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We propose to add a specific phase chessboard to the classical Hartmann mask used for wave-front
sensing. By doing this we obtain a pseudoguiding of the energy issuing from this mask, allowing for an
increase in the sensitivity of the Hartmann test. This property is illustrated by experiment, and a
comparison between classical and new Hartmanngrams is presented. © 2000 Optical Society of America
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1. Introduction

In 1900 Hartmann proposed a test for optical control
that has since been used for a large range of applica-
tions.1 As an example, 100 years after Hartmann’s
study, the primary mirror of the Zelentchouk giant
telescope has been tested during its manufacture
with a setup close to that described by Hartmann.2

The success of this technique is probably due to its
simplicity. It uses a mask of holes, usually arranged
in a regular square grid, placed in the plane of anal-
ysis. These holes break the incoming light into
beams, which are deflected according to the local dis-
tortions of the sensed wave front. If observed in a
plane at a certain distance from the mask, the grid is
therefore warped, with the displacement of each spot
directly proportional to the local tilt of the wave front
and the distance between the mask and the observa-
tion plane ~see Fig. 1!. The sensitivity and the dy-
namics of this test can thus be adjusted continuously
by simple longitudinal translation of the observation
plane. Because this operating mode is based on ray
tracing, the test is achromatic.

A number of innovative variations to the classical
test have been suggested, to adapt it to specific wave-
front sensing experiments.3 For example, Shack

proposed replacing the mask of holes with a grid of
microlenses.4 With this modification, all the light
coming from the analyzed source is focused at the
common focal plane of the microlenses, allowing for
better light efficiency. This property is of particular
importance for astronomical applications.5,6 How-
ever, the sensitivity is no longer adjustable, since the
measurement plane is restricted to the focal plane of
the microlenses.

In the classical Hartmann test, although the sensi-
tivity is continuously adjustable, limitations appear
when the observation plane is placed far from the
mask, owing to diffraction effects. The ray-tracing
approach is then no longer valid, and the hole grid is
blurred. Our purpose in this paper is to present a
new arrangement of the Hartmann test that allows
sensitivity for a increase by minimization of blurring
effects that are due to diffraction. In Section 2 a de-
scription of the classic Hartmann test is presented,
issued from a study of the Talbot phenomenon. Then
we present the theory of this extended Hartmann test
in Section 3. Finally, we conclude this paper in Sec-
tion 4 by showing experimental results that give what
to our knowledge is the first evidence of the ability of
this new Hartmann test.

2. Hartmann Test and Talbot Interferometer

In the classical description of the Hartmann test dif-
fraction effects are neglected as the observation of the
grid of spots is made in a plane close to the mask, as
described above. However, for a monochromatic
plane wave, self-imaging of the mask can be observed
for regularly spaced longitudinal locations of the ob-
servation plane, at multiples of DT 5 2d2yl, with d as
the pitch of the square grid and l as the wavelength,
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tillon Cedex, France. J. Primot’s e-mail address is primot
@onera.fr.

Received 29 March 2000; revised manuscript received 11 July
2000.

0003-6935y00y315715-06$15.00y0
© 2000 Optical Society of America

1 November 2000 y Vol. 39, No. 31 y APPLIED OPTICS 5715



assuming that the pitch of the mask is large versus the
wavelength. This property was first described by Tal-
bot7 in 1836 and has since been widely studied in the
literature.8 DT is usually called the Talbot distance.
At this distance the observed pattern is not an image in
the classical sense, because there is no point-to-point
conjugation between the mask and its pseudoimage.

This property of self-imaging can be simply ex-
plained. For concision we restrict ourselves to the
one-dimensional case and to a plane monochromatic
wave. We also consider the Hartmann test to be a
grating made of regularly spaced square holes. The
transmittance t~x! at the exit of the mask is then given
by

t~x! 5 Pa~x! p combd~x!, (1)

where a is the size of the hole; Pa~x! is the gate
function, which is equal to 1 on the x range @2ay2,
ay2# and 0 elsewhere; combd~x! is the Dirac comb
function of pitch d, and p is the convolution product.

