̃n)]

) (

V ar[E∗
0.4(F̃n)]

) (

V ar[E∗
0.7(F̃n)]

) (

V ar[E∗
0.9(F̃n)]

) (

V ar[E∗
1 (F̃n)]

)

0.3

5 0.88 0.86 1.24 1.59 1.78
(0.38) (0.26) (0.39) (0.66) (0.85)

10 1.13 0.97 1.32 1.74 1.97
(0.31) (0.15) (0.20) (0.36) (0.48)

20 1.26 1.01 1.35 1.80 2.06
(0.18) (0.08) (0.10) (0.19) (0.25)

50 1.32 1.03 1.36 1.83 2.12
(0.08) (0.03) (0.04) (0.08) (0.10)

0.7

5 0.38 0.37 0.53 0.68 0.76
(0.07) (0.05) (0.07) (0.12) (0.16)

10 0.48 0.41 0.57 0.75 0.85
(0.06) (0.03) (0.04) (0.07) (0.09)

20 0.54 0.43 0.58 0.77 0.88
(0.03) (0.01) (0.02) (0.03) (0.05)

50 0.56 0.44 0.58 0.79 0.91
(0.01) (0.006) (0.007) (0.014) (0.019)

1.5

5 0.18 0.17 0.25 0.32 0.36
(0.02) (0.01) (0.015) (0.03) (0.03)

10 0.23 0.19 0.26 0.35 0.39
(0.01) (0.01) (0.01) (0.01) (0.02)

20 0.25 0.20 0.27 0.36 0.41
(0.007) (0.003) (0.004) (0.007) (0.01)

50 0.26 0.21 0.27 0.37 0.42
(0.003) (0.001) (0.002) (0.003) (0.004)

Table 4: Numerical values of E[E∗
α(F̃n)] and V ar[E∗

α(F̃n)] for exponential distribution.

Example 4.2. Let (X1, . . . , Xn) be a random sample from the uniform distribution in the
interval [0, 1]. Then, the sample spacings are independent and follow beta distribution with
parameters 1 and n. For details see Pyke (1965). Then,

E[E∗
α(F̃n)] ≈ (α!)

1

α

n−1
∑

i=1

(

1

n + 1

)(

i

n

)(

− log
i

n

)
1

α

and

V ar[E∗
α(F̃n)] ≈

(α!)
2

α

(n+ 1)2(n+ 2)

n−1
∑

i=1

(

i

n

)2(

− log
i

n

)
2

α

.
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The values of expectation and variance of E∗
α(F̃n) are presented in Table 4, for different values

of n and α. Similar behaviour for E[E∗
α(F̃n)] and V ar[E∗

α(F̃n)] as in Example 4.1can be found
from Table 5.

n
E[E∗

0.3(F̃n)] E[E∗
0.4(F̃n)] E[E∗

0.7(F̃n)] E[E∗
0.9(F̃n)] E[E∗

1 (F̃n)]
(

V ar[E∗
0.3(F̃n)]

) (

V ar[E∗
0.4(F̃n)]

) (

V ar[E∗
0.7(F̃n)]

) (

V ar[E∗
0.9(F̃n)]

) (

V ar[E∗
1 (F̃n)]

)

5 0.16 0.14 0.16 0.18 0.20
(0.002) (0.001) (0.001) (0.0012) (0.0014)

10 0.23 0.18 0.18 0.21 0.22
(0.001) (0.0006) (0.0003) (0.0005) (0.0005)

20 0.28 0.20 0.19 0.22 0.24
(0.0005) (0.0002) (0.0001) (0.00013) (0.00015)

35 0.298 0.21 0.20 0.23 0.24
(0.00019) (0.00007) (0.00004) (0.000048) (0.00005)

50 0.306 0.21 0.20 0.23 0.24
(0.00010) (0.00003) (0.00002) (0.000024) (0.000027)

100 0.314 0.215 0.202 0.231 0.247
(0.00003) ( 8.7× 10−6) ( 5.3× 10−6) ( 6.3× 10−6) ( 7.1× 10−6)

Table 5: Numerical values of E[E∗
α(F̃n)] and V ar[E∗

α(F̃n)] for beta distribution.

