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Abstract In the present article, we have obtained a new
solution for the charged compact star model through the
gravitational decoupling (GD) by using a complete geo-
metric deformation (CGD) approach (Ovalle, Phys Lett B
788:213, 2019). In this approach, the initial decoupled sys-
tem is separated into two subsystems namely Einstein–
Maxwell’s system and quasi-Einstein system. We solve
Einstein–Maxwell’s system by taking well known Tolman–
Kuchowicz spacetime geometry in the context of the perfect
fluid matter distribution. On the other hand, the second sys-
tem introduce the anisotropy inside the matter distribution
which is solved by taking an EOS in θ components. The
boundary conditions have been derived to determine the con-
stants parameter. To support the mathematical and physical
analysis of the present GD solution, we have plotted all the
graphs for the compact objects PSR J1614-2230, 4U1608-
52 and Cen X-3 corresponding to the constant α = 0.001,
0.0012 and 0.0014, respectively. Moreover, we also stud-
ied the equilibrium and stability of the solution. The present
study shows that the GD technique is a very significant tool
to generalize the solution in a more complex form or one
matter distribution to another matter distribution.

1 Introduction

It is a great challenge to find the exact solutions of Einstein’s
field equation (EFE) due to its non-linearity. Last 100 years,
many exact solutions for EFE have been obtained in the con-
text of perfect fluid matter distribution [1]. But only few of
them are well behaved that describe astrophysical compact
objects. Therefore, still, the researchers are busy to find the
exact solution of EFE in different contexts. Usually, there are
two methodologies that have great interests among all the
researchers for solving the field equations. Fist procedure
is that consider one metric function or decreasing energy
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density in order to solve the system. This approach leads
an equation with other unknowns which is determined by
using the pressure isotropy condition. But this process does
not provide always an admissible exact solution. In a sec-
ond way, we can solve the EFE by specifying an equation
of state (EOS) that relates the pressure and density. In this
way, we also did not get an exact solution easily for per-
fect fluid matter distribution due to its complicated integral
from. On the other hand, it is not necessary that the mat-
ter distribution should be perfect fluid. This was proved by
a theoretical investigation that the stellar configuration may
contain the anisotropic pressure (pr �= pt ) when the mat-
ter density is very high, in particular, if it is more than the
nuclear density [2–7]. This anistropic pressure introduce an
anisotropy inside stellar configuration. Then the solution of
Einstein’s field equation in the presence of anisotropy can
be determined easily as compared to perfect fluid matter dis-
tribution. In this connection, Many pioneering works have
been done by several authors in different context [8–38].
The several authors have been also obtained anisotropic and
charged solution using embedding class one condition which
is a much popular methodology from last few years [39–60].
The presence of the electric charge in the static charged fluid
compact object creates a repulsive force that averts the grav-
itational collapse [61,62]. Therefore, we can avoid the sin-
gularities by introducing the electric field inside the matter
distribution. This repulsive force, due to the electric charge,
balances the equilibrium for the dust distribution against the
gravitational collapse. Recently, several authors have dis-
covered the solution of the Einstein–Maxwell equations in
a different framework which describe strange quark stars,
charged black hole, and other astrophysical compact objects
[63–71]. Varela et al. [72] studied self-gravitating, charged,
anisotropic fluid in solving Einstein–Maxwell equations. In
doing so they considered Krori and Barua’s [73] metric
potentials and linear or nonlinear equation of state. Arbanil
et al. [74] studied a class of charged compact fluid spheres
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obeying the polytropic equation of state. They studied the
Oppenheimer–Volkoff limit, Buchdahl limit for the charged
polytropic spheres, and they found that the limit is extremal
as it is a quasi black hole. So, as a result, we can say that the
study of the charged fluid sphere is very interesting. That’s
why many researchers obtained exact solutions of Einstein–
Maxwell field equations by electrifying some well- known
uncharged fluid spheres e.g. Heintzmann’s [75] solution by
Pant et al. [76], Durgapal IV [77] by Pant and Rajasekhara
[78], Durgapal V [77] by Gupta and Maurya [79], Pant I [80]
solution by Maurya and Gupta [81]. The positive values of
the charge parameter K describe completely the interior of
the charged super-dense astrophysical object. One may con-
sult the following works of literature [82–88] to study the
relativistic compact stellar system more precisely with an
electric charge. In this connection, recently the anisotropic
charged and uncharged models in modified f (R, T ) theory
gravity have been studied [89–92]. On the other hand, last few
years the gravitational decoupling using minimal geometric
deformation (MGD) approach has attracted the researchers.
In this directions, few well recognize solutions of the Ein-
stein field equations have been investigated in the frame-
work of charged, uncharged and anisotropic matter distri-
bution by using MGD [93–113]. This MGD technique was
developed to deform Schwarzschild space-time [114,115]
into the Randall–Sundrum framework [116,117]. Ovelle et
al. [118] and Contreras and Bargueno [119] have extended
the black hole in 3+1 (Schwarzschild outer space-time) and
BTZ black hole in 2+1 dimensions using the MGD, respec-
tively. The technique for determining an anisotropic solution
from any isotropic solution and inverse problem in the black
hole context using the MGD is investigated by Contreras
and his collaborators [120,121]. Recently, Ovelle [122] has
proposed the extended case of MGD to solve the Einstein–
Maxwell equations. In this connection, the extended grav-
itational decoupling in 2 + 1 dimensional space-time with
cosmological context was discovered in [128]. This MGD
approach has been also applied in other areas like Klein–
Gordon scalar fields as an extra matter content [125], in cloud
of strings [124], an extension of isotropic coordinates [126],
ultra-compact Schwarzschild star or gravastar [127], as well
as extended Durgapal isotropic model in the context of class
one space-time for charged anisotropic matter distribution
[129]. More recently MGD approach was used to discover
the higher dimensional compact objects [130] and extent in
the context of Lovelock [131] and modified f (R, T ) [91]
gravity theories as well as in cosmological problems [132].
Moreover, through this GD approach, we can extend any well
behaved isotropic solution (as discussed above) of the Ein-
stein field equation into anisotropic or charged, as well as
both anisotropic-charged domains by adding extra source θi j

in the original energy-momentum tensor Ti j or by defining
the action for total energy tensor. The presence of this extra
source θi j in the system can create an anisotropy or electric
charge inside the matter distribution.

In the present article, we have applied the CGD approach
by defining the modified action for total energy momentum
tensor for the charged matter distribution which includes
the extra source θi j . In this situation, the field equations
for complete or original system will contain ten unknown
functions for charged perfect fluid matter distribution. By
taking this into account, in the present article we solve
these field equations using gravitational decoupling via com-
plete geometric deformation (CGD) approach by transform-
ing the metric potentials as: ξ �→ ν = ξ + α h(r) and
μ �→ e−λ = μ + α f (r). In this way, we arrive two sys-
tems of equations namely Einstein–Maxwell’s system for
perfect fluid and quasi-Einstein system corresponding to the
source Ti j and θi j , respectively. However, we suppose this
θi j will produce anisotropy inside the stellar structure. Then,
we need to solve the Einstein–Maxwell’s system of equa-
tions for anisotropic matter distribution. To do this, first,
we solve Einstein-Maxwell’s system by using well known
Tolman–Kuchowicz gravitational potentials in the context of
perfect fluid matter distribution. Then for finding the solu-
tion of a second system (quasi-Einstein system) we use the an
equation of state (EOS), that relates the θ components, and
specific physically motivated ansatz for deformation func-
tion f (r). In this way, we obtain a well-behaved expression
for the deformation function h(r). After solving both sys-
tems individually, we combine both solutions and discussed
several physical analysis in order to get the viability of this
methodology.

