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Extended Hertz Theory of Contact
Mechanics for Case-Hardened
Steels With Implications for
Bearing Fatigue Life
The analytical expressions currently available for Hertzian contact stresses are applica-
ble only for homogeneous materials and not for case-hardened bearing steels, which
have inhomogeneous microstructure and graded elastic properties in the subsurface
region. Therefore, this article attempts to determine subsurface stress fields in ball bear-
ings for graded materials with different ball and raceway geometries in contact. Finite
element models were developed to simulate ball-on-raceway elliptical contact and ball-
on-plate axisymmetric contact, to study the effects of elastic modulus variation with depth
due to case hardening. Ball bearings with low, moderate, and heavy load conditions are
considered. The peak contact pressure for case-hardened steel is always more than that
of through-hardened steel under identical geometry and loading conditions. Using equiv-
alent contact pressure approach, effective elastic modulus is determined for case-
carburized steels, which will enable the use of Hertz equations for different gradations in
elastic modulus of raceway material. Nonlinear regression tools are used to predict effec-
tive elastic modulus as a weighted sum of surface and core elastic moduli of raceway
material and design parameters of ball–raceway contact area. Mesh convergence study
and validation of equivalent contact pressure approach are also provided. Implications
of subsurface stress variation due to case hardening on bearing fatigue life are discussed.
[DOI: 10.1115/1.4037359]
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Introduction

A number of applications in tribology, geology, optoelec-
tronics, biomechanics, fracture mechanics, and nanotechnology
involve components with compositionally graded materials [1].
Transmission components such as rolling element bearings and
gears are heat treated using carburization and nitriding processes
to enhance resistance to damage and deformation under repeated
contact. These surface treatment processes result in gradient in
carbide and nitride concentration in the subsurface region, leading
to spatial variation of mechanical properties such as elastic modu-
lus, yield strength, and hardness [2]. The mechanical response of
materials with spatial gradients in composition and microstructure
has been a subject of many experimental and analytical studies by
number of researchers [1–6]. Giannakopoulos and Suresh [1,4]
analyzed axisymmetric graded half space problem for a point
load, and for conical, spherical, and flat indenters. In their
study, frictionless contact, constant Poisson’s ratio, and Young’s
modulus variation with depth either as simple power law
(E(z)¼E0zk0, 0� k0< 1) or as exponential variation (E(z)¼E0eaz)
were assumed. Liu et al. [5] solved axisymmetric frictionless
contact problem of functionally graded materials using transfer
matrix method and Hankel integral transform technique. With the
help of numerical techniques, they obtained solutions for contact
pressure and contact region for indenters of various geometries.
Guler and Erdogan [6] analyzed contact problem of graded metal/
ceramic coatings for planar elasticity (plane stress and plane

strain) conditions. They considered continuously varying thermo-
mechanical properties to analyze influence of material inhomoge-
neity constant, the coefficient of friction, and various length-scale
parameters on the critical stresses that determine fatigue and frac-
ture of coating. All the solutions from previous studies [1,3–6] are
applicable only to limited cases such as axisymmetric and planar
contact problems. However, in most of the industrial applications,
especially for ball bearings, elliptical contact exists between ball
and raceway. These conditions require contact analysis of elasti-
cally graded materials under three-dimensional (3D) loading.
Moreover, previous studies primarily rely on extension of Boussi-
nesq’s method, whereas practices in bearing industry have
evolved to use of Hertz equations for stress, deformation, and
fatigue life calculations [7,8]. Bhattacharyya et al. [9] analyzed
three-dimensional point contact using finite element method,
but main focus of their study was contact stresses under
elastic–plastic loading conditions. Using 3D finite element mod-
els and Voronoi tessellations, Weinzapfel et al. [10] proposed
framework to account for influence of microstructure topologies
on rolling contact fatigue of bearing steels. In their work, they
used predefined Hertz stress field; therefore, it is mainly applica-
ble for through-hardened steels. Due to inhomogeneous compo-
sition, exact nature of Hertz stress field is unknown for case-
hardened steels. Therefore, our goal was to study contact prob-
lem of case-hardened ball bearing raceways using Hertz equa-
tions under three-dimensional as well as axisymmetric loading
conditions.

