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Abstract

Background: In this paper, we describe the clinical and neuropathological findings of nine members of the Belgian

progranulin gene (GRN) founder family. In this family, the loss-of-function mutation IVS1 + 5G > C was identified in

2006. In 2007, a clinical description of the mutation carriers was published that revealed the clinical heterogeneity

among IVS1 + 5G > C carriers. We report our comparison of our data with the published clinical and

neuropathological characteristics of other GRN mutations as well as other frontotemporal lobar degeneration (FTLD)

syndromes, and we present a review of the literature.

Methods: For each case, standardized sampling and staining were performed to identify proteinopathies,

cerebrovascular disease, and hippocampal sclerosis.

Results: The neuropathological substrate in the studied family was compatible in all cases with transactive

response DNA-binding protein (TDP) proteinopathy type A, as expected. Additionally, most of the cases presented

also with primary age-related tauopathy (PART) or mild Alzheimer’s disease (AD) neuropathological changes, and

one case had extensive Lewy body pathology. An additional finding was the presence of cerebral small vessel

changes in every patient in this family.

Conclusions: Our data show not only that the IVS1 + 5G > C mutation has an exclusive association with FTLD-TDP

type A proteinopathy but also that other proteinopathies can occur and should be looked for. Because the

penetrance rate of the clinical phenotype of carriers of GRN mutations is age-dependent, further research is

required to investigate the role of co-occurring age-related pathologies such as AD, PART, and cerebral small vessel

disease.
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small vessel disease (SVD)
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Background
Frontotemporal lobar degeneration (FTLD) accounts

for 10–15% of all dementias and represents the sec-

ond most common cause of young-onset dementia.

FTLD is always associated with atrophy of the frontal

and/or temporal lobes and is sometimes markedly

asymmetrical. The clinical phenotype of FTLD

includes two major cognitive syndromes: behavioral

variant frontotemporal dementia (bvFTD) and primary

progressive aphasia (PPA) [1–3]. FTLD is often asso-

ciated with extrapyramidal symptomatology, being

referred to as frontotemporal lobar degeneration with

parkinsonism (FTDP), or with motor neuron disorders

(FTLD-MNDs), of which amyotrophic lateral sclerosis

(ALS) is the most common.

A familial history is present in up to 40% of patients

with FTLD, with a pattern suggestive of autosomal dom-

inant inheritance in 10–20% of FTLD families. In 1998,

frontotemporal dementia associated with parkinsonism

was linked to chromosome 17 (FTDP-17), leading to the

discovery of the microtubule-associated protein tau gene

(MAPT) [4–6] in 1998 and of the progranulin gene

(GRN) in 2006 [7, 8].

Mutations in MAPT are often associated with tau ag-

gregates (FTLD-tau), whereas transactive response

DNA-binding protein 43 (TDP-43) inclusions (FTLD-

TDP) are found in patients with mutations in the

C9orf72 [9–11], GRN [7, 12], valosin-containing protein

gene (VCP) [13], TARDBP [14], or TBK1 genes [15].

Rare proteinopathies include FTLD-UPS (ubiquitin

proteasome system), caused by mutations in chromatin-

modifying protein 2B (CHMP2B) [16, 17] and FTLD-

FUS (fused in sarcoma) [18], or FTLD with inclusions

belonging to other proteins of the FET family (FUS,

EWSR1, and TAF15 family of proteins) [19], for which

the underlying genetic causes are still unknown.

TDP proteinopathies are classified into four sub-

types, A through D [20]. TDP type A is characterized

by many neuronal intracytoplasmic inclusions (NCIs)

and short dystrophic neurites (DNs) predominantly in

the second cortical layer, whereas TDP type B is rep-

resented by a moderate amount of NCIs and few

DNs, present in all cortical layers. Type C inclusions

are typically long DNs, mainly in the second cortical

layer. TDP type D inclusions are characterized by

many neuronal intranuclear inclusions (NIIs). Because

the neuropathological diagnosis has a variable link

with the clinical picture, the connection with the

causative gene mutations is much stronger. GRN muta-

tions are associated with FTLD-TDP type A. Mutations in

GRN cause 15–40% of FTLD-TDP cases [21–24]. In

Belgium, GRN mutations are the second most prevalent

mutations causing FTLD, with C9orf72 G4C2 repeat

expansions being the most prevalent [25].

The penetrance rate seems to be age-dependent, just

as it is in C9orf72 mutations [25]. Gass et al. found that

by the age of 60, nearly 50% of the carriers were affected,

whereas 90% of patients showed symptomatology by the

age of 90 [22]. The heterogeneity of the clinical pheno-

types in GRN mutations and the incomplete penetrance

of a mutation [26] can make it difficult to recognize an

autosomal dominant pattern of inheritance.