Now, we consider a random sample from exponential distribution and establish central
limit theorem for the newly proposed measure.

Theorem 4.2. Suppose a random sample (X1, . . . , Xn) is available from exponential distri-
bution with mean θ > 0. Then, for 0 < α < 1,

E∗
α(F̃n)−E[E∗

α(F̃n)]
√

V ar[E∗
α(F̃n)]

→ N(0, 1), in distribution as n → ∞.

Proof. The proof follows along similar arguments as in the proof of Proposition 5.2 of
Di Crescenzo et al. (2021), and thus it is omitted.

Remark 4.1. Using the result in Theorem 4.2, the approximate confidence interval of the
empirical EFCPE can be obtained as

[

E∗
α(F̃n)− zγ/2

√

V ar[E∗
α(F̃n)], E

∗
α(F̃n) + zγ/2

√

V ar[E∗
α(F̃n)]

]

,

where zγ/2 is the upper γ/2 percentile of the standard normal distribution.
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A quantity is said to be stable if the amount of its change under an arbitrary small defor-
mation of the distribution remains small. Various authors have studied stability of different
uncertainty measures. In this context, we refer to Abe (2002) and Ubriaco (2009). Along
the similar research, Xiong et al. (2019) studied stability criteria for fractional cumulative
residual entropy. Similar research has been carried out by Di Crescenzo et al. (2021) for
fractional cumulative entropy. Very recently, Foroghi et al. (2022) considered stability of the
empirical extended fractional cumulative residual entropy. Herein, we discuss stability of the
empirical EFCPE.

Definition 4.1. Let (X1, . . . , Xn) be a random sample from a population with cumulative
distribution function F (.) and (X∗

1 , . . . , X
∗
n) be any small deformation of it. Then, the ex-

tended EFCPE is stable if for all ǫ > 0, there exists δ > 0 such that

n
∑

l=1

|Xl −X∗
l | < δ ⇒ |E∗

α(F̃n)− E∗
α(F̃

∗
n)| < ǫ, for n ∈ N and 0 < α < 1.

In the next result, we present sufficient condition, under which the EFCPE is stable.

Theorem 4.3. Let X be a non-negative absolutely continuous random variable with distri-
bution function F (.). Then, the EFCPE is stable if X has a distribution on a finite interval.

Proof. Let X have a distribution on a finite interval. Then, the extended EFCPE of X is
expressed as

E∗
α(F̃n) ≈ (α!)

1

α

n−1
∑

l=1

(Xl+1:n −Xl:n)F̃n(Xl:n)[− log F̃n(Xl:n)]
1

α , 0 < α < 1. (4.5)

Now, the rest of the proof follows as in the proof of Theorem 5 of Xiong et al. (2019). Thus,
it is omitted.

Example 4.3. In this example, we consider COVID-19 related weekly data set of size 20. The
data set represents the number of deceased of people due to COVID in the state ODISHA
of INDIA during 12th April 2021 to 23rd August 2021. The information for the data set
is available in the official website “https://statedashboard.odisha.gov.in”. The number of
deceased due to COVID-19 virus per week are

{6, 20, 49, 76, 124, 138, 181, 238, 281, 311, 287,

297, 318, 414, 454, 458, 459, 468, 452, 473}.

The values of the empirical extended fractional cumulative past entropy are computed based on
this data set for some choices of α, which are given by E∗

0.2(F̃n) = 424.411, E∗
0.4(F̃n) = 123.741,

E∗
0.8(F̃n) = 125.559 and E∗

1 (F̃n) = 140.116. The values have been plotted in Figure 2(a) and
Figure 2(b), for 0 < α < 1 and 0.2 ≤ α < 1, respectively. The graphical plot in Figure 2(a)
shows that E∗

α(F̃n) decreases with respect to α > 0 till α ≈ 0.55, and increases afterwards.
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Figure 2: (a) Graph of the empirical EFCPE based on the real-life data set as in Example
4.3 for 0 < α < 1. (b) Magnified view of the graph of the empirical EFCPE based on the
real-life data set as in Example 4.3 for 0.2 ≤ α < 1.