Traditional Hertzian contact solution for determining subsur-
face elastic stress fields for two bodies in contact is applicable
only for homogeneous materials [7]. Bearing L10 life, defined as
number of revolutions for which 90% of bearings survive at a
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given load, is a strong function of peak Hertzian contact pressure
and the peak orthogonal subsurface shear stress [11]. Variations in
contact pressure and subsurface stress field due to elastic modulus
variation in the case layer of case-hardened steel are expected to
introduce a significant correction to bearing life. Therefore, the
primary objective of this work is to analyze the influence of elastic
modulus gradation on the peak Hertzian contact pressure and sub-
surface stress-field experienced by the ball–raceway contact. For
this, detailed mesh density/convergence study of the 3D finite ele-
ment models of the ball–raceway contact with elastic modulus
gradient is performed. Discussions regarding procedures adopted
for the development of these models along with the challenges
encountered in finite element method simulations of ball-bearing
contacts are also presented.

Hertz Theory of Contact Mechanics

Stresses developed at the contact of two elastic solids were first
analyzed by Hertz in early 1880s. He proposed that contact area
is, in general, elliptical and for the purpose of calculating local
deformations, both bodies can be approximated as elastic half
spaces loaded over a small elliptical region of their surfaces [12].
Based on Hertz analysis, ellipsoidal compressive stress distribu-
tion in the contact area can be written as

r ¼ 3Q
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where Q is the normal load experienced by two bodies in contact
in X–Y plane; a and b represent semimajor and semiminor axes of
the elliptical contact area. S will be used to represent maximum
compressive stresses experienced by two bodies in contact. Hertz
also provided expressions for semimajor axis a and semiminor
axis b as [7]
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where n and E are Poisson’s ratio and elastic modulus of bodies I
and II, respectively;

P
q is the summation of principal curvatures

of two bodies in contact; a� and b� are nondimensional parameters
defined by curvature difference of two bodies [7].

It is well known that bearings generally fail due to rolling con-
tact fatigue arising from continuously varying subsurface shear
stresses [7]. Three principal shearing stresses are generally used
for bearing life analysis: the orthogonal shearing stress, s0 (based
on Lundberg–Palmgren model [13]); the von Mises equivalent
octahedral shearing stress, soct (based on Ioannides and Harris
model [14]); and the maximum shearing stress, smax (based on
Zaretsky’s model [15]). All these shearing stresses vary in propor-
tion with the maximum Hertz pressure S experienced by two
bodies as

s ¼ k � S (4)

where the proportionality constant k is equal to 0.25, 0.28, and
0.32 for the orthogonal, octahedral, and the maximum shearing
stress, respectively, for commonly observed contact conditions
(i.e., ðb=aÞ � 0.1064). For roller bearings, these values are 0.25,
0.29, and 0.30, respectively [16]. For ball bearings (point contact),
the subsurface depths where maximum orthogonal, octahedral,
and subsurface shear stress observed are 0.5b, 0.72b, 0.76b,
respectively. Corresponding depths for roller bearings are

0.5b, 0.79b, 0.79b, respectively [16]. Analytical expressions
Eqs. (1)–(4) were derived based on the assumption that subsurface
properties such as elastic modulus and hardness remain constant
[17]. However, for case-hardened bearing steels such as M-50
NiL and P-675, a linear gradation of carbide volume fraction with
depth, and consequently a linear variation in elastic modulus with
depth [2] have been observed. Due to this gradient, traditional
Hertz solution is not applicable; therefore, we resort to a 3D finite
element model of the ball–raceway contact with modulus gradient
built into the raceway.

Sensitivity of Bearing Fatigue Life to Elastic

Modulus Variations

It is well known that the bearing fatigue life, L, is inversely pro-
portional to equivalent dynamic load Fe and also maximum Hertz-
ian contact pressure S as [11]

L / 1

Fe½ �p
/ 1

Sn
(5)

where p and n represent load-life and stress-life exponents,
respectively. For point contact, stress-life exponent is three times
the load-life exponent (n¼ 3p) [11]. Based on bearing endurance
data available in 1950s, Lundberg and Palmgren [13] evaluated
load-life exponent p¼ 3 and therefore n¼ 9. The study by Parker
and Zaretsky [18] indicates that for vacuum-processed steels,
p¼ 4 and n¼ 3p¼ 12. These results are based on fatigue data col-
lected from five-ball fatigue tester with maximum Hertzian stress
in the range of 4.5–6 GPa. However, reevaluation studies by
Londhe et al. [19], based on actual bearing fatigue lives reported
by bearing and aircraft engine manufacturers [20], indicate that
load-life exponent p for ball bearings is 4.1 and the corresponding
stress-life exponent is then n¼ 3*p¼ 12.3. These results are based
on Bayesian statistics approach rather than traditional minimiza-
tion of root-mean-square approach [18,20] used for determining
unknown parameters. As seen in Eq. (5), because fatigue life is
proportional to the contact pressure raised to large exponent (9,
12, or 12.3), life estimates are sensitive to even small changes in
contact pressure. Even subtle reductions in peak contact pressure
due to elastic modulus gradient can significantly improve fatigue
life prediction of ball bearings.