The Fourier transform of Eq. ~1! yields the series of
amplitudes FT~u! of the diffraction orders:

FT~u! 5
sin~pua!

pua
comb1yd~u!. (2)

In most Hartmann tests a is smaller but of the
same order as d. So the sin~x!yx function decreases
rapidly, and the energy is essentially concentrated in
three first orders of diffraction, 21, 0, and 1 ~see Fig.
2!. Transmittance t~x! of Eq. ~1! can then be approx-
imated by

t~x! 5 C0 1 C1 exp~2ipxyd! 1 C21 exp~22ipxyd!, (3)

where C0 and C1 5 C21 are the amplitudes of the
three first diffraction orders.

The zero-order propagates along the axis, and or-
ders 21 and 1 are tilted with respect to the propaga-
tion axis by an angle u equal to lyd. During their
propagation, orders 21 and 1 are phase delayed with

respect to order 0, owing to the slope of their wave
vectors. At the Talbot distance this phase delay is
equal to 2p, and the initial state of interference is
found. At half the Talbot distance the phase delay is
equal to p, corresponding to a half-period lateral
translation. In the vicinity of the mask, phase de-
lays are small, and the global appearance of the mask
is not affected; this corresponds to the geometric
range of the Hartmann test.

According to this description the Hartmann test in
monochromatic light can be seen as a shearing inter-
ferometer. The intensity pattern observed in the
Talbot plane is the interference of three tilted repli-
cas of the analyzed wave front, which leads to a clas-
sical setup belonging to Talbot interferometry ~see
Ref. 8, p. 62 and references therein!.

Figure 3 describes this working mode. The mono-
chromatic analyzed wave front is divided into three
replicas, after diffraction by the mask used as a beam
splitter. These three replicas constructively interfere
at the Talbot distance, leading to a warped self-image
of the initial grid. The displacements of the spots are
proportional to the local slopes of the wave front.

To synthesize these physical remarks, let us write
the interferogram I~x, z! generated at an observation
distance z by the mask illuminated by a monochro-
matic wave under study,

Ei~x! 5 exp@2ipg~x!yl#, (4)

where g~x! is the optical path introduced by the an-
alyzed wave front. This interferogram is the inten-
sity pattern of the scalar field E~x, z!, the sum of three
scalar fields diffracted the three components of t~x!
given by Eq. ~3!:

E~x, z! 5 (
p521,0,1

Cp expH2ip

l
@x sin up 1 z cos up

1 g~x 2 z tan up!#J , (5)

Fig. 1. Principle of the Hartmann test. The distorted wave front
is sampled by a grid of square holes. The light beams emerging
from the holes are deflected with respect to the local slopes of the
wave front.

Fig. 2. Orders diffracted by the Hartmann mask ~one-
dimensional case!, for a 5 2dy3. The main part of the diffracted
energy is concentrated in orders 21, 0, and 1.
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with sin up 5 lpyd. If we assume that l ,, d, the
expression of I~x, z! reduces to

I~x, z! 5 M0 1 M1 cosF2p

d
Sx 2 z

dg

dx
DG

1 M2 cosF4p

d
Sx 2 z

dg

dx
DG , (6)

where

M0 5 C0
2

1 2C1
2, (7)

M1 5 4C0 C1 cos~plzyd2!, (8)

M2 5 2C1
2. (9)

From Eq. ~6! the analogy with radio-frequency
modulation is obvious: In the z plane the modula-
tion of the carrier frequency 2pyd is proportional to
the first derivative of the analyzed wave front with a
magnification factor of z. So classical numerical de-
modulation treatments can be processed to extract
this derivative information. Because of the Talbot
effect that appears in Eq. ~8!, the contrast M2 of the
second term ~fundamental harmonic of the interfero-
gram! is cosinusoidal along the z axis of period d2yl.
In monochromatic light this contrast is highly de-
graded at regular distances. In polychromatic light
the global contrast M2 of the interferogram, the sum
of incoherent intensity patterns, is no longer cosinu-
soidal along the propagation axis: It is multiplied by
a visibility function whose decay increases as the
spectral bandwidth enlarges. As a consequence a
wave-front analysis based on the use of a Hartmann
screen can be processed in two main domains: one
corresponding to the usual achromatic Hartmann
test, in which ray beam deflections are measured in

the vicinity of the mask, and a second domain, in the
vicinity of the self-image planes, which is of limited
interest, since it requires monochromatic light.