GRN is located on chromosome 17q21, and the first

loss-of-function mutations in GRN were identified in

2006 [7, 8]. Cruts et al. described a point mutation in

the splice donor site of intron 1 (IVS1 + 5G > C) in the

Belgian DR8 family [8, 12]. Consequently, intron 1 spli-

cing is prohibited, and the mutant transcript is retained

in the nucleus, where it is degraded, leading to a null al-

lele and 50% of GRN production. This mutation was

shown to be a founder mutation and is the most fre-

quent GRN mutation in patients with frontotemporal

dementia (FTD) in the Belgian Flanders population [8]

(Wauters E, Van Mossevelde S, Sleegers K: Phenotypic

characteristics and genetic onset age modifiers in an ex-

tended Belgian GRN founder family. Submitted). Since

the identification of GRN, 172 different mutations have

been described (http://www.molgen.ua.ac.be) [27]. Next

to null mutations [28], partial deletions of the GRN gene

have also been described in FTLD [29, 30]. GRN mis-

sense mutations have also been observed in Alzheimer’s

disease (AD) and ALS [31–33].

Progranulin is a growth factor expressed by many

cells, including neurons. Progranulin can be cleaved to

form smaller peptides, called granulins, which have an

additional role in inflammation, wound repair, and cell

cycling [24]. As a result of the haploinsufficiency, low

progranulin levels are found in the plasma, serum, and

cerebrospinal fluid of symptomatic and asymptomatic

GRN mutation carriers and were also present in the fam-

ily we are presently reporting [34, 35].

Cerebral small vessel disease (SVD) is a common find-

ing in the elderly brain, and its pathology appears in the

presence of risk factors such as smoking habit, hyperten-

sion, hypercholesterolemia, and diabetes mellitus. There

is a known link with AD and Lewy body disease [36],

but to date there are no data regarding SVD in patients

carrying a GRN mutation. De Reuck et al. found no cere-

brovascular changes in 22 patients with FTLD, 2 of

whom carried a GRN mutation [37]. Because Thal et al.

recently found an association between cerebral SVD and

Pick’s disease [38], it is of interest whether cerebral SVD

could play a role in this disease.

We characterized the neuropathological data of nine

members of the Belgian GRN founder family in an

extensive sampling of brain regions, and we compared

our data with the published clinical and neuropatho-

logical characteristics of other GRN mutations and other
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FTLD syndromes. Furthermore, because white matter

pathology is a common finding on cerebral structural

imaging of GRN mutation carriers, and because this

finding was also observed in our GRN founder family,

we examined the white matter and cerebral small vessels

in different brain regions in this family.

Methods

Neuropathological evaluation was carried out in nine

members of an extended family of patients with FTLD

carrying the GRN IVS1 + 5G > C mutation, which was

previously reported in 2006 [8]. Neuropathological

findings of one patient in this family (DR205.1) were

previously described with the techniques available at that

time. The nine patients were members of six different

branches of the GRN founder family (for pedigree, see

(Wauters E, Van Mossevelde S, Sleegers K: Phenotypic

characteristics and genetic onset age modifiers in an ex-

tended Belgian GRN founder family. Submitted)). All

available clinical and iconographical data of these pa-

tients were reviewed. Because the subjects originated

from different regions in Flanders (Belgium), they were

followed by different neurologists in different centers.

Consequently, the diagnostic approaches and performed

investigations or neuropsychological tests done during

the patients’ lifetimes varied between patients and in the

clinical data. For most of the patients, we had access to

clinical data concerning medical history, clinical neuro-

logical evaluations, neuropsychological evaluations, and

brain imaging (structural and functional). The right

hemisphere was neuropathologically examined, as was

the circle of Willis when present.

We used standardized sampling and staining tech-

niques (see Additional file 1) to identify histological

changes, proteinopathies, and cerebral small vessel path-

ology. For AD neuropathological diagnosis and for its

clinicopathological correlation, the criteria of Montine et

al. were used [39]; for Lewy body pathology, the classifi-

cation of McKeith et al. was used [40]; and for TDP pro-

teinopathies, we used the Mackenzie et al. criteria [20].

For staging of cerebrovascular pathology, we refer to the

work of Deramecourt et al. [36], and for the

clinicopathological correlations of the cerebrovascular

pathology, we refer to the work by Skrobot et al. [41].

The methodological data concerning DNA extraction,

clinical findings, neuropsychological assessments, and

imaging can be found in Additional file 1.