5 EFCPE of coherent system

In this section, we study EFCPE for a coherent system. We recall that a system having n
number of components is called coherent if all the components are relevant, and if the system
is monotone. Consider a coherent system with n identically distributed (i.d) components.
Denote by T the lifetime of a coherent system. The CDF of T , denoted by FT (.) can be
represented in terms of the distortion function q(.) as (see Navarro et al. (2014))

FT (t) = q(FX(t)), (5.1)

where FX(.) is a common CDF of the component lifetimes. Note that the distortion function
with domain and codomain [0, 1] is continuous as well as increasing with q(0) = 0 and
q(1) = 1. In addition, the distortion function depends on the system structure and the
copula associated with the component lifetimes. For a parallel system with independent
and identically distributed n components, q(u) = un and for a 2-out-of-4 system, q(u) =
6u4 − 8u3 + 3u2. Define φα(u) = u[−Lnαu]

1/α, 0 < u < 1. Then, using (5.1), the EFCPE of
T can be written as

E∗
α(T ) =

∫ ∞

0

φα(FT (x))dx =

∫ ∞

0

φα(q(FX(x)))dx =

∫ 1

0

φα(q(u))

fX(F
−1
X (u))

du, 0 < α < 1, (5.2)

where the final equality is obtained using the transformation u = FX(x). Next, we consider a
coherent system with lifetime T = max{X1, X2}, where X1 and X2 are component lifetimes.
It is assumed that X1 and X2 are independent and follow uniform distribution in the interval
(0, 1). Thus, from (5.2), we have

E∗
α(T ) ≈ (α!)

1

α

∫ 1

0

u2[− log u2]
1

αdu =
(2α!)1/αΓ( 1

α
+ 1)

31/α+1
. (5.3)
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Figure 3: Graph of the difference of E∗
α(T )− E∗

α(X1), for α ∈ (0, 1).

We have plotted the difference E∗
α(T ) − E∗

α(X1), for α ∈ (0, 1) in Figure 3, which shows
that E∗

α(T ) ≥ E∗
α(X1), that is, uncertainty of a coherent system is larger than that of its

components. Thus, question arises: whether one can generalize this statement for a general
system. The following proposition provides answer of it under a condition.

Proposition 5.1. Suppose T denotes the lifetime of a coherent system with identically dis-
tributed components. The distortion function is denoted by q(.). If φα(u) = u[−Lnαu]

1/α

and φα

(

q(u)
)

≥ (resp. ≤)φα(u), for 0 < α, u < 1, then E∗
α(T ) ≥ (resp. ≤)E∗

α(X).

Proof. The proof is straightforward, and thus it is omitted.

Another interesting result associated with the comparison of EFCPE of two systems when
they have same structure and different i.d component lifetimes.

Proposition 5.2. Suppose T1 and T2 are the lifetimes of two different coherent systems with
same structure and respective i.d component lifetimes X1, . . . , Xn and Y1, . . . , Yn with same
copula. The common CDFs for X1, . . . , Xn and Y1, . . . , Yn are denoted by FX(.) and FY (.),
respectively.

(i) If FX ≤disp FY , then E∗
α(T1) ≤ E∗

α(T2), 0 < α < 1.

(ii) If E∗
α(X) ≤ E∗

α(Y ) and infu∈β1

φα(q(u))
φα(u)

≥ supu∈β2

φα(q(u))
φα(u)

, for β1 = {u ∈ [0, 1] :

fX
(

F−1
X (u)

)

> fY
(

F−1
Y (u)

)

} and β2 = {u ∈ [0, 1] : fX
(

F−1
X (u)

)

≤ fY
(

F−1
Y (u)

)

},
then E∗

α(T1) ≤ E∗
α(T2), 0 < α < 1.

Proof. (i) Both systems have a common distortion function q, since the systems have same
structure and a common copula. Further, the assumption FX ≤disp FY implies fX

(

F−1
X (u)

)

≥
fY

(

F−1
Y (u)

)

∀ u ∈ (0, 1). Thus,

φα(q(u))

fX
(

F−1
X (u)

) ≤
φα(q(u))

fY
(

F−1
Y (u)

) .
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Hence using (5.2), the result readily follows.