Analytical study presented in the Appendix shows that peak
Hertz contact pressure experienced by ball bearings is fairly sensi-
tive to variations in elastic modulus of raceway material [21]. For
example, a 10% reduction in elastic modulus for raceway material
results in a 3.6% drop in the peak contact pressure due to reduced
contact stiffness. This results in a 38.7% correction in bearing
fatigue life prediction with stress-life exponent (n) of 9. These
numerical results are based on analysis of 209 single row radial
deep groove ball bearings (DGBB) with inner and outer raceway
diameters of 52.291 mm and 77.706 mm, respectively. Groove
radii for both raceways and ball diameter were 6.6 mm and
12.7 mm, respectively. Bearing was loaded radially with 8900 N
force on nine rolling elements. Similarly, with stress-life expo-
nents of 12 and 12.3, the expected correction in fatigue life is
54.7% and 56.4%, respectively. Therefore, for accurate prediction
of fatigue life of case-carburized bearing steels, Hertz equations
must be corrected to account for varying elastic modulus from the
surface to core region of the carburized raceway material.

At the microstructural level, case-hardened steels contain car-
bide precipitates surrounded by steel matrix [2]. These carbides
are usually stiffer than steel matrix. Therefore, composite elastic
modulus is used to represent equivalent elastic modulus of carbide
inclusions and steel matrix at each case depth. For M-50 NiL
steel, composite elastic modulus decreases linearly from about
228 GPa to 202 GPa, 11.4% variation over 2 mm case depth [2].
Similar data for P-675 indicates that the composite elastic modu-
lus varies linearly from 224 GPa to 202 GPa, about 9.82% varia-
tion, over 1 mm case depth. As discussed earlier, finite element
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models were constructed to study the dependency of peak Hertz-
ian stress on linearly varying elastic modulus of a case-hardened
raceway material. A wide range of variations in elastic moduli
and case depths were considered. Finite element models also
included different geometries, which resulted in circular and
elliptical contact loads. Simulations include steel-on-steel and
ceramic-on-steel contact of varying ball sizes. Results from these
simulations are presented in following sections.

Finite Element Analysis

In the present study, all the finite element models were devel-
oped using ABAQUS/standard software with nonlinear contact
analysis. These models are shown in Fig. 1. Three-dimensional

ball-on-raceway contact, as shown in Fig. 1(a), was used to simu-
late elliptical contact area observed inside 6309 DGBB. Geometri-
cal dimensions for the model (as per Harris et al. [22]) are
specified in Table 1. Simulations included contact between a sili-
con nitride ball on steel raceway and steel ball on steel raceway
using one-quarter symmetry. Symmetric boundary conditions
were used along planes perpendicular to elliptical contact area and
passing through semimajor and semiminor axis. Similarly, a ball
on plate model with a circular contact was also developed using
axisymmetric boundary conditions as shown in Fig. 1(b). This
model was simulated for silicon nitride and steel balls of 12.7 mm
and 25.4 mm diameter on a steel substrate. Details about the geo-
metries used in each simulation are summarized in Table 1. A
sample three-dimensional ball-inside-channel model (as per

Fig. 1 von Mises stress contours for (a) 3D ball–raceway contact inside radially loaded 6309
DGBB, (b) axisymmetric ball-plate contact, and (c) 3D ball-inside-channel model

Table 1 Geometrical properties of 3D and axisymmetric finite element models

FE model dimensions

Model type Ball–raceway Ball-plate Ball-channel

Dimensionality 3D Axisymmetric 3D
Bore diameter (mm) 45 Infinite Infinite Infinite
Outer diameter (mm) 100 — — —
Width (mm) 25 6 6 5
Ball diameter, D (mm) 17.4625 12.7 25.4 25.4
Raceway groove curvature radius/ball diameter (ratio) 0.52 Infinite Infinite 0.52
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Zaretsky et al. [15]) with infinite bore diameter was also consid-
ered in this analysis. As shown in Fig. 1(c), in this model, sym-
metric boundary conditions were used as well to save
computational time. In all of the models, bottom edge/surface of
the plate, raceway, and channel was fixed.