The structure of the article is organized as follows: The
Sect. 2 is the Einstein’s-Maxwell field equations for the gravi-
tationally decoupled system. This section is divided into three
sections namely as: (2.1) the action for gravitational decou-
pling system, (2.2) basic stellar equation for the decoupled
system, and (2.3) the gravitational decoupling approach and
stellar field equations for Ti j and θi j . The matching condi-
tions are performed to determine all the constants in Sect. 3.
In the Sect. 4, we obtain a gravitational decoupling solution
for the charged anisotropic compact star model by using CGD
approach. The physical analysis has been done in Sect. 5
where we discussed regularity condition and causality con-
dition in order to put the bound on the constants. The Sect. 6
contains the detailed discussion on the compactness and red-
shift. We have performed the equilibrium and stability anal-
ysis of the solution in Sect. 7. The physical feasibilty of the
energy conditions have been verified in Sect. 8. The final
Sect. 9 has been made for discussion and conclusion.
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2 The Einstein–Maxwell field equations for
gravitationally decoupled system

2.1 The action for gravitational decoupled system

The modified action for gravitational decoupled system can
be defined by introducing an extra Lagrangian density for an
extra source as [122],

S = SEH + Sθ =
∫ [

R

16π
+ LM + Le + Lθ

]√−g d4x .

(1)

where LM and Le denote the Lagrangian for matter field and
electromagnetic field, respectively, while Lθ is a Lagrangian
density corresponding to additional source. However, the
symbols R and g has their usual meanings.

Now we define Ti j as a energy-momentum tensor for
Lagrangian matter field LM which can be written as,

Ti j = − 2√−g

δ
(√−gLM

)
δgi j

, (2)

As we know that matter Lagrangian LM depends on only the
components of metric tensor gi j and not on their derivatives,
so we obtain

Ti j = −2 ∂(LM )

∂gi j
+ gi jLM , (3)

On the other hand, we denoted Ei j and θi j as electromagnetic
field tensor and extra source corresponding to Lagrangian
density Le and Lθ , respectively, which can be given by,

Ei j = −gi j Le + 2
∂Le

∂gi j
, (4)

θμν = −2
δLθ

δgμν
+ gμνLθ . (5)

Now by varying the action (1) with respect to the metric
tensor gi j we obtain the general equations of motion for the
decoupled charged system as,

Gi j = −8π
(
T tot
i j + Ei j

)
, (6)

where,

T tot
i j = Ti j + θi j . (7)

Here,Gi j denotes the Einstein tensor and the relativistic units
are to be taken G = c = 1. We define Ti j (corresponding to
perfect fluid matter distribution) and Ei j as,

Ti j = (ρ + p)uμuν − pgi j (8)

Ei j = 1

4π

(
−Fm

μ Fν m + 1

4
gi j Fγ n F

γ n
)

. (9)

Here ρ and p represent the matter density and pressure for
charged matter distribution whileuν is a covariant component
for the 4-velocity which fulfil uμuμ = 1 and uμ∇μuμ = 0.

On the other hand, the anti-symmetric electromagnetic field
tensor Fμν satisfies the Maxwell’s field equations,

∇v

[
(−g)1/2 Fi j

]
= 4π (−g)1/2 jμ, (10)

Fμν,γ + Fνγ,μ + Fγμ,ν = 0, (11)

where j i , denotes the electromagnetic four current vector, is
given by,

J i = σ√
g44

dxi

dx4 = σ vi , (12)

where σ denotes the charge density and defined as σ =
eν/2 J 0(r). Moreover, the non-vanishing component for the
four-current static fluid matter distribution is J 4. Therefore,
the four-current component acts only along radial direction
due to the spherical symmetry. Then the corresponding non-
zero components for electromagnetic field tensor are F01 and
F10 that are related as F01 = −F10. Then the electric field
along the radial direction r can be defined by these compo-
nents F01 and F10 only.

2.2 Basic stellar equation for decoupled system

In order to describe interior spacetime for the spherically
symmetric static stellar system, we take the following line
element as,

ds2 = −eλ(r)dr2 − r2(dθ2 − sin2 θ dφ2) + eν(r) dt2,

(13)

where the metric potentials ν and λ are depend on the radial
coordinate r only. Then the Einstein’s field equations for the
static spherically symmetric spacetime (13) corresponding
to decoupling system (6) can be written as,

e−λ

8π

(
λ′

r
− 1

r2 + eλ

r2

)
= (T 0

0 )tot + E0
0 , (14)

−e−λ

8π

(
ν′

r
+ 1

r2 − eλ

r2

)
+ 1

r2 = (T 1
1 )tot + E1

1 , (15)

− e−λ

32π

(
2ν′′ + ν′2 + 2

ν′ − λ′

r
− ν′λ′

)
= (T 2

2 )tot + E2
2 .

(16)

where,

(T 0
0 )tot = T 0

0 + θ0
0 , (17)

(T 1
1 )tot = T 1

1 + θ1
1 , (18)

(T 2
2 )tot = T 2

2 + θ2
2 . (19)

Then the linear combination of equations (14) -(16) yields
the following conservation equation,

− ν′
2

(
T 0

0 − T 1
1 + E0

0 − E1
1

)
+

(
T 1

1 + E1
1

)′ − 2

r

(
T 2

2 − T 1
1

)

− 2

r

(
E2

2 − E1
1

)
− ν′

2

(
θ0

0 − θ1
1

)
+

(
θ1

1

)′ − 2

r

(
θ2

2 − θ1
1

)
= 0, (20)
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However for the spherically symmetric line element (13), the
non-vanishing anti-symmetric electric field components F01

and F10 can be given in terms of the electric charge as,

F01 = −F10 = q

r2 e−(ν+λ)/2 (21)

where q(r) denotes the electric charge contained within the
compact star of radius r . By using relativistic Gauss law, the
electric charge q(r) as well as electric field E can be defined
as,

q(r) = 4 π

∫ r

0
σ r2 eλ/2dr = r2

√
−F10 F10, (22)

E2 = −F10 F
10 = q2

r4 . (23)

Then the components for T i
j and Ei

j can be expressed as,

T 0
0 = ρ(r), T 1

1 = −p(r), T 2
2 = −p(r), (24)

E0
0 = E1

1 = −E2
2 = 1

8π

q2(r)

r4 . (25)

Then the conservation equation (20) will take the following
form as,

−p′ − ν′

2
(ρ + p) + qq ′

4 πr4 − ν′

2

(
θ0

0 − θ1
1

)
+ (θ1

1 )′

−2

r

(
θ2

2 − θ1
1

)
= 0. (26)

On the other hand, it is clearly noted that the inclusion of new
source θi j in the system introduced the anisotropy inside the
matter distribution, if θ2