Results
Neuropathological findings

Macroscopic findings

Macroscopic findings in eight of nine patients (no data

available for patient DR205.1) were compatible with

moderate to severe frontal atrophy, with a relative

sparing of the precentral gyrus (Fig. 1a, b; Table 1). To a

lesser extent, temporal and/or parietal cortices (Fig. 1d)

were also atrophied, in addition to the head of the caud-

ate nucleus (Fig. 1c). For the full macroscopic data, see

Additional file 2. Because our research protocol included

the preservation of the left hemisphere at −80 °C, state-

ments about asymmetry were not possible.

In three of six patients, we saw mild atherosclerotic

plaques or minimal fibrotic changes in the arteries of the

circle of Willis.

Histological findings

In all patients, a moderate to severe cortical neuronal loss

with astrocytosis was seen in Brodmann area 24, more

than in areas 6–8 and 11 and more than in precentral area

4. The temporal neocortex was atrophic in three cases,

whereas every case presented with mild to moderate neur-

onal loss in CA1, the subiculum, and the pro- and parasu-

biculum (Table 2). There was severe atrophy in the

neostriatum; the substantia nigra had substantial neuronal

loss in all cases, whereas the locus coeruleus was affected

in four of nine patients. There were no abnormalities in

the cerebellum or thalamus. Figure 2 summarizes the

major histological abnormalities.

Small vessel disease

In every patient, small vessel changes were present.

Trichrome staining showed a preferential thickening of

the arteriolar wall in cortex and white matter. (Small ar-

teries were defined as arterioles when the diameter was

between 40 and 150 μm [36].) Arteriolosclerosis was

characterized by thickening of the vessel wall and re-

duplication of the internal elastic layer. Other features of

SVD included a dilation of the perivascular space, peri-

vascular demyelination, and perivascular hemosiderin

leakage (Fig. 3). The staging system of Deramecourt et

al. [36] was used to semiquantify SVD. In the frontal

lobes, SVD was more severe than in the temporal lobes,

basal ganglia, and hippocampus (Table 3). Using the vas-

cular cognitive impairment neuropathological guidelines,

on the basis of the presence of leptomeningeal cerebral

amyloid angiopathy, subcortical macroinfarcts, and

arteriolosclerosis in the occipital lobe, we could estimate

that there was a low likelihood that the cerebrovascular

pathology contributed to the cognitive decline in our

cases (Table 3).

Immunohistology

In all patients, TDP proteinopathy type A could be diag-

nosed (Fig. 4). Lesions were, as expected, more severe in

the frontal and temporal neocortices. In the frontal cor-

tex, most lesions were found in areas 6 and 8, area 24,

and area 11, compared with prefrontal area 4. The tem-

poral superior gyrus demonstrated a moderate to high

Sieben et al. Alzheimer's Research & Therapy  (2018) 10:7 Page 3 of 13



Fig. 1 Macroscopic images. a Lateral view of the right hemisphere in DR2.3. Note the frontal and temporal, and to a lesser extent parietal, atrophy.

Area 4 (arrow) is relatively preserved. b Medial view of right hemisphere in DR2.3. The superior frontal gyrus is atrophied, whereas the straight gyrus is

relatively spared. c Coronal section of the right hemisphere trough the head of the caudate nucleus in DR2.3. There is a flattened, nearly concave

aspect of the caudate nucleus. d Coronal sections trough the parietotemporal lobes in DR8.1. The lateral ventricle is dilated, especially the temporal

horn. Temporal atrophy is more pronounced than parietal atrophy

Table 1 Macroscopic findings

Atrophy location DR2.3 DR8.1 DR25.1 DR25.5 DR28.1 DR205.1 DR31.1 DR1207.1 DR1213.1

Frontal lobe +++ +++ +++ +++ +++ NA + +++ +++

Temporal lobe +++ + + +++ + NA + ++ +

Parietal lobe + − ++ − +++ NA − − −

Caudate nucleus + + NA + + NA + +++ +++

Whole cortical atrophy + − − − − NA − − −

Weight of right hemisphere 414 g 519 g 449 g 472 g 583 g NA NA 522 g 577 g

NA Not available, + Mild atrophy, ++ Moderate atrophy, +++ Severe atrophy

Sieben et al. Alzheimer's Research & Therapy  (2018) 10:7 Page 4 of 13



lesion load, whereas only a mild to moderate amount of

TDP pathology was present in the hippocampal and

parahippocampal structures.

In eight patients (no data available for DR205.1), there

was mild to moderate TDP-43 proteinopathy in the par-

ietal cortex (area 7), whereas in four of eight patients,

the occipital lobe was affected. In the neostriatum, le-

sions were moderate to numerous and were evenly

spread throughout the caudate nucleus and putamen.

Sparse lesions were found in the dorsomedial formation

of the thalamus in seven of nine patients.