It should be noted that both through-hardened and case-
hardened variants of steel were used in both 3D and axisymmetric
models. For through-hardened steels, uniform elastic modulus of
200 GPa was used for ball, raceway, plate, and channel material.
Since, in open literature, elastic modulus variation data are
only available for M50-NiL and P-675 case-hardened steels [2],
majority of simulations were performed for these materials. How-
ever, hypothetical samples of case-carburized steels were also
considered in some of the simulations to generalize the results.
These steels can be considered to be processed by pack carburiz-
ing, gas carburizing, liquid carburizing, and vacuum/low pressure
carburizing methods. These carburization techniques are com-
monly used by bearing manufacturers [23]. Typical case depths
attainable from these manufacturing methods can vary between
50 lm and 1:5 mm. The case hardness from these processes is
reported in the range of 50–63 Rockwell C hardness (about 20%
variation). Corresponding concentrations of carbide volume frac-
tion and elastic moduli variations of the case layer are approxi-
mated to follow a similar trend [2]. Generally, for aerospace main
shaft bearings, a case depth of 2 mm is common with 10–20% lin-
ear decrease in case layer elastic modulus.

As discussed earlier, to study the influence of these graded
properties of raceway material on the peak contact pressure under
elliptical contact loading conditions, a wide range of operating
conditions, as detailed in Table 3, were considered in the finite
element analysis (FEA). The 3D ball–raceway and ball–channel
models and axisymmetric ball-plate model (as shown in Fig. 1)
were simulated for nominal loads ranging from 100 N to
13,500 N. At each load, simulations were performed for silicon
nitride and steel balls in contact with M50-NiL and P-675 steel
raceway/plate material. The resulting peak contact pressures were
in the range of 1.5–3.1 GPa, which is the typical operating range
for majority of industrial ball-bearing applications. Additionally,
case depths of 0.5 mm and 1.5 mm were used in some of the
simulations (model nos. 29–33 in Table 3) with different possible
gradations in elastic modulus from surface to core region. Let
Esurface and Ecore denote surface and core elastic moduli, respec-
tively, of the raceway/plate/channel materials. Let d be the case
depth and d be the fraction of the elastic modulus variation from
Esurface to Ecore over this case depth defined as

d ¼ Esurface � Ecore

Esurface

� �
(6)

Figure 2 depicts elastic modulus variation for M50-NiL material
in comparison to through-hardened steel (denoted as TH) as a
function of subsurface depth.

While the above gradations were considered only for raceway/
plate/channel material, the elastic moduli of the balls were consid-
ered to have no gradation, i.e., 320 GPa for silicon nitride balls
and 200 GPa for steel balls in all of these models. The spatial
variation of elastic modulus in the desired domain of raceway/
plate/channel was implemented in ABAQUS via a user-defined mate-
rial subroutine “user-defined material subroutine,” by assigning
numerical values to each material point of the discretization ele-
ment. In some of the simulations, gradient in elastic modulus was
set up using temperature-dependent material properties and grada-
tion in temperature over the case layer of raceway/plate/channel
material. Details about the discretization element and mesh tech-
niques used are discussed below.

Computational modeling of nonconformal Hertzian contact
between the ball and raceway (or two elastic bodies) is challenging
despite significant advances in computational resources. Hence, to
obtain a balance between computational cost and accuracy of the

FE simulations, mesh discretization scheme, as shown in Fig. 1,
was developed for all of the models. For the ball–raceway model,
fine mesh was used near the center of elliptical contact area. In this
region, smallest dimensions of 3D solid element for raceway
geometry were 145.4 lm� 7.2 lm� 3.07 lm (for semimajor axis,
semiminor axis, and subsurface depth, respectively). For quarter
section of ball geometry, near the center of contact area smallest
dimension of 3D solid element were 61.79 lm� 53.73 lm
� 24.35 lm. For the raceway, because of steeper gradient, very
fine mesh elements were used along semiminor axis b. This level
of mesh refinement was necessary to determine accurate contact
pressure, contact dimensions, and subsurface shear stresses for
geometries with uniform elastic modulus of raceway material.
Since contact pressure is highly sensitive to the curvature of geo-
metries, quadratic elements were used instead of linear elements
[24]. Structured meshing technique along with hexahedral ele-
ments (C3D20) was used for the entire FEA of ball–raceway and
ball-channel models. With this mesh refinement, approximate time
for one 3D ball–raceway contact simulation was 48 h on 32 GB
RAM fast processor computer.

The ball-plate model shown in Fig. 1(b) used very refined
axisymmetric mesh. At the center of the contact area, smallest
dimensions of the two-dimensional element for raceway geometry
were 11.11 lm� 6.86 lm and for ball geometry they were
39.90 lm� 34.14 lm. Similar to ball–raceway model, structured
meshing technique with quadratic quadrilateral elements (CAX8)
were used.