2 �= θ1
1 . In this situation, the total

energy tensor T tot, given in Eq. (7), can be described as,

(T 0
0 )tot = ρtot(r) = ρ(r) + θ0

0 (r), (27)

−(T 1
1 )tot = ptot

r (r) = p(r) − θ1
1 (r), (28)

−(T 2
2 )tot = ptot

t (r) = p(r) − θ2
2 (r). (29)

Hence, the anisotropy factor is given as,

�(r) = ptot
t (r) − ptot

r (r) = θ1
1 (r) − θ2

2 (r) (30)

2.3 The gravitational decoupling approach and stellar field
equations corresponding to Ti j (for charge matter
distribution) and extra source θi j

In this section, we will see that how the extended gravitational
decoupling converts the field equations (14)–(16) in two sep-
arate systems which are known as the Einstein–Maxwell sys-
tem and quasi-Einstein system, respectively. As the previous
discussion, we take the Einstein–Maxwell system with the
perfect matter distribution for Ti j while the quasi-Einstein
system corresponding to extra source θi j . Now we apply the
Ovalle [122] transformation in metric potentials as,

ξ �→ ν = ξ + α h(r) (31)

μ �→ e−λ = μ + α f (r). (32)

where h(r) and f (r) represents the geometric deformation
functions corresponding to the temporal and radial metric
component. The coupling constant α is a real number. More-
over, the above transformation is the extended case of min-
imal geometric deformation (MGD) which is called a com-
plete geometric deformation (CGD) or extended geometric
deformation along with both radial and temporal components
of the line element. By substituting the deformed metric func-
tions (31) and (32) in the field equations of decoupled system
(14)–(16) with Eqs. (24) and (25), we arrive at the following
set of equations:

(I) The Einstein’s equations of the charged perfect fluid mat-
ter distribution for energy momentum tensor Ti j are given
as (corresponds to α = 0),

1 − μ

r2 − μ′

r
= 8πρ + q2

r4 , (33)

μ − 1

r2 + μξ ′

r
= 8πp − q2

r4 , (34)

μ

(
ξ ′′

2
+ ξ ′2

4
+ ξ ′

2r

)
+

(
ξ ′μ′

4
+ μ′

2r

)
= 8πp + q2

r4 .

(35)

along the conservation equation,

− p′ − ν′

2
(ρ + p) + qq ′

4 πr4 = 0. (36)

The solution of the field equations (33)–(35), satisfies
conservation equation (36) that can describe the internal
structure of the compact object for the charged perfect
fluid matter distribution. The corresponding solution can
be given by the following line element,

ds2 = −μ dr2 − r2(dθ2 − sin2 θ dφ2) + eξ dt2 (37)

where the interior mass function m0 is a mass function
of the charged matter distribution for the standard GR
expressions (33)–(35), which can be given as

2m0

r
≡1−μ+q2

r2 ≡8π

r

∫ r

0

(
ρ+ q2

8π r2

)
r2 dr+q2

r2 .

(38)

(II) Now let us go on the parameter α to see the effects of
the extra source θi j on the charged perfect fluid solution
{ξ, μ ρ, p, }. For this purpose we write the field equations
for the quasi-Einstein system associated with the source
θi j as ,

−α

(
f ′
r

+ f

r2

)
= 8 π θ0

0 , (39)
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−α f

(
ν′
r

+ 1

r2

)
− αF1 = 8 π θ1

1 , (40)

−α f

2

(
ν′′ + ν′2

2
+ ν′

r

)
− α f ′

2

(
ν′
2

+ 1

r

)
= 8 π θ2

2 + αF2.

(41)

and the linear combination of quasi-Einstein equa-
tions (39)–(41) yields the following conservation equa-
tion,

− ν′

2

(
θ0

0 −θ1
1

)
+

(
θ1

1

)′ −2

r

(
θ2

2 − θ1
1

)
= h′

2
(p+ρ).

(42)

where, F1 and F2 are given as,

F1 = μ h′
r

, F2 = μ

4

(
2 h′′ + α h′ 2 + 2 h′

r
+ 2 ξ ′ h′

)
+ μ′ h′

4
.

It is clearly noted that the presence of θ -sector in the
system will introduce the anisotropy inside the stellar
structure.

3 Matching conditions for the stellar structure

The matching condition is a critical part in the study of the
stellar distributions at the surface of the star (r = R) between
interior (r < R) and exterior (r > R) spacetime geometries.
In the present study, the interior stellar geometry is given by
the extended geometric deformation line element,

ds2 = −
(

1 − 2 m̃(r)

r
+ q2

r2

)−1

dr2 − r2(dθ2 − sin2 θ dφ2)

+eξ(r)eα h(r) dt2, (43)

where m̃(r) is internal mass of the stellar structure for
total energy tensor T tot

i j . Now the inner metric (43) should be
smoothly matched with an exterior spacetime geometry. In
his regard, Ovalle [122] has proposed that the exterior space-
time for the extended gravitational decoupling corresponding
to “Maxwell version” of the vacuum solution Ti j = 0 can be
given by the well-known Reissner–Nordstrom solution as,

ds2 = −
(

1 − 2M̃

r
+ Q2

r2

)−1

dr2 − r2(dθ2 − sin2 θ dφ2)

+
(

1 − 2M̃

r
+ Q2

r2

)
dt2, (44)

where m̃(R) = M̃ and q(R) = Q is the total mass and
total charge for the compact object of the radius R, respec-
tively. For smooth joining we apply the Israel–Darmois junc-
tion conditions procedure [133,134] to match the inner man-
ifold M− with the external one M+ at the boundary �.

The procedure of joining both space-time at the boundary is
known as the continuity of the first and second fundamental
forms across the surface �. The first fundamental form says
that the intrinsic geometry described by the metric tensor gi j
induced by M− and M+ on the interface meets

g−
t t |r=R = g+

t t |r=R, (45)

g−
rr |r=R = g+

rr |r=R . (46)

By writing the first fundamental in the explicit form as,

e−λ(R) =
(

1 − 2M̃

R
+ Q2

R2

)
, (47)

eν(R) =
(

1 − 2M̃

R
+ Q2

R2

)
. (48)

While the continuity of the second fundamental can be
described as,

[Gi j r
j ]� = 0 (49)

here r j is a unit vector. Using Eqs. (6) and (49) we can find

[T tot
i j r j ]� = 0, (50)

which gives,

[
ptot
r

]
�

=
[
pr − θ1

1 (r)
]
�

= 0 (51)

Now we will explain by simple way, for the standard GR case
the Ti j = 0 is the vacuum solution for the region r > R.
Here r = R is the boundary of the stellar structure. But the
exterior spacetime (r > R) may not be a vacuum anymore
due to presence of new fields which is coming from the θ

sector. This extra field introduce the anisotropy inside the
self-gravitating system. Then the above boundary condition
(51) will take the following final form,

pr (R) − (θ1
1 )−(R) = −(θ1

1 )+(R) (52)

where pr (R) = p−
r (R). The condition given by Eq. (52)

is called the general expression for the second fundamental
form connected with the Einstein field equations described
by Eq. (6). Now we substitute the value of (θ1

1 )−(R) for the
interior geometry from Eq. (40) into the condition (52). Then
the second fundamental form (52) can be written as,

pr (R) + α

8π

[
f (R)

(
ν′(R)