Glial cytoplasmic inclusions (GCIs) were found in

the subcortical and deeper white matter of the frontal

and parietal lobes and rarely in the mesotemporal

white matter. Except for rare DNs and occasional

GCIs, no inclusions were found in the substantia

nigra, pons, or medulla oblongata. No NCIs were

present in the neurons of the hypoglossal nucleus.

The cerebellum was normal.

The degree of TDP-43 inclusions was moderate, varying

from sparse (0–1/mm2) (±), to mild (<5/mm2) (+), to mod-

erate (5–20/mm2) (++), to extensive (> 20/mm2) (+++).

The most common lesions were skein-like NCIs and short

DNs. Sporadically, cat’s-eye NIIs were found, mainly in the

frontotemporal neocortex. The lesion load was most pro-

found in the second cortical layer. A summary of the TDP

pathology is presented in Fig. 5.

In all patients, FUS and prion staining was negative.

P62 stain could not elicit any additional pathology. In all

patients, AD-related pathology was found; however, the

lesion load remained mild. Two patients had A1B1C1

(DR2.3, DR31.1), one patient presented with A2B1C1

(DR205.1), and one patient presented with A3B1C1

(DR28.1). The five remaining patients presented with

neurofibrillary tangles in the hippocampus and parahip-

pocampal gyrus without β-amyloid pathology, diagnosed

as AD neuropathological changes A0B1C0 [39], also re-

ferred to as primary age-related tauopathy (PART) [42].

Table 2 Co-occurring Alzheimer’s disease pathology and clinicopathological correlation, hippocampal neuronal loss, and

apolipoprotein E genotype

Identifier Montine Thal Braak CERAD Correlation Hippocampal
neuronal loss

ApoE
genotype

DR2.3 A1B1C1 2 2 1 Low 2 Ɛ2/Ɛ3

DR8.1 A0B1C0 0 1 0 Not 2 Ɛ3/Ɛ3

DR25.1 A0B1C0 0 1 0 Not 1 Ɛ3/Ɛ3

DR25.5 A0B1C0 0 1 0 Not 2 Ɛ3/Ɛ3

DR28.1 A3B1C1 5 1 1 Low 0 Ɛ3/Ɛ4

DR205.1 A2B1C1 3 2 1 Low 1 Ɛ2/Ɛ4

DR31.1 A1B1C1 2 1 1 Low 1 Ɛ2/Ɛ3

DR1207.1 A0B1C0 0 1 0 Not 1 Ɛ3/Ɛ3

DR1213.1 A0B1C0 0 1 0 Not 2 Ɛ3/Ɛ3

ApoE Apolipoprotein E, CERAD Consortium to Establish a Registry for Alzheimer’s Disease

Column 2: Montine classification [39, 83]; column 3: Thal stages for β-amyloid plaques [84]; column 4: Braak stages for neurofibrillary changes [85]; column 5:

CERAD stages for senile plaques [86]: 0 = no pathology, 1 = sparse CERAD score; column 6: clinicopathological correlation of Alzheimer’s disease neuropathological

changes [39]; column 7: neuronal loss in hippocampal CA1 (scale 0–3): 0 = no pathology, 1 =mild neuronal loss, 2 = moderate neuronal loss; column 8:

ApoE genotype

Fig. 2 Grouped histopathological findings. Entorhinal cortex (ER), transentorhinal cortex (TER), gyrus occipitotemporalis lateralis (GOTL),

dorsomedial formation (DMF), and status pigmentatus (SP). Semiquantitative analysis of the average neuronal cell loss in every region of interest.

nl Normal, ↓ Slight neuronal loss, ↓↓ Moderate neuronal loss, ↓↓↓ Severe neuronal loss
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Table 2 summarizes the AD neuropathological changes

using the Montine criteria, as well as the clinicopatho-

logical correlation.

One patient (DR205.1) clinically presented with a

combination of FTLD and Parkinson’s disease (PD). This

case revealed many Lewy bodies in the substantia nigra

and the formatio reticularis, and to a lesser extent in the

frontal and temporal cortices, the hippocampus, and the

parahippocampal gyrus. A dual diagnosis of FTLD-TDP

type A and diffuse Lewy body disease, neocortical type,

was made [40].

Clinical, neuropsychological, and imaging data

We evaluated nine patients (four females, five males).

Symptomatology started between the ages of 55 and

70 years, with a mean onset age of 62. The disease

lasted, on average, 5.3 years (range 2.3–8.6). The mean

age at death was 67 years (range 60–75). Symptom-

atology was mostly frontotemporal (four of nine

bvFTD, four of nine PPA), except in one patient who

was clinically diagnosed with PD (DR205.1). This pa-

tient developed frontotemporal symptoms as well,

later in the disease. The demographic characteristics

of the evaluated patients are summarized in Table 4,

whereas the clinical and neuropsychological character-

istics, as well as imaging data, are discussed in Add-

itional files 3 and 4. Table 5 summarizes the

cerebrovascular risk factors.