The FEA results were validated against analytical solutions
available in Harris [7] and Thomas and Hoersch [17], for the case
of through hardened or uniform elastic modulus materials, for test
configurations shown in Table 2. The goal of this analysis was to
determine the mesh refinement level that would result in accepta-
ble convergence of contact pressure and subsurface stresses for
cases where analytical solutions were known. Finite element anal-
ysis results shown in Table 2 for maximum contact pressure (S)
are within 1% of the analytical solution. Table 2 also indicates
maximum values of critical subsurface shear stresses and the cor-
responding depths at which they are observed. For axisymmetric
ball-plate model, the errors between analytical and FEA solutions
for critical subsurface stresses are less than 2%. The errors in the
predicted contact pressure from analytical and computational
results were under 3% for all the simulations.

After determining reasonable mesh refinement level, next step
is to identify design parameters of interest. As per Hertz theory,
these parameters are principal curvatures of two bodies, their
material properties, and the normal load acting on the contact. For
linearly graded materials such as case-hardened bearing steels,
three more design parameters, surface elastic modulus Esurface,
fractional variation in elastic modulus from surface to core, i.e., d

Fig. 2 Elastic modulus variation as function of depth for M50-
NiL and through-hardened bearing steel (TH)
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(as per Eq. (6)), and case depth d, were defined. Comprehensive
FE study was performed by varying each of these design parame-
ters. Table 3 shows details of the 33 different simulated test cases
used in this study. Out of these, ten correspond to ball–raceway
contact inside 6309 DGBB, 21 correspond to ball-plate model,
and two correspond to ball-channel model. Poisson’s ratio of 0.3
was kept constant for all the materials. As discussed earlier, most
of the test cases were run for a case layer of up to 2 mm depth.

Results and Discussion

The maximum contact stress (S) experienced between the ball
and raceway/plate/channel in each of the 33 test configurations
are shown in Table 3. For the case-hardened raceway, it is
denoted as SCH and that experienced by through-hardened race-
way under identical ball material, geometry, and loading condi-
tions is denoted as STH. Test cases 1–28 mainly include M50-
NiL and P-675 case-carburized bearing steels and test cases
29–33 include different possible variants of steels from carburi-
zation process, to generalize the analysis results. From the
results presented in Table 3, it can be concluded that peak con-
tact pressure experienced by case-hardened raceway will always
be different than that experienced by through-hardened raceway
even if other design parameters are kept constant. For example,
for test case 2, steel ball rolling over steel raceway, under
1279.1 N load, the peak contact pressure varies by up to 3.61%
from STH ¼ 1.663 GPa to SCH ¼ 1.723 GPa. Using Eq. (5),
this 3.61% variation in peak pressure will correspond to 37.57%
correction in life with n¼ 9. With n¼ 12 or 12.3, the correc-
tions in the life will be even higher, i.e., 53% and 54.64%,
respectively. Compared to through-hardened raceway, the peak
pressure for carburized raceway is higher in this case due to
higher elastic modulus of the material in the near surface region
of the raceway. Higher elastic modulus results in smaller
deformed area in the contact and hence increased peak contact
pressure. Figure 3 shows contact pressure variation along semi-
minor axis for ball-channel models, i.e., test cases 32 and 33.
These curves are obtained by fitting Eq. (1) through contact
pressure values at each node along semiminor axis. The coeffi-
cients of determination for all the curve fits are 0.99. This indi-
cates that even for case-carburized steel, contact pressure
variation along semiminor axis can be approximated using
equation similar to traditional Hertz Eq. (1). From Fig. 3, it can
also be seen that reduced contact width results in increased
peak contact pressure (by about 3%) for case-hardened steel
compared to through-hardened steel. With stress-life exponents
of 9, 12, and 12.3, this will result in 31.56%, 44.16%, and
45.48% correction in predicted fatigue life, respectively.

Therefore, this underlines the necessity of the fact that
gradations in the elastic modulus of case-hardened steel must be
considered for fatigue life predictions of bearing raceways.