(ii) We have E∗
α(X) ≤ E∗

α(Y ) implies
∫ 1

0
∆(u)du ≥ 0, where ∆(u) = φα(u)

fY

(

F−1

Y (u)
) − φα(u)

fX

(

F−1

X (u)
) .

Now,

E∗
α(T2)− E∗

α(T1) =

∫ 1

0

(

φα

(

q(u)
)

fY
(

F−1
Y (u)

) −
φα

(

q(u)
)

fX
(

F−1
X (u)

)

)

du

=

∫ 1

0

φα

(

q(u)
)

φα(u)
∆(u)du

=

∫

β1

φα

(

q(u)
)

φα(u)
∆(u)du+

∫

β2

φα

(

q(u)
)

φα(u)
∆(u)du

≥ inf
u∈β1

φα

(

q(u)
)

φα(u)

∫ 1

0

∆(u)du+ sup
u∈β2

φα

(

q(u)
)

φα(u)

∫ 1

0

∆(u)du

≥

(

sup
u∈β2

φα

(

q(u)
)

φα(u)

)
∫ 1

0

∆(u)du ≥ 0.

Thus, the proof is completed.

Next, we obtain bounds of the EFCPE of a coherent system. There are many cases, where
exact value of the EFCPE of a system can not be obtained. The reason might be due to the
complicated system structure or the number of components is large. In this case, bounds are
important to study various characteristics of the coherent system. In the following result,
the bounds of the EFCPE of system lifetime are obtained in terms of that of the component
lifetime.

Proposition 5.3. Let T be the lifetime of a coherent system with i.d components and its

distortion function be q, and φα(u) = u
[

− Lnα(u)
]

1

α . Then, we have obtained

ω1,αE
∗
α(X) ≤ E∗

α(T ) ≤ ω2,αE
∗
α(X) ∀ 0 < α < 1,

where ω1,α = inf
u∈(0,1)

φα(q(u))

φα(u)
and ω2,α = sup

u∈(0,1)

φα(q(u))

φα(u)
.

Proof. By utilizing (5.2), we get

E∗
α(T ) =

∫ 1

0

φα

(

q(u)
)

φα(u)
×

φα(u)

fX
(

F−1
X (u)

)du

≤ sup
u∈(0,1)

φα

(

q(u)
)

φα(u)

∫ 1

0

φα(u)

fX
(

F−1
X (u)

)du

=

(

sup
u∈(0,1)

φα

(

q(u)
)

φα(u)

)

E∗
α(X) = ω2,αE

∗
α(X).

Analogously, we obtain E∗
α(T ) ≥ ω1,αE

∗
α(X). Thus, the result follows.
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Example 5.1. Let us consider a coherent system with lifetime T = max{X1, X2}, where X1

and X2 are component lifetimes. It is assumed that X1 and X2 are independent and follow
uniform distribution in the interval (0, 1). The values of ω1,α, ω2,α, E

∗
α(X) (see Example

2.1(i)), ω2,αE
∗
α(X), and E∗

α(T ) (see (5.3)) are presented in Table 6.

α ω1,α ω2,α E∗
α(X) ω2,αE

∗
α(X) E∗

α(T )

0.1 0 20.5656 1076.068 22129.9893 12739.0173

0.3 0 10.0784 0.3203 3.2282 0.5571

0.5 0 3.9996 0.19635 0.7853 0.2327

0.7 0 2.6915 0.2050 0.5519 0.2062

Table 6: Approximate values for E∗
α(T ) and the bounds of E∗

α(T ), for some specific values of
α for Example 5.1.

Below, we obtain a result similar to the preceding proposition. It also compares two
coherent systems.

Proposition 5.4. Let T1 and T2 be the lifetimes of two coherent systems with i.d. components

and distortion functions q1 and q2, respectively and φα(u) = u
[

− Lnαu
]

1

α . Then,

(

inf
u∈(0,1)

φα

(

q2(u)
)

φα

(

q1(u))

)

E∗
α(T1) ≤ E∗

α(T2) ≤

(

sup
u∈(0,1)

φα

(

q2(u)
)

φα

(

q1(u))

)

E∗
α(T1) ∀ 0 < α < 1.

Proof. The proof is analogous to that of Proposition 5.3, and thus it is omitted.