Discussion

This report describes the clinical and neuropathological

findings in nine members of a Belgian GRN founder

family. This extended Belgian founder family was first

described by van der Zee et al. in 2006 after the identifi-

cation of an ancestral haplotype at 17q21 in seven (unre-

lated) familial tau-negative patients with FTLD. The

IVS1 + 5G > C GRN mutation was found as a causal gene

defect [8]. This family has been further explored, and to

date we have genealogical data of 29 branches over 5

generations.

Neuropathology

Severe frontal and temporal neocortical loss was ob-

served. Next to the neocortical atrophy, every patient

had a neuronal cell loss in CA1 and the subiculum.

There was no hippocampal sclerosis. These findings are

Fig. 3 Cerebral small vessel disease. a DR2.3. H&E stain of perivascular hemosiderin deposits in the hippocampus. Arrows show many

siderophages. b DR25.5. H&E stain of the corpus callosum. Arrows show thickening of the arteriolar wall. c DR25.5. H&E stain of the temporal

white matter. Arrows show thickening of the arteriolar walls with mild perivascular demyelination

Table 3 Cerebral small vessel disease and its clinicopathological correlation

Identifier Frontal Temporal Hippocampal Basal ganglia Total score CAA Large infarcts Arteriolosclerosis Correlation

DR2.3 1 1 1 2 5 0 0 0 Low

DR8.1 2 2 2 1 7 1 0 1 Low

DR25.1 2 1 2 1 6 0 0 0 Low

DR25.5 2 2 1 1 6 0 0 2 Low

DR28.1 1 1 1 1 4 0 0 1 Low

DR205.1 NA NA 2 1 NA NA NA NA Low

DR31.1 2 1 1 1 5 0 0 1 Low

DR1207.1 2 1 1 1 5 0 0 1 Low

DR1213.1 1 1 1 2 5 0 0 0 Low

CAA Leptomeningeal cerebral amyloid angiopathy, NA Not applicable

Deramecourt staging of cerebrovascular pathology in dementia in frontal lobe, temporal lobe, and hippocampus, with total score (total possible score = 20) [36].

For the likelihood that cerebral small vessel disease (SVD) contributed to cognitive decline, we refer to the work of Skrobot et al. [41]. Large infarcts: one or more

subcortical infarcts with diameter > 10 mm; arteriolosclerosis: arteriolosclerosis in the occipital lobe. Correlation: likelihood that SVD contributed to

cognitive decline

Sieben et al. Alzheimer's Research & Therapy  (2018) 10:7 Page 6 of 13



comparable with the data published by Josephs et al. in

2007 [43]. In all our cases, TDP-43 type A proteinopathy

was observed, confirming previously published data [20].

We compared our neuropathological data in these pa-

tients with data of patients in our database carrying

other GRN mutations (n = 2), C9orf72 expansion repeat

mutations (n = 15), TBK1 mutations (n = 2), and VCP

mutations (n = 3) [15, 25, 44, 45]. In our study, the pres-

ence of a TDP type A proteinopathy and the absence of

dipeptide repeat pathology in the dentate gyrus and

hippocampus allowed us to differentiate between GRN

and C9orf72 mutations. We found no differences in

Fig. 4 Transactive response DNA-binding protein (TDP) pathology (paraffin-embedded sections stained with antihyperphosphorylated TDP-43

antibody). a DR25.5 area 6. There is a moderate amount of neuronal intracytoplasmic inclusions (NCIs) (arrows), mainly in the second cortical layer.

The dystrophic neurites (arrowhead) are more evenly spread throughout the entire cortex. b DR2.3 superior temporal gyrus. Mild to moderate

TDP-43 proteinopathy type A with NCIs (arrow) and dystrophic neurites (arrowheads) can be seen. c DR28.1 dentate gyrus. There are scarce NCIs

(arrow) in the granular layer. d DR31.1 area striata. A mild amount of NCIs (arrows) and dystrophic neurites (arrowheads) in the second cortical

layer can be seen

Fig. 5 Transactive response DNA-binding protein pathology in different brain areas. ± (sparse (0–1/mm2)), + (mild (< 5/mm2)), ++ (moderate (5–20/mm2)),

+++ (extensive (> 20/mm)). The average lesion load is shown for the most important regions of interest. Striped bar represents the amount of neuronal

intracytoplasmic inclusions, whereas the dark bar represents the amount of short dystrophic neurites. With the dotted bar, the neuronal intranuclear

inclusions are shown. NCI Neuronal intracytoplasmic inclusions, DN Dystrophic neurites, NII Nuclear intraneuronal inclusions, DMF Dorsomedial formation,