3. Extended Hartmann Mask: Theory

Our purpose in this paper is to describe an improve-
ment on the Hartmann test to increase the working
domain of the first achromatic operating mode. To
do this, we propose complementing the classical
square grid of holes with a phase chessboard, as
shown in Fig. 4. The pitch of the chessboard is equal
to twice the pitch of the mask, and the height of the
phase step is equal to p for the central wavelength of
the spectral band. We will now explain how the
operating range can be greatly increased by addition
of a ~0, p! phase chessboard.

As in Section 2, for the sake of simplicity, we re-
strict ourselves to the one-dimensional case and to a
monochromatic plane wave. The transmittance
tp~x! of the Hartmann screen completed by a phase
chessboard can then be written as

tp~x! 5 Pa~x! p @combd~x!exp~ipxyd!#, (10)

where the exponential function is introduced to
model the alternating phase steps ~0, p!. Then the
amplitudes of the diffracted orders are given by

FTp~u! 5
sin~pua!

pua
@comb1yd~u! p d~u 2 1y2d!#, (11)

where d~u! is the Dirac function. We see that the
main effect of the phase chessboard is to shift the
diffracted orders of 1y2d, as described in Fig. 5. The
energy is now essentially concentrated in two orders,
equally tilted at an angle uy2 with respect to the
propagation axis. Because these two preponderant
orders take the same phase delay during their prop-

Fig. 3. Hartmann test seen as a lateral shearing interferometer.
The observed pattern corresponds essentially to three tilted repli-
cas of the analyzed wave front, which constructively interfere in
the Talbot plane.

Fig. 4. Addition of the recommended phase chessboard to the
Hartmann mask. The height of the phase step is equal to p ~for
the central wavelength!.
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agation, the interferogram observed in a plane is ex-
pected to be propagation invariant. To demonstrate
this property, the same approach as in Section 2 is
used. From the expression of transmittance tp~x! of
the modified Hartmann mask ~MHM!,

tp~x! 5 C1y2 exp~ipxyd! 1 C21y2 exp~2ipxyd!, (12)

where C1y2 5 C21y2 are the amplitudes of the two
first diffraction orders, we deduce the interferogram
Ip~x, z! generated by the mask under aberrant-wave
illumination:

Ip~x, z! 5 2C1y2
2H1 1 cosF2p

d
Sx 2 z

dg

dx
DGJ . (13)

An important point highlighted by Eq. ~13! is that the
contrast of the interferogram is propagation invari-
ant and achromatic, allowing for analysis of the in-

terferogram in polychromatic light and in any
observation plane. At a practical stage the obtained
transmittance diffracts more than two orders and
residual fluctuations of the contrast are expected
along the propagation axis.

Nevertheless, one remarkable case is obtained
when a 5 2dy3. When this condition is fulfilled, it
can be shown that a new self-imaging plane appears
at DTy6, where DT is the Talbot distance of the mask
alone, and at every multiple of this distance. To
illustrate this property, we calculated the intensity
I~x, z! of the diffracted field for two cases, using the
approach of the angular spectrum of plane waves.9

In the first case we consider the Hartmann mask of
period d that generates a self-image at the Talbot
distance DT. In Fig. 6~a! the intensity of the propa-
gated field is shown as gray levels, between z 5 0 and
z 5 DT planes. At fractional Talbot distances clas-
sical results can be observed. For example, at half
the Talbot distance, the original intensity pattern is
reproduced but shifted by half a period d; at DTy4
global contrast is largely decreased.

In the second case we consider the MHM. The
calculated intensity of the propagated field is shown
in Fig. 6~b! in the same z range as in 6~a!. This
figure highlights the formation of self-images at reg-
ular distances multiple of DTy6. Moreover, at any
distance z, we can observe that an interferogram ap-
pears with a good contrast. This contrast is nearly
propagation invariant in opposition to the first case in
which strong variations appeared, as if the energy
emerging from the holes were guided through square
pipes. In fact, this is only a guiding of the global
energy: There is no point-to-point correspondence
between the observed images of the square grid for
two different longitudinal locations.

Under polychromatic illumination, this property
remains, but with a lesser quality, since the phase

Fig. 5. Orders diffracted by the MHM ~one-dimensional case!, for
a 5 2dy3. The main part of the energy is now concentrated in the
two central orders.

Fig. 6. Numerically calculated intensity for the propagation of the optical field diffracted by the Hartmann mask ~a! without and ~b! with
phase chessboard, between z 5 0 and the first Talbot distance DT of the Hartmann mask ~in monochromatic illumination!.