R
+ 1

R2

)
− μ(R) h′(R)

R

]

= −(θ1
1 )+(R), (53)

here ν′(R) ≡ ∂r ν−|r=R . To obtain (θ1
1 )+(R), we use the

Eqs. (38) and (48) for the outer geometry in Eq. (53) which
gives,
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pr (R) + α f (R)

8π

(
ν′(R)

R
+ 1

R2

)
− α μ(R) h′(R)

8πR

= α f ∗(R)

8π

⎡
⎢⎢⎣ 2

R2

(
M̃

R
−Q2

R2

)
1(

1 − 2M̃
R + Q2

R2

) + 1

R2

⎤
⎥⎥⎦

−α
(
h∗(R)

)′

8πR

(
1 − 2M0

R
+Q2

R2

)
, (54)

where, f ∗(R) and h∗(R) are geometric deformation func-
tions for the outer Reissner–Nordstrom solution (44) due to
the extra source θμν . It is a important remark that if the exte-
rior solution is given by the Reissner-Nordstrom solution
(44) then we must have f ∗(r) = 0 and h∗(r) = 0. Now
from Eq. (54) we get,

pr (R) + α f (R)

8π

(
ν′(R)

R
+ 1

R2

)
− μ(R) h′(R)

8πR
= 0 (55)

which can also read as,

ptot
r (R) = pr (R) − θ1

1 (R) = 0. (56)

The conditions (47), (48) and (56) are the necessary and
sufficient conditions for determining the arbitrary constants
involve in the system.

4 Gravitational decoupling solution

As we see that system of equations (33)–(35) and (39)–(41)
contains ten unknowns. Therefore, in order to solve the first
system of equations (33)–(35) we consider the seed space-
time (37) corresponding to well-known Tolman–Kuchowicz
solution as,

μ = 1

(1 + a r2 + b r4)
, (57)

ξ = B r2 + C. (58)

here, a, b, B are the parameters of dimension l−2, l−4, and
l−2, respectively while C is a dimensionless constant. As we
observe that both μ and ξ are non-singular and well behaved
throughout within the stellar model. These forms of the grav-
itational potential yield a physically viable solution. From the
Eqs. (33) and (34) together with pressure isotropy condition
(using in Eqs. (34) and (35)), we obtain the expressions for
ρ, p and q2/r4 as,

ρ = a2 r2 + b r2 (5 + b r4) + a (3 + 2 b r4)

8π (1 + a r2 + b r4)2 − q2

8π r4 , (59)

p = (2 B − a + b r2)

8π (1 + a r2 + b r4)
+ q2

8π r4 , (60)

q2

r4 = r2[a2 + B2 + b2r4 − a(B − 2br2 − B2r2) + ψ1(r)]
2 (1 + ar2 + br4)2 . (61)

where, ψ1(r) = b(B2r4 − 1 − 2Br2).

Now we focus on the second system of equations (39)–
(41). As we see that this system involes five unknown func-
tion namely θ0

0 , θ1
1 , θ2

2 , and two deformation functions f (r)
and h(r). For solving of this system, we propose a linear
equation of state (EOS) in θ along with the one deformation
function f (r). But It is important to note that the choice of
f (r) should depend upon the following points:

1. For positive α together with positive and increasing func-
tion f (r), the growth of μ(r) must be faster than the the
deformation function α. f (r) in order to preserve eλ(r)

and mass function to be positive and increasing.
2. For positive α, and negative decreasing function f (r),

the metric function eλ(r) and mass function will increase
throughout automtically.

Based on above discussions we take,

θ0
0 = β θ1

1 + γ, (62)

f (r) = −a r2 (1 + a r2 + b r4). (63)

Now using (39), (40) together with EOS (62) and (63), we
obtain other deformation function h(r) as,

h(r) = r2 [h1(r) + h2(r) + h3(r) + h4(r)]
60 α β

(64)

with

h1(r) = 30[aα(β − 3) + γ ] + 15a[2aα(β − 4)

+2Bα β + γ ]r2,

h2(r) = 10 [a3α (β − 5) + 2abα(β − 5)

+4a2Bαβ + b γ ]r4,

h3(r) = 15 a α [a b (β − 6) + a2 B β + 2 b B β] r6,

h4(r) = 6 a b α [b (β − 7) + 4 a B β] r8 + 10a b2B α βr10.

Now we have completely determined the deformation
functions f (r) and h(r), which are physically viable (Fig. 1).
Then the gravitational decoupling solution for the total
energy momentum tensor T tot

i j can be given by following
line element,

ds2 = −(1 + a r2 + b r4)

1 + α (1 + a r2 + b r4) f (r)
dr2 − r2(dθ2

+ sin2 θ dφ2) + eB r2+C eα h(r) dt2. (65)

Hence, the explicit form of the deformed gravitational poten-
tials read as,

eλ(r) = (1 + a r2 + b r4)

1 + α (1 + a r2 + b r4) f (r)
, (66)

eν(r) = eB r2+C eα h(r). (67)
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where the interior mass function m̃(r) for decoupled sys-
tem (14)–(16) can be given by,

2m̃(r)

r
= 1−e−λ(r)+q2

r2 =8π

r

∫ r

0

(
ρtot + q2

8π r2

)
r2 dr

+q2

r2 . (68)

Then from Eqs. (27), (38) and (68), we get the following
relation,

m̃(r) ≡ m0(r) − α r

2
f (r) = 4π

∫ r

0
ρ r2 dr − α r

2
f (r).

(69)

It is noted that the masses m̃(r) and m0 will be equal and
describe the mass function for the standard GR case when
α = 0.

Now the expressions for the components of θ -sector are
determined as,

θ0
0 (r) = a α (3 + 5 a r2 + 7 b r4)

8 π
, (70)

θ1
1 (r) = 5 a2 α r2 + a α (3 + 7 b r4) − γ

8 π β
, (71)

θ2
2 (r)=θ11(r)+θ12(r)+θ13(r)+a2r2[θ14(r)+θ15(r)]

−32 π α β2 (1 + ar2 + br4)
.

(72)

where the used coefficients in θ2
2 (r) are given in appendix

due to long expressions.
By substituting the Eqs. (59)–(61) together with Eqs. (70)–

(72) into Eqs. (27)–(29), we find the expressions for the total
density (ρtot) and total radial pressure (ptot

r ) and total tangen-
tial pressure (ptot

t ) as,

ρtot(r) = a(6 + Br2 + 2br4 − B2r4) + ψ2(r)

2(1 + ar2 + br4)2 + θ0
0 (r), (73)

ptot
r (r) = a (3Br2 − 2br4 + B2r4 − 2) + ψ3(r)

2(1 + ar2 + br4)2 − θ1
1 (r), (74)

ptot
t (r) = a (3Br2 − 2br4 + B2r4 − 2) + ψ3(r)

2(1 + ar2 + br4)2 − θ2
2 (r) (75)

and anisotropy factor � can be calculated by the for-
mula: �(r) = ptot

t (r) − ptot
r (r).

where,

ψ2(r) = a2r2+r2[b2r4+b(11+2Br2 − B2r4) − B2],
ψ3(r) = B2(r2+br6)−a2r2 + 2B(2+br4) − br2(3 + br4).