ER Entorhinal cortex, TER Transentorhinal cortex, GOTL Gyrus occipitotemporalis lateralis, DG Dentate gyrus

Sieben et al. Alzheimer's Research & Therapy  (2018) 10:7 Page 7 of 13



TDP lesion load between the IVS1 + 5G > C GRN muta-

tion and other GRN mutations. We observed that, com-

pared with the C9orf72 carriers, the precentral cortex

area 4 was less affected. In both GRN and C9orf72 car-

riers, parietal involvement was present; however, it was

less explicit than frontotemporal atrophy. In four pa-

tients carrying the IVS1 + 5G > C GRN mutation, we also

found a mild TDP proteinopathy in the occipital cortex.

In the TBK1 carriers, the neuropathological diagnosis

was compatible with a TDP type B proteinopathy, with

involvement of all the frontal and temporal neocortices,

the hippocampal dentate gyrus, the parahippocampal

transentorhinal cortex, the neostriatum, and the palli-

dum. TDP pathology was also present in motor neurons,

whereas in the GRN patients, this was not the case. The

VCP patients carried an abundant load of TDP path-

ology in similar affected areas. The main difference was

the high amount of intranuclear inclusions, compatible

with a TDP proteinopathy type D.

We can assume that the clinical presentation is not

linked to the TDP proteinopathy itself, but rather is the

consequence of the specific cortical areas that are in-

volved. The finding of TDP type A pathology spread

throughout the entire cortex, though to a lesser extent

in the parietal and occipital cortices, can explain the

generalized cortical brain atrophy visualized by struc-

tural imaging [46, 47]. No TDP-43 pathology was found

in the hypoglossal nucleus in our study, supporting the

clinical evidence that motor neuron disease was not

present in this family.

Because TDP-43 inclusions can also be found in car-

riers of VCP and C9orf72 mutations, this suggests that

TDP-43 dysregulation is merely a downstream effect

through a common pathway leading to cell death [48].

The finding of the TDP inclusions is indeed not specific

for underlying gene defects, although the pattern of

TDP inclusions and associated proteinopathies can be

suggestive of a specific gene mutation.

The distribution of the TDP-43 pathology in specific

neocortical structures favors a protein distribution

through neuronal pathways instead of proximity [49].

It is assumed that every specific neurodegenerative

syndrome has its own specific region working as an

“epicenter.” This epicenter is critical in the neuronal

networks, whose normal connectivity profiles resem-

ble the pattern of atrophy in that specific disease, in

our case FTLD. Several network degeneration

mechanisms have been suggested [50]. The presence

Table 4 Demographic data

Patient Sex FH AO (years) Age of death (years) DD (years) Final clinical diagnosis

DR2.3 F F - autosomal dominant 63 72 8.6 PPA (NFV)

DR8.1 F F - autosomal dominant 62 68 5.9 bvFTD

DR25.1 F F - autosomal dominant 69 75 5.4 bvFTD

DR25.5 M F - autosomal dominant 70 73 3,4 bvFTD

DR28.1 M F - autosomal dominant 56 62 6.8 PPA (NFV)

DR205.1 F F 55 61 5.1 PD

DR31.1 M F 65 70 5.6 PPA (NFV)

DR1207.1 F S 62 66 4.4 PPA (NFV)

DR1213.1 M F - autosomal dominant 58 60 2.3 bvFTD

Abbreviations: FH Familial history), F Familial presentation, S Sporadic, AO Age of onset, DD Disease duration in years, PPA Primary progressive aphasia, NFV

Nonfluent variant, bvFTD Behavioral variant frontotemporal dementia

Table 5 Cerebrovascular risk factors

DR Smoking Diabetes
mellitus

Arterial
hypertension

Hypercholesterolemia
(> 190 mg/dl)

Other

DR2.3 Y (35 py) Y Y N

DR8.1 N N Y Y TIA

DR25.1 ? N Y N Obesity

DR25.5 Y (40 py) N ? ? TIA, stroke

DR28.1 ? N N Y

DR205.1 ? N N N

DR31.1 ? ? ? Y

DR1207.1 N N N Y

DR1213.1 N N N N

Abbreviations: Y Present, N Absent, ? Unknown, py Pack-years, TIA Transient ischemic attack
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of neostriatal lesions could support this hypothesis of

degeneration of neuronal networks because the

striatum has projections to many (frontotemporal)

cortical areas. In addition to cortical abnormalities,

white matter involvement visualized by cerebral im-

aging has been reported in patients carrying a GRN

mutation [21, 51, 52]. Compared with patients with

MAPT mutations, however, GRN mutation carriers

would tend to show less white matter abnormalities

[53]. Because white matter pathology was also seen

on neuroimaging studies in five of our patients, we

investigated the proteinopathy and vessel involvement

in the cortex and white matter. Glial TDP proteino-

pathy is regularly found in patients with GRN

mutations, and this was also the case in all our

patients [53].