There are some distributions which have bounded density functions. The following result
provides bounds of the EFCPE of a system lifetime when the i.d components have bounded
density function.

Proposition 5.5. Let T be the lifetime of a coherent system with i.d components and dis-

tortion function q(.). Further, let φα(u) = u
[

− Lnαu
]

1

α and the component lifetimes have
absolutely continuous CDF FX(.) and PDF fX(.) with support S.

(i) If fX(x) ≤ M ∀ x ∈ S, then E∗
α(T ) ≥

1
M

∫ 1

0
φα

(

q(u)
)

du ∀ 0 < α < 1.

(ii) If fX(x) ≥ L > 0 ∀ x ∈ S, then E∗
α(T ) ≤

1
L

∫ 1

0
φα

(

q(u)
)

du ∀ 0 < α < 1.

Proof. (i) Using (5.2), we have

E∗
α(T ) =

∫ 1

0

φα

(

q(u)
)

fX
(

F−1
X (u)

)du ≥
1

M

∫ 1

0

φα

(

q(u)
)

du (as fX
(

F−1
X (u)

)

≤ M).

Hence the result follows.
(ii) The proof of this part is similar to that of the first part. Thus, it is omitted.
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The following example illustrates Proposition 5.5.

Example 5.2. (i) If T is the lifetime of a coherent system with i.d components with CDF
FX(x) = 1−

(

β
β+x

)γ
, x > 0 and γ, β > 0, then M = γ/β and from Proposition 5.5(i)

E∗
α(T ) ≥

β

γ

∫ 1

0

φα

(

q(u)
)

du, 0 < α < 1.

(ii) If T denotes the lifetime of a coherent system with i.d components following log-uniform
distribution with CDF FX(x) =

log x−log a
log b−log a

, 0 < a ≤ x ≤ b, then L = 1
b log(b/a)

and as a result

from Proposition 5.5(ii), we have

E∗
α(T ) ≤ b log

(

b

a

)
∫ 1

0

φα

(

q(u)
)

du, 0 < α < 1.

6 Validation and application of EFCPE

In this section, we consider logistic map and test the acceptability of the newly proposed
uncertainty measure. The logistic map is given by

xl+1 = sxl(1− xl), (6.1)

where x ∈ [0, 1], s ∈ [0, 4] and l = 0, 1, 2, . . .. Note that the logistic map is applied for the
study of chaotic behaviour of a system. With the changes in s, the simulated data using
logistic map have different characteristics such as periodical series and chaotic states. Here,
the data have been generated by taking initial value x0 = 0.1 for different choices of s such
as 3.58, 3.6, 3.7, 3.8 and 4. The bifurcation diagram of the logistic map is presented in
Figure 4(a). Corresponding plots of empirical EFCPE given by (4.2) of the generated series
of data are presented in Figure 4(b), from which it is clearly visible that the newly proposed
uncertainty measure can perfectly capture the difference of uncertainty between chaotic and
periodic series. As expected, from Figure 4(b), we observe that the EFCPE provides higher
entropy values than periodic ones for s = 3.8 and 4. Further, as α increases, the degree of
randomness increases. It is highest for all values of α when the logistic map is fully chaotic,
that is when s = 4. These observations demonstrate that the EFCPE is a valid measure of
uncertainty.

In order to see the applicability of the proposed measure, here, we present a comparison
study between EFCPE in (2.2) with cumulative entropy (CE) proposed by Di Crescenzo and Longobardi
(2009) for the Weibull distribution with scale parameter 1 and shape parameter 5. Figure
5(a) depicts the plots of EFCPE for α = 0.15 , 0.20 , 0.23 and the CE, 5(b) presents the plots
of EFCPE for α = 0.30, 0.35, 0.40 and the CE and 5(c) provides the plots of EFCPE for
α = 0.97, 0.98, 0.99 and the CE.

Note that the entropies are equal to the areas below each curve. From Figure 5, it is easy
to check that the areas under each curve for the EFCPE are larger than the area under the
CE. As expected, Figure 5(c) shows that all the curves are very close to each other when α
is near to 1. Thus, one can conclude using these graphs that the newly proposed fractional
measure is better one than the CE for 0 < α < 1.