5 Physical analysis

To be a regular model, it requires that the spacetime should
be free from any mathematical and geometrical as well as
physical singularity. For this purpose, we need to check the
variation of the deformed metric potentials within the stellar

interior. From Eqs. (66) and (67) we obtain: eλ(0) = 1 and
eν(0) = eC . The variation of the metric potentials is presented
in Fig. 1 (bottom right) which shows metric potentials are
regular and positive throughout the model.

On the other hand the central values of total pressure (ptot
0 )

and total density (ρtot
0 ) can be given ,

(
ptot
r

)
r=0 = (

ptot
t

)
r=0 = 2 B β − a(3α + β) + γ

8 π β
> 0, (76)


⇒ B >
a (3 α + β) − γ

2 β
, (77)

(
ρtot
r

)
r=0 = 3 a (1 + α)

8 π
> 0 
⇒ a is positive. (78)

Now, the solution should satisfy the Zeldovich condition i.e.
the ratio of pressure-density should be less than unity, then(
ptot
r

ρtot

)
r=0

=
(
ptot
t

ρtot

)
r=0

=2 B β − a(3α+β)+γ

3a β (1 + α)
≤ 1,


⇒ B ≤ a (3α + 4β + 3α β) − γ

2 β
. (79)

In addition to above, the causality condition must satisfy
everywhere within the star i.e. 0 < v2

r < 1 and 0 < v2
t < 1.

Then we obtain the central values (v2
r )r=0 and (v2

t )r=0 and
together with causality condition, we obtain

0 < (v2
r )r=0 = 5aBβ − (B2 − 3b)β − a2(3β − 10α)

[B2 − 11b − aB − a2(10α − 11)] β
< 1, (80)

0 < (v2
t )r=0 = b(6αβ2 − γ 2) − 2 B α β (B β + 2 γ ) − δ1

2 α β2 [B2 − 11 b − a B + a2(11 − 10 α)] < 1. (81)

Then the inequality (80) gives,

5a

2
−

√
12 b β + a2 (40 α + 13 β)

(2
√

β
< B

<
3a

√
β − √

28bβ + a2 [20 α (1 + β) − 19β]
2

√
β

, (82)

while inequality (81) yields,

2 a α β [α (6 − 4β) + 5 β] − 4 α β γ − �1

4 α β2 < B

<
a α β(3α + 3β − 2α β) − α β γ − �2

2α β2 . (83)

Where �1 and �2 are given in the appendix. Now combine
all the inequalities (77), (79), (82) and (83), we obtain an
inequality that restricts B as,

a (3 α + β) − γ

2 β
< B

<
3a

√
β − √

28bβ + a2 [20 α (1 + β) − 19β]
2

√
β

. (84)

Also, the variation of total density (ρtot) and total radial and
tangential pressures (ptot

r and ptot
t ) are shown in Fig. 2, which

shows that those are positive and decreasing away from cen-
tre. However the maximum values attain at the centre of the
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Fig. 1 The behavior of electric charge, q(r) (top left), deformation
functions, | f (r)| (top right) and h(r) (bottom left), and bottom right
figure for gravitational potentials eλ (solid lines) and eν (dashed lines)
have been plotted against the radial coordinate r/R of different compact
objects as PSR J1614-2230 (black curve for α = 0.001), 4U1608-52

(green curve for α = 0.0012), and Cen X-3 (red curve for α = 0.0014).
For plotting of these figures for each object, we have used the val-
ues of free parameters as: a = 0.00509, b = 0.00002, β = 1.8 and
γ = 0.0001

compact object. The numerical values of the physical quan-
tities and constant parameters are given in Table 1.1

6 Mass-radius ratio and surface redshift

It is required to discuss the maximum limit of the mass-
radius ratio to describe the compactness of the stellar model.
In the case of isotropic matter distribution, the maximum
limit of the mass-radius ratio was proposed by Buchdahl’s
[139] in the framework of perfect fluid having decreasing
energy density towards to boundary. This maximum limit
for mass-radius is given as,

M

R
≤ 4

9
, (85)

1 we have used the geometrical units throughout the paper expect the
numerical values as mentioned in table. Moreover, I have mentioned
the required units of the used parameters in the tables.

where m(R) = M describes the total mass of the object in
perfect fluid matter distribution, while the R represents the
radius of the model which is obtained by taking the pressure
to be zero on the surface. Moreover, the presence of an electric
charge in the solution modifies Buchdahl’s limit. In this case,
Andreasson [140], and Bohmer and Harko [141] have pro-
vided the maximum and minimum limit for the mass-radius
ratio, respectively as,

Q2
(
18R2 + Q2

)
2R2

(
12R2 + Q2

)≤M0

R
≤2R2 + 3Q2 + 2R

√
R2 + 3Q2

9R2 .

(86)

where m0(R) = M0 is the total mass of the compact object
for the charged perfect fluid matter distribution. It is noted
that the mass M0 present in the Eq. (86) is not equal as the
total mass appears in (85). This can be defined as,

M0 = m0(R)=4π

∫ R

0
r2ρ(r)dr+1

2

∫ R

0

q2(r)

r2 dr+Q2(R)

2R
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Fig. 2 The behavior of total radial pressure ptot
r (top left), total tangen-

tial pressure ptot
t (top right), total energy density ρtot

r (bottom left), and
anisotropy factor � (bottom right) verses radial coordinate r/R. The

used numerical values for plotting these figures along with the same
description of the curve for each compact object are same as used in
Fig. (1)

Table 1 The numerical values of mass, radius, central pressure, cen-
tral density, surface density, electric charge at surface and constants
B and C of the different compact objects, namely PSRJ1614-2230

[135,136], 4U1608-52 [136,137], Cen X-3 [136,138] for fixed value of
a = 0.00509km−2, b = 0.00002km−4, β = 1.8, and γ = 0.0001 with
different values of α

α Compact
star

Mass M̃/M Predicted
radius
R (km)

Central
pressure
ptot
c (dyne/cm2)

Central
density
ρtot
c (gm/cm3)

Surface
density
ρtot
s (gm/cm3)

Charge q at
surface in
Coulomb

B (in km) C

0.0010 PSR J1614-2230 1.97 11.0143 7.8786 × 1034 8.2082 × 1014 4.8357 × 1014 2.8578 × 1020C 0.00333 -1.0595

0.0012 4U1608-52 1.74 10.514 7.4522 × 1034 8.2098 × 1015 5.1265 × 1014 2.4628 × 1020C 0.0033 -0.96175

0.0014 Cen X-3 1.49 9.922 6.9168 × 1034 8.2115 × 1014 5.4688 × 1014 2.0361 × 1020C 0.0053 -0.7738

Table 2 Comparative study of lower bound, Mass-radius ratio, upper bound, compactness (u = Meff/R) and surface red-shift of the star for
different values of α

α Compact star Mass
M̃/M

Radius
R (km)

Lower
bound
Q2 (18R2+Q2)

2R2 (12R2+Q2)

Mass-radius
ratio( M0

R )
Mass-radius
ratio( M̃R )

Upper
bound
2R2+3Q2+2R

√
R2+3Q2

9R2

Surface redshift zs

0.0010 PSR J1614-2230 1.97 9.62 0.03710 0.17847 0.26383 0.47689 0.38425

0.0012 4U1608-52 1.74 10.514 0.03025 0.16508 0.24411 0.47097 0.34576

0.0014 Cen X-3 1.49 9.922 0.02322 0.14949 0.22109 0.46487 0.30321
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= R

2

[
1 − μ(R)+Q2(R)

R2

]
. (87)

On the other hand, the gravitational mass (appears in
Eq. (85)) and effective mass both will be same in the context
of perfect fluid or anisotropic fluid matter distribution, which
can written as,

M = m(R) = 4π

∫ R

0
r2ρ(r)dr= R

2
[1−μ(R)] = [

M
]

eff.