Comparing the contact pressures experienced by case-hardened
steel and through-hardened steels, it may appear that through-
hardened bearing steels will have higher life than case-hardened
bearing steels (as per Eq. (5)). However, in reality, case-
carburized bearing steels are known to outperform their through-
hardened counterparts under identical operating conditions
[22,25]. This improved rolling contact fatigue performance of
case-carburized bearing steels is mainly attributed to the presence
of residual compressive stresses in circumferential and axial direc-
tions of bearing inner rings and fine carbide microstructure in the
subsurface region [26]. Analysis on the influence of residual com-
pressive stresses on Hertzian contact stresses in the presence of
graded material properties will be reported in a separate article.
The main goal of the present analysis is to analyze peak contact
pressure for elastically graded bearing raceways and provide sim-
ple correction to Hertz equations. For this, nonlinear regression
analysis was performed as explained in Statistical Analysis sec-
tion. For all the test cases presented in Table 3, maximum orthog-
onal, Tresca, and von Mises stresses were analyzed in the
subsurface region of raceway material. Regression estimates for
proportionality constant k (in Eq. (4)) were 0.247, 0.316, and 0.59,
respectively, for ball–raceway contact inside 6309 DGBB. These
estimates of k for graded material are almost identical to that of
uniform elastic modulus/through-hardened material. Therefore, no
significant difference was observed in proportionality constant k
for case-hardened and through-hardened bearing steels. Next
mesh convergence study was undertaken to study the influence of
mesh discretization schemes on the peak contact pressure values
observed in finite element models.

Mesh Convergence Study

As discussed in the Finite Element Analysis section, reasonable
mesh size was determined for three-dimensional and axisymmet-
ric models to minimize the computational cost of finite element
simulations. A mesh convergence study was performed to check
the influence of mesh size on contact pressure variations for
ball–raceway model presented in Table 2. A total of 180,980
second-order 3D solid elements were used, out of which 16,432
were used to discretize the ball geometry and 164,548 were used
to discretize the raceway geometry. For convergence study, total
mesh size was reduced by an approximate factor of two in each
step. Therefore, total numbers of second-order 3D solid elements
in four mesh discretization schemes were 180,980, 112,849,
65,144 and 16,365, respectively. Models with through-hardened
and M50-NiL steel properties for raceway were simulated using
this four mesh discretization schemes. Results obtained for mesh
convergence study are shown in Fig. 4, which shows that the var-
iations in peak contact pressure from this four mesh discretization
schemes are insignificant. The variation in peak contact pressure
for model with 65,144 no. of elements and model with 180,980

Table 2 Comparison between FEA and analytical solutions for through-hardened bearing steels

Ball–raceway model Ball-plate model (D: 12.7 mm)

Model parameters Analytical solution FEA solution % error Analytical solution FEA solution % error

Ball-raceway/plate material Through-hardened steel (TH) Through-hardened steel (TH)
Applied load (N) 1279.1 1279.1 100 100
Analysis results
Semimajor axis, a (mm) 1.888 1.903 0.79 0.163 0.166 1.84
Semiminor axis, b (mm) 0.196 0.195 0.41 0.163 0.166 1.84
Maximum contact pressure, S (GPa) 1.647 1.663 0.97 1.796 1.788 0.46
Normalized maximum shear stress, smax=S 0.318 0.317 0.31 0.31 0.311 0.32
Normalized depth, z0/b 0.76 0.762 0.26 0.481 0.479 0.40
Normalized orthogonal shear stress, s0=S 0.249 0.246 1.20 0.215 0.214 0.47
Normalized depth, z0/b 0.496 0.498 0.40 0.351 0.352 0.28
Normalized maximum Von Mises stress, rv=S 0.594 0.589 0.84 0.62 0.621 0.16
Normalized depth, z0/b 0.72 0.7 2.78 0.481 0.479 0.40
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no. of elements is less than 0.8% for both the materials. For all the
12 test cases corresponding to the 3D analysis, errors in maximum
contact pressures from FE simulations and analytical solutions
were less than 3%. Therefore, these confirm that contact pressures
have converged satisfactorily. In the present analysis, total of
180,980 no. of elements were used for the models shown in Table

3. Similar analysis was performed for axisymmetric ball-plate
model with ball diameter of 12.7 mm. Total number of CAX8 ele-
ments selected were 9231, 20,334, 45,400, and 77,475. Each mesh
discretization scheme was used to simulate contact of steel ball on
steel plate and steel ball on M50-NiL plate. Peak contact pressures
observed are plotted in Fig. 5 as function of total number of

Table 3 Material gradation parameters, normal load and peak contact pressure observed for case-hardened and through-
hardened bearing steels for each FEA simulation test case

Material
Maximum contact

pressure

Test
case
no. Model type Ball

Raceway/
plate/

channel

Surface elastic
modulus of

raceway/plate/
channel (GPa)