5718 APPLIED OPTICS y Vol. 39, No. 31 y 1 November 2000



step is no longer strictly equal to p. Thus we ex-
pect to reduce the blurring effect that is due to
diffraction by adding a phase chessboard and
thereby increase the sensitivity of the Hartmann
test.

4. Experimental Study

A MHM as described in Section 3 has been realized.
The mask is a grid ~pitch d 5 100 mm! of square holes

~opening, 66 mm!. The phase chessboard has a pitch
of 200 mm, and the height of the phase step is equal
to l0y2 with l0 5 0.633 mm. For these values the
Talbot distance is 31.6 mm. This MHM was studied
under coherent and white-light illumination to verify
the pseudo-guiding effect of the diffracted field.
Then a Hartmann test was processed under white-
light illumination, and Hartmanngrams were re-
corded.

A. Coherent Illumination

A He–Ne laser illuminates a pinhole of diameter 10
mm at the focal plane of a collimating lens of focal
length 450 mm. Images are grabbed with a CCD
camera mounted with a microscope objective; 160 im-
ages were recorded corresponding to different z val-
ues, from z 5 0 to z 5 16 mm ~'DTy2! with a
translation step of 0.1 mm. Figure 7~a! shows the
evolution of the responses delivered by a line of 100
pixels across a propagation-distance range of 16 mm.
We verify that self-images appear at regular dis-
tances, multiples of 5 mm ~'DTy6!, and that the
contrast of the intensity profile is quasi propagation
invariant.

Fig. 7. Experimental evolution of two cells of the recorded inter-
ferogram along the propagation axis z produced by the MHM under
~a! laser illumination and ~b! white-light illumination.

Fig. 8. Use of the MHM as a wave-front sensor. Optical setup.

Fig. 9. Hartmanngrams obtained for a spherical aberration at
increasing distances ~from top to bottom: z 5 0, 5.3, and 15.8 mm!

from the Hartmann mask ~a! without and ~b! with phase chess-
board.
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B. White-Light Illumination

A halogen lamp illuminates a pinhole of diameter 80
mm at the focal plane of the same collimating lens.
The spectral range of the camera is @0.5, 0.9 mm#.
Figure 7~b! shows the evolution of the responses de-
livered by the same line of 100 pixels. We observe
that the white-light interferogram exhibits a sinusoi-
dal modulation when the observation distance is in-
creased. An important point highlighted by this
experimental study is that the MHM, under white-
light illumination, produces a quasi-sinusoidal inter-
ferogram.

C. Application to Wave-Front Sensing

To illustrate the interesting property of the MHM, we
performed a simple wave-front sensing experiment.
The optical setup is illustrated in Fig. 8. A pinhole
of diameter 80 mm illuminated by a halogen lamp is
placed at the focus of a spherical lens generating a
plane wave front with a large spherical aberration.
In Fig. 9 we show images delivered by the sensor at
several distances from the mask ~a! without and ~b!
with phase chessboard. Note the increasing distor-
tion of these Hartmanngrams, characteristic of the
spherical aberration. In the first configuration we
observe that the contrast of the Hartmanngrams de-
pends on the working distance, and, at a given dis-
tance, this contrast is not uniform ~see the bottom
image, at z 5 15.8 mm!. It can be shown that these
fluctuations are mainly due to the diffraction order 0
of the Hartmann mask that makes the intensity dis-
tribution in an observation plane dependent on the
second-order derivative term of the analyzed wave
front ~see Ref. 8, pp. 63–64!. For example, at z 5 5.3
mm, the contrast is largely decreased, and the Hart-
manngram is no longer exploitable. In the recom-
mended configuration ~b! we note a clear qualitative
improvement of the intensity distribution of the mod-
ified Hartmanngrams at any observation distance.

5. Conclusion

In this paper we have presented a way to increase the
sensitivity of the Hartmann test by addition of a
phase chessboard. By properly choosing the ratio
between the size of the square holes and the pitch of
the mask we can reduce the self-imaging distance by
a factor of 6. In this case we have shown that the
global energy issuing from the mask is pseudoguided
in square pipes and that this property is still verified
in polychromatic light. This new setup has evident
applications in wave-front sensing problems, which
will be tested in the near future. However, it is
probably also of interest for other kinds of problems
in optical metrology.
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