(88)

But the above situation is not same for the charged matter
distribution. In this case, the effective mass for charged matter
distribution can be given as,

[
M0

]
eff = [

m0(R)
]

eff = 4π

∫ R

0

(
ρ + q2

8π r4

)
r2dr

= R

2
[1 − μ(R)] . (89)

Now from the equations (87), (88) and (89), we observed
the followings: (i) the total mass M0 for charged stellar object
will be more than the total mass M of the compact object cor-
responding to the prefect or anisotropic fluid matter distribu-
tion, (ii) the effective mass [M0]eff of the charged compact
stellar model will be same as the total mass M in context
of prefect fluid or anisotropic fluid matter distribution. Of
course, the gravitational mass for the electrically charged
stellar object has more value than the uncharged perfect fluid
stellar model. Moreover, the same scenario will happen for
the present gravitational decoupling models2. Now our aim
is to see that whether the compactness i.e. mass-radius ratio
in the presence of gravitational decoupling will take more
value than the without gravitational decoupling, and also it
will go beyond to the above standard bounds or not?. Then

from the Table 2, we see that the mass-radius ratio ( M̃R ) for
GD model is also lying within the range given in Eq. (86). But
It has more value than the mass-radius ratio ( M0

R ) in absence
of anisotropy (means when α = 0). Then it can be concluded
that the presence of θ -sector i.e. anistropy, in the system can
produce more compact objects. On the other hand, we would
like to mention here that the effective mass plays an impor-
tant role to define the upper bound of the surface redshift zs
for the compact object. As we have already discussed that
the mass-radius ratio gives a significant bound to observe the

2 we refer the following notations which have been used inside the text
to represent the mass function for different matter distribution:

(i) m(R) = M −→ for perfect fluid matter distribution without grav-
itational decoupling i.e. α = 0.

(ii) m0(R) = M0 −→ for charged perfect fluid matter distribution
without gravitational decoupling i.e. α = 0.

(iii) m̃(R) = M̃ −→ for anisotropic charged fluid matter distribution
by gravitational decoupling i.e. α �= 0.
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Fig. 3 The variation of gravitational redshift (z) verses radial coordi-
nate r/R. The same values are taken for plotting of this figure as in
Fig. 2

surface redshift zs value. This bound can be determined by
the following formula,

zs = (1 − 2u)−1/2 − 1 = eλ(R)/2 − 1,

where u ≡ M̃eff

R
= 1

R

([
M0

]
eff − α R

2
f (R)

)
. (90)

On the other hand the gravitational redshift inside the com-
pact object for GD solution can be obtained as,

z = e−ν(r)/2 − 1 =
√
e−(B r2+C) e−α h(r) − 1. (91)

We have shown the behavior of the gravitational redshift
inside the star in Fig. 3. From this figure, we can see that the
gravitational redshift is maximum at the centre and decreas-
ing outward. Table 2 demonstrated the numerical values of
the surface redshift for different values of coupling constant
α.

7 Equilibrium and stability for the gravitational
decoupling model

It is very important to investigate the stable equilibrium
for the gravitational decoupling solution. For doing this
investigation, we need to find the generalized Tolman-
Oppenheimer-Volkoff (TOV) equation for the charged aniso-
tropic matter distribution in the presence of extra gravita-
tional source θi j . This generalized TOV equation can be
obtained from the the conservation equation of T tot

i j i.e. by

taking covariant derivative of T tot
i j to be zero, which yields:

∇μT tot
i j = 0. The explicit form of this conservation can be

expressed as,

− (ptot
r )′ − ν′

2

(
ρtot+ptot

r

)+ qq ′

4 πr4 −2

r

(
θ2

2 −θ1
1

)
= 0.

(92)
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Fig. 4 The behavior of different forces: Fg (solid lines), Fh (long
dashed-dot), Fe (long dashed), and Fa (small dashed-dot) verses radial
coordinate r/R. The description of the figure is as follows: (i) red color
curves corresponding to the star PSR J1614-2230 for α = 0.001; (ii)
green color curves corresponding to the star 4U1608-52 for α = 0.0012
and (iii) green color curves corresponding to the star Cen X-3 for
α = 0.0014. The numerical values of free parameters are: a = 0.00509,
b = 0.00002, β = 1.8 and γ = 0.0001.

which is same as Eq. (26). Also, the above Eq. (92) can be
divided in different forces whose linear combination will bal-
ance the system and achieve a stable equilibrium of the solu-
tion. These forces can be written as: (i). gravitational force:
Fg = − ν′

2 (ρtot+ ptot
r ), (ii). hydrostatic force: Fh = −(ptot

r )′,
(iii). electric force: Fe = 2 q q ′

8 π r4 , and (iv). anisotropic force:

Fa = 2
r (θ2

2 − θ1
1 ).

To find the variations of these forces we plot the Fig. 4 for
modified TOV equation (92) for different values of α. From
Fig. 4 we observe that gravitational force (solid lines) and
hydrostatic force (long dashed-dot lines), and like anisotropic
force (small dashed-dot lines) are increasing and achieve its
maximum value at the point within the stellar interior and
then start decreases in each case. while other forces like
electric force (long dashed lines) are monotonically increas-
ing for throughout within the stellar interior. Another impor-
tant point is that the electric force (Fe) plays a major role
to balance the system near to surface of the objects while
ansitropic force introduces a less impact on the system. As
we see that the gravitational forces can be balanced by joint
action of all other forces like hydrostatic force, electric force
and anisotropic force such that Fg + Fh + Fe + Fa = 0. In
this way, we achieved the stable equilibrium of the obtained
each stellar model.