Percent
gradation in

modulus from
surface to core: d%

Case-
depth,
d (mm)

Load,
Q (N)

SCH

(GPa)
STH

GPa

1 Ball–raceway Steel Steel 200 0.0 2 1279.1 1.663 1.663
2 Ball–raceway Steel M50NiL 228 11.4 2 1279.1 1.723 1.663
3 Ball–raceway Ceramic Steel 200 0.0 2 1279.1 1.910 1.910
4 Ball–raceway Ceramic M50NiL 228 11.4 2 1279.1 1.996 1.910
5 Ball–raceway Ceramic P-675 224 9.8 1 1279.1 1.984 1.910
6 Ball–raceway Steel P-675 224 9.8 1 1279.1 1.720 1.663
7 Ball–raceway Steel Steel 200 0.0 2 2800 2.172 2.172
8 Ball–raceway Steel M50NiL 228 11.4 2 2800 2.246 2.172
9 Ball–raceway Ceramic Steel 200 0.0 2 2800 2.484 2.484
10 Ball–raceway Ceramic M50NiL 228 11.4 2 2800 2.591 2.484
11 Ball-plate; (D¼ 12.7 mm) Steel Steel 200 0.0 2 100 1.785 1.785
12 Ball-plate; (D¼ 12.7 mm) Steel M50NiL 228 11.4 2 100 1.859 1.785
13 Ball-plate; (D¼ 12.7 mm) Ceramic Steel 200 0.0 2 100 2.048 2.048
14 Ball-plate; (D¼ 12.7 mm) Ceramic M50NiL 228 11.4 2 100 2.153 2.048
15 Ball-plate; (D¼ 12.7 mm) Ceramic P-675 224 9.8 1 100 2.134 2.048
16 Ball-plate; (D¼ 12.7 mm) Steel P-675 224 9.8 1 100 1.844 1.785
17 Ball-plate; (D¼ 12.7 mm) Steel Steel 200 0.0 1 300 2.582 2.582
18 Ball-plate; (D¼ 12.7 mm) Steel P-675 224 9.8 1 300 2.664 2.582
19 Ball-plate; (D¼ 12.7 mm) Ceramic Steel 200 0.0 1 300 2.963 2.963
20 Ball-plate; (D¼ 12.7 mm) Ceramic P-675 224 9.8 1 300 3.082 2.963
21 Ball-plate; (D¼ 12.7 mm) Ceramic M50NiL 228 11.4 2 300 3.111 2.963
22 Ball-plate; (D¼ 12.7 mm) Steel M50NiL 228 11.4 2 300 2.685 2.582
23 Ball-plate; (D¼ 25.4 mm) Steel Steel 200 0.0 2 300 1.627 1.627
24 Ball-plate; (D¼ 25.4 mm) Steel M50NiL 228 11.4 2 300 1.689 1.627
25 Ball-plate; (D¼ 25.4 mm) Ceramic Steel 200 0.0 2 300 1.867 1.867
26 Ball-plate; (D¼ 25.4 mm) Ceramic M50NiL 228 11.4 2 300 1.959 1.867
27 Ball-plate; (D¼ 25.4 mm) Ceramic P-675 224 9.8 1 300 1.939 1.867
28 Ball-plate; (D¼ 25.4 mm) Steel P-675 224 9.8 1 300 1.675 1.627
29 Ball-plate; (D¼ 25.4 mm) Steel Case-hardened

steel
240 16.7 1.5 300 1.708 1.627

30 Ball-plate; (D¼ 25.4 mm) Steel Case-hardened
steel

220 9.1 0.5 300 1.659 1.627

31 Ball-plate; (D¼ 25.4 mm) Ceramic Case-hardened
steel

230 8.7 0.5 300 1.951 1.867

32 Ball-channel Ceramic Steel 200 0.0 1.5 13,500 2.908 2.908
33 Ball-channel Ceramic Case-hardened

steel
230 13.04 1.5 13,500 2.998 2.908

Fig. 3 Contact pressure variation along semiminor axis for
ball-channel model (test cases: 32, 33)

Fig. 4 Mesh convergence study for 3D ball–raceway model of
contact inside 6309 DGBB
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elements. This plot confirms that peak contact pressures have con-
verged for axisymmetric models.