Furthermore, we found mild to moderate cerebral

SVD, most pronounced in the frontal lobe, whereas only

normal vascular findings have been described in patients

with FTLD [37, 54]. We assume that the SVD is merely

the consequence of the age of our patients as well as the

comorbidity and presence of cerebrovascular risk factors.

The clinicopathological correlation of the cerebral

vascular pathology is low, but an influence on the dis-

ease mechanism cannot be excluded.

Additionally, a concomitant neuropathological diag-

nosis of AD or PART could be made in all patients.

In every case, however, neuropathological findings

suggestive of AD were mild and could be classified as

not more than A3B1C1. As presented in Table 2, we

assume that there is no correlation between the

neuropathological findings and the clinical symptom-

atology. Five patients could be considered as examples

of PART [40]. One patient presented with a mixed

diagnosis of FTLD-TDP and diffuse Lewy body path-

ology, neocortical type.

We investigated whether the apolipoprotein E (ApoE)

genotype (Table 2) could be related to the AD pathology.

Most patients were homozygous for the ApoE ɛ3 allele

(five of nine). Three patients were carrying the ApoE ɛ2

allele, whereas two patients were heterozygous carriers

of the ApoE ɛ4 risk allele. These latter two patients had

a slightly more severe Montine score for AD pathology,

but without clinical significance.

The high frequency of concomitant pathologies in

GRN mutation carriers, such as the combination of

FTLD with PD or FTLD with AD [55–57], might indi-

cate that loss or partial loss of GRN could advance

pathological features of other neurodegenerative diseases

in an early stage [58]. Petkau and Leavitt reviewed data

on progranulin in neurodegenerative diseases and sug-

gested that GRN variants resulting in decreased progra-

nulin expression might be risk factors for both FTLD

and other dementias and that common GRN variants

can act as modifying factors for age of onset, disease

duration, and risk of disease in ALS, AD, multiple scler-

osis, bipolar disorder, and schizophrenia [59].

The combined occurrence of TDP-43 lesions, AD

pathology, and PD pathology favors the hypothesis that

progranulin is a protective growth factor, with the IVS1

+ 5G > C mutation resulting in a loss of function of pro-

granulin. This results from a cascade of defective bio-

logical processes in an expansion of neurodegenerative

processes leading toward protein deposits and cell

degeneration [60]. However, because AD and PD are

frequent neurodegenerative disorders, a coexistence of

these disorders could be merely a consequence of age-

related risk factors. Different studies have elicited the

co-occurrence of proteinopathies in patients carrying a

GRN mutation [21, 43, 54], whereas other groups could

not confirm this [43].

Clinical presentation

Our clinical data confirm that the age of disease onset is

older than in patients with MAPT or C9orf72 mutations.

Symptomatology started at the age of 62 (range 55–70),

and the disease lasted, on average, 5.3 years (2.30–8.56),

whereas disease in MAPT mutation carriers often starts

earlier. Van Langenhove et al. [25] found a mean onset

age of 56.9 years (range 49–65) in a Belgian FTLD co-

hort with the MAPT mutation, and Whitwell et al. [61]

described an even younger mean onset age of 44 years

(range 24–63) in MAPT mutation carriers. In patients

with a C9orf72 repeat expansion, the described mean

onset age was younger as well. Van Langenhove et al.

[25], and later Van Mossevelde et al. [62], described

mean onset ages of 55.3 years (range 42–69) and

54.3 years (range 29–75), respectively, in Belgian patients

with FTLD with a C9orf72 repeat expansion.

When we compare our findings with those in other

GRN mutation carriers, the findings are similar, although

a broad range of onset ages has been described. In the

whole Belgian GRN founder family, onset ages varying

between 45 and 70 years have been described [8]. Differ-

ent cohorts of GRN mutation carriers have resulted in

different mean onset ages with broad ranges from

55 years (range 37–72) [63] to 64.5 years (range 49–88)

[64]. Even within one family of GRN mutation carriers,

broad ranges have been described for the onset age.

Snowden et al. described a variation in the onset ages in

one family of 23 years [57]. These highly variable onset

ages indicate that there are other modifying factors that

modulate onset age in GRN mutation carriers. GRN mu-

tations are most frequently associated with bvFTD

followed by PPA [21].