28



(a) (b)

Figure 4: (a) Bifurcation diagram of the logistic map. (b) Graphs of EFCPE for different
choices of s based on the data generated using logistic map. Here, we have considered
s = 3.58, 3.6, 3.7, 3.8, 4 (from bottom to top).

7 Conclusions

Entropy measures the uncertainty or heterogeneity in a physical system. In this paper,
we have proposed a new entropy, known as EFCPE and explored several properties of it.
This concept is illustrated for the bivariate setup. Bounds are obtained. A connection be-
tween the stochastic order and larger uncertainty in terms of the EFCPE is established.
Further, the concept of conditional EFCPE has been explored. The newly proposed mea-
sure is studied for the past lifetime. In addition, we have proposed another new concept
for extended fractional cumulative paired φ-entropy. The empirical EFCPE is proposed for
the purpose of estimation. The empirical estimator is illustrated using two examples asso-
ciated with exponential and uniform distributions. The stability of the proposed measure is
studied. A COVID-19 related data set is considered to compute the values of EFCPE for
different choices of α. Further, various properties of the EFCPE of coherent systems are
proposed. Finally, validation and application of EFCPE are provided. The validation has
been explained using a simulation study on logistic map. It is observed that more chaos
in a system leads to higher uncertainty. For the application of the proposed measure, we
considered Weibull distribution and checked that the newly proposed fractional uncertainty
measure (EFCPE) provides better output than the cumulative entropy measure proposed
by Di Crescenzo and Longobardi (2009).
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Figure 5: A comparative study of the EFCPE and CE for (a) α = 0.15 , 0.20 , 0.23; (b)
α = 0.30, 0.35, 0.40 and (c) α = 0.97, 0.98, 0.99.
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basis for q-exponential distributions, Physical Review E. 66(4), 046134.

Bagai, I. and Kochar, S. C. (1986). On tail-ordering and comparison of failure rates, Communications in
Statistics-Theory and Methods. 15(4), 1377–1388.

Burbea, J. and Rao, C. (1982). On the convexity of some divergence measures based on entropy functions,
IEEE Transactions on Information Theory. 28(3), 489–495.

Di Crescenzo, A., Kayal, S. and Meoli, A. (2021). Fractional generalized cumulative entropy and its dynamic
version, Communications in Nonlinear Science and Numerical Simulation. 102, 105899.

Di Crescenzo, A. and Longobardi, M. (2009). On cumulative entropies, Journal of Statistical Planning and
Inference. 139(12), 4072–4087.

Di Crescenzo, A. and Toomaj, A. (2017). Further results on the generalized cumulative entropy, Kybernetika.
53(5), 959–982.

Foroghi, F., Tahmasebi, S., Afshari, M. and Lak, F. (2022). Extensions of fractional cumulative residual
entropy with applications, Communications in Statistics-Theory and Methods. pp. 1–20.

Jaynes, E. T. (1957). Information theory and statistical mechanics, Physical review. 106(4), 620.
Jumarie, G. (2012). Derivation of an amplitude of information in the setting of a new family of fractional

entropies, Information Sciences. 216, 113–137.
Kayid, M. and Shrahili, M. (2022). Some further results on the fractional cumulative entropy, Entropy.

24(8), 1037.
Klein, I., Mangold, B. and Doll, M. (2016). Cumulative paired ϕ-entropy, Entropy. 18(7), 248.
Kundu, A. and Kundu, C. (2017). Bivariate extension of (dynamic) cumulative past entropy, Communications

in Statistics-Theory and Methods. 46(9), 4163–4180.
Kundu, A. and Kundu, C. (2018). Bivariate extension of generalized cumulative past entropy, Communica-

tions in Statistics-Theory and Methods. 47(8), 1962–1977.
Kundu, A. and Nanda, A. K. (2016). On study of dynamic survival and cumulative past entropies, Commu-

nications in Statistics-Theory and Methods. 45(1), 104–122.
Liang, Y. (2018). Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function,

Fractional Calculus and Applied Analysis. 21(1), 104–117.
Lopes, A. M. and Machado, J. A. T. (2020). A review of fractional order entropies, Entropy. 22(12), 1374.
Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction eα(x), Comptes Rendus de l’Académie des Sciences.

137(2), 554–558.
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