After analyzing the hydrostatic equilibrium under differ-
ent forces, it is also required to check the stability analysis
of the stellar model. To check this analysis, we use Abreu’s
criteria [38] which has been initiated by Herrera’s cracking
concept [142]. According to the Abreu’s criterion, the stellar
model will be stable if the subliminal radial and tangential
sound speeds satisfy the following inequalities (Fig. 5),
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Fig. 5 The left panel has been plotted for radial speed (v2
r ) and right

panel for the tangential speed (v2
t ) verses radial coordinate r/R of dif-

ferent compact objects as PSR J1614-2230 (black curve for α = 0.001),
4U1608-52 (green curve for α = 0.0012), and Cen X-3 (red curve for
α = 0.0014). The numerical values of the free parameters a, b, β and
γ are same as used in Fig. 4

0 ≤ |v2
t − v2

r | ≤ 1

=
{

(v2
t − v2

r ) ∈ [0, 1], Potentially unstable,
(v2

t − v2
r ) ∈ [−1, 0] Potentially stable

}
. (93)

In order to verify these above inequalities, first, we need
to check whether the stellar model is satisfying causality
condition or not?. Then from Fig. 5, we see that the radial
and tangential subliminal speed of sounds are satisfying the
causality conditions i.e. v2

r < 1 (top figure) and v2
t < 1

(bottom figure) throughout within stellar object (where the
speed of light is taken as unity i.e. c = 1). But we mention an
interesting point that both radial and tangential velocities of
sound are decreasing monotonically and radial velocity (v2

r )
is always greater than the tangential velocity (v2

r ) through-
out within the stellar compact object for each chosen value
of α, which can be analyzed from Fig. (5). After verifying
the causality condition, we check the stability condition of
the stellar compact model through the Eq. (93). Form Fig. 6,
we observe that stability factors v2

t − v2
r (dashed lines) and

v2
t − v2

r (solid lines) are lying within the intervals [−1, 0]
and [0, 1]. This implies that the radial velocity dominates
the tangential velocity everywhere inside the stellar interior.
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Fig. 6 The trend of stability factors corresponding to v2
r − v2

t (solid
lines) and v2

t − v2
r (dashed lines) verses the radial coordinate r/R. The

description of the compact objects are as follows: PSR J1614-2230
(black curve) for α = 0.001, 4U1608-52 (green curve) for α = 0.0012,
and Cen X-3 (red curve) for α = 0.0014. The numerical values of the
free parameters a, b, β and γ are same as used in Fig. 4

Also, there is no cracking within the star. Therefore, we con-
clude that the obtained self-gravitating charged compact star
models are stable.

8 Energy conditions

It is very important to check the feasibility of some inequal-
ities corresponding to the stress-energy tensor. For this pur-
pose, we study these inequalities so-called energy condi-
tions for representing physically realistic matter configura-
tion. The respective energy conditions viz., the null energy
condition (NEC), strong energy condition (SEC) and weak
energy condition (WEC) are defined as

WEC : Tμνl
μlν ≥ 0 or ρtot ≥ 0, ρ(tot) + p(tot)

i ≥ 0 (94)

NEC : Tμν t
μtν ≥ 0 or ρ(tot) + p(tot)

i ≥ 0 (95)

where Tμνl
μ ∈ nonspace-like vector

SEC : Tμνl
μlν − 1

2
T λ

λ l
σ lσ ≥ 0 or ρ(tot) +

∑
i

p(tot)
i ≥ 0.

(96)

where i ≡ (radial r, transverse t), lμ and tμ are time-
like vector and null vector respectively. In order to verify the
viable feasibility of the stress-energy tensor, we need to study
whether the compact stellar structure is consistent with the
inequalities (94)–(96) or not? For this purpose, we plot the
Fig. 7 for the above energy conditions and we observe that
our stellar compact objects are consistent with all the energy
conditions and hence ratifies that the physical acceptability
of gravitational decoupling solution for compact objects.
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Fig. 7 The behavior of energy condition verses radial coordinate r/R.
The description of the figures as follows: the solid line for ρtot, dotted
line for ρtot + ptot

r , small dashed lines for ρtot + ptot
t , and long dashed-

dotted lines for ρtot + ptot
t + 2ptot

t for different compact objects PSR
J1614-2230 (black color), 4U1608-52 (green color), and Cen X-3 (red
color)

9 Discussion and conclusions

In this article, a completely deformed anisotropic charged
fluid solution for the compact star model has been investi-
gated by applying gravitational decoupling by means of a
geometric deformation approach. To find the gravitational
decoupling solution for the compact star model, first, we
write the modified action for the gravitational decoupling
system. Then we define the equation of motion by vary-
ing this action along with the metric tensor gi j . In this way,
we arrive the Einstein’s field equation for the coupled sys-
tem which corresponds to the total energy-momentum tensor
T tot
i j in the context of spherically symmetric spacetime. The

corresponding Einstein’s field equations for coupled system
will be solved by using the gravitational decoupling (GD)
using a complete geometric deformation approach (CGD)
in which both gravitational potentials have bee deformed as
ξ �→ ν = ξ + α h(r) and μ �→ e−λ = μ + α f (r), as
proposed by Ovalle [122]. This GD approach transforms the
original Einstein’s field equations for coupled system into
two individual subsystems corresponding to the new sources
Ti j and θi j . Here we would like to mention that the energy
tensor Ti j is considered for the charged perfect fluid matter
distribution while θi j introduce the anisotropy in the sys-
tem (quasi-Einstein system). To solve the system for Ti j ,
we use well-defined spacetime given by Tolman–Kuchowicz
and find the solution for the first system, which provides the
gravitational potentials μ and ξ and electric field E2. Now
still five unknowns namely θ0

0 , θ1
1 and θ2

2 , h(r) and f (r) are
remaining in order to describe the complete structure of the
stellar structure. Since it is clear that we have three indepen-
dent equations for determining these five unknown which
implies that we have two degree of freedom. To find this,
we solve the quasi-Einstein system of Eqs. (39)–(41) cor-
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responding to θ -sector by specifying the linear equation of
state (EOS), θ0

0 = β θ1
1 + γ , and well motivated ansatz for

f (r). After solving of this EOS, we obtain another deforma-
tion function h(r). In this process, we achieved a complete
deformed charged anisotropic solution for the compact star
model. Moreover, we use the well known Isrial–Dormois
junction condition for determining the constant parameters.
The physical properties of the solution are described through
the graphical analysis. We would like to mention that all the
plots have been made for the same values of a = 0.00509,
b = 0.00002, β = 1.8 and γ = 0.0001 with different α. In
this way we obtained three different compact stars: (i) PSR
J1614-2230 for α = 0.001, R = 11.0143km, (ii) 4U1608-52
for α = 0.0012 and R = 10.514 km, and (iii) Cen X-3 with
α = 0.0014 and R = 9.922km. Here, we would like to men-
tion that Demorest et al. [135] have predicted the radius cor-
responding to the differential neutron star EOS. They found
that the radius of the compact objects with 1.97 solar mass
lies between 11 and 15 km. But for strange quark matter (SS
EOS), the radius will be less for this compact object with
the same 1.97 solar mass. Later on, Gangopadhyay and his
collaborators [136] have predicted the radii corresponding to
12 different stars and fitted the refined mass measurement of
12 pulsars using strange star equation of state (SS EOS) and
they found that the star PSR J1614-2230 with solar mass 1.97
solar has the radius, approx. 9.69 km. In the present paper,
By varying α we have predicted the radius of the realistic
compact objects, as above, for fixed mass value. Then we
observe the following points: if α increases then we will get
less compact object as well lower masses stars. But for higher
values of α ≈ 0.15 either causality will violates or cracking
will appears in the system.