In our four patients with a diagnosis of bvFTD, apathy

was one of the initial predominant symptoms. This ob-

servation is in line with previous findings that apathy
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dominates the clinical picture in patients with bvFTD

caused by a GRN mutation [65, 66]. It is in contrast with

bvFTD caused by C9orf72 repeat expansion, in which in-

appropriate behavior and agitation dominate the clinical

presentation [25]. Also, the fact that four of the nine

family members had PPA is highly suggestive for a GRN

mutation [21]. The PPA phenotype in GRN mutation

carriers is most often distinct from that subsumed under

the classical PPA subtypes [67].

Other phenotypes have been associated with GRN mu-

tations and include AD [68], PD [65], corticobasal syn-

drome [69–71], dementia with Lewy bodies [72], and mild

cognitive impairment [73]. Also, several psychiatric syn-

dromes have been associated with GRN mutations [74,

75]. MND is very rarely described in association with

GRN mutations [24, 76]. None of our nine patients had a

concomitant MND. There was one co-occurrence with

PD. Parkinsonism occurs quite frequently in patients with

GRN mutation, but usually later in the disease course,

after development of FTD. In a few cases, parkinsonism

was described as the first or predominant clinical mani-

festation of a GRN mutation. In a cohort of 32 French

GRN mutation carriers, 13 (41%) developed parkinsonism

during their disease course, but it was present at onset in

only 1 patient [77]. Kelley et al. studied patients with

FTLD-UPS and found that parkinsonism was an initial/

early symptom in 3 of 18 patients with a GRN mutation

[64]. Although parkinsonism occurs quite frequently in

patients with FTLD with a GRN mutation, GRN genetic

variability is unlikely to contribute significantly to suscep-

tibility to PD [58].

Six of our patients had subjective or objective signs of

memory loss early or later in the disease course. All of our

patients had mild AD neuropathological features or PART,

but without strong clinicopathological correlation.

Le Ber et al. [77] described that clinical AD features

such as episodic memory disorders are frequent in GRN

mutation carriers (89%). Of the 32 GRN mutation car-

riers evaluated by Le Ber et al., 3 were clinically diag-

nosed with AD because of predominant episodic

memory disorder. In the study of Chen-Plotkin et al., 11

of 97 (11.3%) TDP-positive GRN mutation carriers re-

ceived a clinical diagnosis of AD [24].

Neuropsychological evaluation showed extensive frontal

executive dysfunction in six of seven patients. Neocortical

temporal deficits (economy of speech, comprehension def-

icits, naming deficits) were present in all patients. Apraxia

syndromes were seen in three patients, suggesting parietal

involvement.

Imaging

Cerebral structural imaging demonstrated atrophy in all 9

patients, mostly asymmetric at the frontal and temporal

lobes and often with a parietal cortical involvement.

Similar findings were observed by functional neuroim-

aging, where hypoperfusion and hypometabolism were

asymmetric (left versus right), most explicit in the

frontal and temporal lobes. Again, parietal involve-

ment often was present.

These findings confirm the previously published

data in which parietal involvement [61, 78, 79] and

marked asymmetry of atrophy/hypofunction were

suggested as distinctive features of GRN mutations

[46, 77, 79, 80], as well as a relatively fast evolution

to generalized brain atrophy [47]. Seven patients had

marked asymmetry, and in five of them, the most

pronounced atrophy/hypofunction was present in the

left hemisphere. There seems to be no preferential

side of predominant atrophy/hypofunction in GRN

mutation carriers. Previous studies have demonstrated

predominant left-side involvement [55, 57] as well as

predominant right-side involvement [77, 78, 81, 82].

Conclusions

This study is the first, to our knowledge, in which nine

members of one family carrying a GRN mutation have

undergone exhaustive neuropathological analysis. Our

study made it possible to link this specific GRN muta-

tion to TDP-43 proteinopathy subtype A.

The neocortical pathology in all our patients was very

explicit, with impairment of frontal and temporal corti-

ces to the greatest extent, followed by parietal and, to a

lesser extent, occipital involvement. In all of our cases,

mild hippocampal atrophy was present, but without hip-

pocampal sclerosis. Next to the TDP-43 proteinopathy

subtype A, we found the co-occurrence of other protei-

nopathies, such as PART in five cases, mild AD in four

cases, and Lewy body disease in one case, and we dem-

onstrated the coexistence of small vessel changes, most

explicit in the frontal lobe of every patient. We do not

think that the small vessel pathology is associated with

the GRN mutation, but an age-dependent penetrance

rate has been demonstrated in GRN carriers. Whether

the clinical presentation is the result of the TDP path-

ology exceeding a critical limit of neuronal damage or of

the co-occurrence of age-related AD pathology or PART

or SVD should be further investigated. Because the age

of onset in these patients lies between 55 and 70 years,

an age range within which cerebrovascular risk factors

have their impact, it should be further assessed whether

this cerebrovascular pathology has an influence on the

clinical presentation, onset, and disease course of the

proteinopathy.
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