The Fig. 1 shows the behavior of the deformation func-
tions h(r), | f (r)|, electric charge q(r) and gravitational
potentials eν(r) and eλ(r). From this figure, we observe that
the functions | f (r)| (as f (r) is negative and monotonic
decreasing throughout the star) and h(r) are zero at the
centre and increasing towards the boundary of the stellar
object and the same scenario happens in q(r) also. The
amount of charge on the surface of the star in Coulomb
unit as: (i) Q = 2.8578 × 1020C for PSR J1614-2230 with
α = 0.0001, (ii) Q = 2.4628 × 1020C for 4U1608-52 with
α = 0.0012, and (iii) Q = 2.0361 × 1020C for Cen X-3
with α = 0.0014. However, the eν and eλ both are posi-
tive and increasing monotonically for all values of α and
free from singularity. The above well-defined regular gravi-
tational potentials describe a well behaved physically viable
gravitational decoupling solution for compact objects. On the
other hand the Fig. 2 also shows the behavior of total radial
and tangential pressures, (ptot

r and (ptot
t ), total density (ρtot),

and the anisotropy (�) against the radial coordinate r/R. As
we can see in this Fig. 2 that the total pressures and den-
sity are maximum at centre and decreasing monotonically

away from centre, while the anisotropy is zero at centre and
increasing monotonically towards the boundary. The radial
pressure is vanishes of the boundary of star which decide
the size of the compact model i.e. radius R while tangen-
tial pressure is not. We determined the total mass (M̃), and
surface redshift (zs) of each obtained compact object which
are the most important physical features of the model. It was
proposed that the mass M̃ has larger value as compared to
the total mass M0, which means that anisotropy introduce
more massive objects. We have presented the numerical val-

ues of the compactness
( M̃
R

)
and

(M0
R

)
for fixed values of

a = 0.00509, b = 0.00002, β = 1.8 and γ = 0.0001
for the different compact objects as PSR J1614-2230 for
α = 0.001, R = 11.0143 km, 4U1608-52 for α = 0.1,
R = 10.5146 km, and Cen X-3 for α = 0.15, R = 9.922 km.
Apart from this we have also calculated the lower and upper
bound for the same values ofa,b,α,β andγ which shows that
the each compactness factor (mass-radius ratio) lies between
the lower and upper bound. Through the compactness, we
have evaluated the surface redshift of the each different com-
pact star model which are given as follows: (1) zs = 0.38425
for PSR J1614-2230, (2) zs = 0.34576 for 4U1608-52, (3)
zs = 0.30321 forCen X-3. These obtained values for surface
redshift are compatible with the values proposed by Ivanov
[63] and Bowers and Liang [8]. Moreover, the variation of
gravitational redshift within the charged ansitropic compact
stellar models are shown in Fig. 4. The gravitational red-
shift is maximum at centre and decreasing towards the sur-
face boundary, and attains minimum at surface. On the other
hand, we verified the stable equilibrium of the gravitational
decoupling solution via different forces. To do so, we need
to study the modified Tolman–Oppenheimer–Volkoff (TOV)
equation for anisotropic charged matter distribution. We have
presented distributions of all forces Fg , Fh , Fa , and Fe in
Fig. 4. From this Fig. 4, we found that the anisotroic force
Fα and electric force Fe acts along an outward direction.
However, the combined impact of the hydrostatic force Fh ,
anisotropic force Fa and electric force Fe will balance the
gravitational force Fg such that Fg + Fh + Fa + Fe = 0,
which yields the stable equilibrium for the matter distribution
T tot
i j . Therefore, our obtained GD solution is in the equilib-

rium stage. Finally, we discussed the causality and stability
of the GD solution. The Fig. 5 shows that the speed of sounds
is decreasing throughout the stellar interior and less than the
speed of light. Moreover, the radial velocity is always greater
than the tangential one which can be predicted from Fig. 5. On
the other hand, from Fig. 6, we also see that the values of the
stability factors v2

t −v2
r (dashed lines) and v2

r −v2
t (solid lines)

belong to the intervals [−1, 0] and [0, 1], respectively. Also,
The anisotropic model satisfies all the energy conditions (see
Fig. 7). Finally, we would like to mention that the obtained
charged anisotropic solution satisfies all the mathematical
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and physical requirements which shows that the extended
gravitational decoupling by means of a complete geometric
deformation approach is very effective and significant tool
for generalizing or finding the new solution of the Einstein’s
equations.
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The used coefficients in the above expressions

θ11(r) = a6bα2r10(−5 + β + 2Bβr2)2 + 4a5bα2r8

(−5 + β + 2Bβr2)(−4 − 6br4

+β(1 + 2Br2)(1 + br4)) + γ (bγ (r + br5)2

+4αβ(1 + 2br4 + B(r2 + br6)))

+2a4bαr6[γ r2(−5 + β + 2Bβr2)

+α{47 + 146br4 + 107b2r8

+3β2(1 + 2Br2)2(1 + br4)2

−12β(1 + 2Br2)(2 + 5br4 + 3b2r8)}],
θ12(r) = 2a3αr4[αβ(−25 + β − 10Br2 + 8Bβr2

+2B2βr4) + 2b4αr12(42 − 13β(1 + 2Br2)

+(β + 2Bβr2)2) + 2b3αr8{88 − 33β(1 + 2Br2)

+3(β + 2Bβr2)2} + b{γ r2(−13 + β(3 + 6Br2))

+2α(12 − 7β(1 + 2Br2) + (β + 2Bβr2)2)}
+b2r4{γ r2(−17 + β(3 + 6Br2))

+2α(58 − 27β(1 + 2Br2) + 3(β + 2Bβr2)2)}],
θ13(r) = 2a[bγ 2r4(1 + br4)

+αγ r2{β(3 + 2Br2) + b4r12(−7 + β + 2Bβr2)

+b(−3 + β + 2Bβr2)

+b3r8(−17 + β(3 + 6Br2)) + b2r4(−13

+β(3 + 6Br2))} + 2α2β{−3 + b(−27 + β)r4

+b2(−28 + β)r8

+βr4(B + bBr4)2

+Br2(1 + br4)(−3 − 7br4 + β(2 + 6br4))}],
θ14(r) = b5α2r16(−7 + β + 2Bβr2)2

+2α2β(−29 + β − 16Br2

+12Bβr2 + 4B2βr4) + 4b2αr4(−5 + β

+2Bβr2)[3γ r2 + α(−3 + β + 2Bβr2)]
+4b4α2r12[35 − 12β(1 + 2Br2)

+(β+2Bβr2)2]+2b3αr8[γ r2(−19+β(3+6Br2))

+α(71 − 30β(1 + 2Br2) + 3(β + 2Bβr2)2)],
θ15(r) = b[γ 2r4 + 2αγ r2(−11 + β(3 + 6Br2))

+α2{9 − 2β(3 + 79r4

+6B(r2 + 4r6)) + β2(1 + 6r4 + 4B(r2 + 10r6)

+4B2(r4 + 2r8))}],
�1 =

√
�11 − 8 α β2 (a2 α �12 + �13),

�2 =
√

α β2(28 b α β2 + a2 α �21 − �22),

�11 = [2aαβ(−5β + α(4β − 6)) + 4αβγ ]2,

�12 = b α (β − 3)2 + 2β[α(β − 23) + 3β],
�13 = 2 a α [b (β − 3)+β] γ+b(6αβ2−γ )2,

�21 = α2(3−2β)2−bα (β − 3)2−19 β2+2α β(32 + 3β)

�22 = 2 a α [α (3−2β)+b(β − 3)+4β] γ − b γ 2+α γ 2.

with,

δ1 = a2α[bα(−3 + β)2 + 2β(α(−23 + β) + 3β)]
+2 a α [B β(−5β + α(−6 + 4β))+(b(−3+β)+β)γ ].
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