Effective Elastic Modulus of Case-Hardened

Bearing Steels

The composite elastic modulus of case layer decreases linearly
from surface to core material. In order to use Hertz equations for
such graded material, effective elastic modulus of the case layer
must be determined. This effective elastic modulus can also be
used in bearing fatigue life prediction equations, which are mainly
applicable for through-hardened steels/homogeneous materials.
To determine this modulus, an equivalent contact pressure
approach will be used with traditional Hertz equations. Using
Eq. (1), peak contact pressure can be expressed as

S ¼ 3Q

2pab
(7)

Substituting expressions for a and b (i.e., Eqs. (2) and (3)) in
Eq. (7), we get

S ¼ 3Qð Þ
1
3

2pa�b�
1

2
X

q

1� n2
I

� �
EI

þ 1� n2
II

� �
EII

 !2
4

3
5
�2
3

(8)

For case-carburized raceway, all the terms, except elastic modu-
lus, are constant in Eq. (8).

Let Eball ¼ EI be the elastic modulus of ball and ETH ¼ EII be
the elastic modulus of through-hardened steel raceway. STH repre-
sents the peak contact pressure for the raceway with uniform elas-
tic modulus of ETH. Let SCH represent peak contact pressure for
graded case-hardened raceway material. In each of the 33 test
cases, contact pressures for case-hardened and through-hardened
raceway under similar operating conditions were determined and
are included in Table 3. Let Eeffective represent the effective elastic
modulus of the case layer, which predicts peak contact pressure of
SCH from traditional Hertz Eq. (8). Therefore, using Eq. (8), for
identical operating conditions, these terms can be related as

STH

SCH

¼

1

Eball

þ 1

ETH

� �
1

Eball

þ 1

Eeffective

� �
2
6664

3
7775
�2
3

(9)

Equation (9) can be used to determine the effective elastic modu-
lus such that peak Hertz contact pressure for through-hardened
raceway material with elastic modulus of Eeffective is SCH. It should
be noted that Eq. (8) was determined after substituting expressions

for semimajor axis and semiminor axis in terms of material prop-
erties. Therefore, derived Eq. (9) implicitly accounts for influence
of contact dimensions in determining effective elastic modulus of
case-hardened steel. Thus, with Eeffective, the analytical Hertzian
solutions can be used for determining peak contact pressures, sub-
surface stress fields, and contact dimensions for case-hardened
steels such as M50-NiL and P-675. Using Eq. (9), effective elastic
modulus of case-carburized steels was determined for each of the
33 test cases. These values are presented in Table 4, which reveal
that effective elastic modulus of case-hardened steel is a function
of the design parameters of ball–raceway contact area. Especially,
geometries with the same material exhibit different effective elas-
tic modulus of case layer under different loads, as can be seen
from test cases 2 and 8. For larger dimensions of the ball–raceway
contact area, the effective elastic modulus of case-layer is signifi-
cantly lower than the surface elastic modulus. This is because
Hertzian stresses are distributed over larger subsurface volume;
hence, effect of gradations in elastic modulus is felt more at the
surface. From Table 4, it can also be seen that sharper gradients in
elastic modulus, i.e., smaller case depths d or higher gradation d,
results in significantly lower effective elastic modulus for case-
hardened steel than its value at the surface (test cases 29–33).
Therefore, these results indicate that effective elastic modulus of
case-hardened bearing steel is not only dependent on gradation
parameters but is also a function of operating conditions of the
bearing raceways. Next step is to determine reasonable surrogate
to predict effective elastic modulus of case-hardened steel depend-
ing on design parameters of interest, to enable the use of Hertz
equations for stress-fatigue life calculations.

Statistical Analysis

In this section, the aim is to determine mathematical relation-
ship between effective elastic modulus of case layer, and geome-
try, material, elastic modulus gradation and load parameters of
ball–raceway contact. Let f be the function, which represents rela-
tionship between these parameters, which can be represented as

Eeffective ¼ f Eball;Esurface; d; d;Q; nI; nII;
X

q;FðqÞ
� �

(10)

Surrogate/meta models were constructed to determine an
approximate functional form for f in order to establish relation-
ship between design parameters and effective elastic modulus of
carburized steel. FE simulation results are numerical approxima-
tions with some inherent errors commonly termed as noise.
Regression and kriging are two popular choices for surrogate
construction, but for noisy data points, regression surrogate is
better choice because it can predict approximate global trend in
the region that is far away from the current design space. Krig-
ing surrogates are generally preferred for noise free data without
any numerical errors. Therefore, regression techniques were
used to determine surrogate for f. Certain nondimensional
parameters common to Hertzian contacts are used in this analy-
sis [12]. E� is the effective elastic modulus of two bodies in
contact defined as

1

E�
¼ 1� n2

I

� �
Eball

þ 1� n2
II

� �
Esurface

(11)

The nondimensional model design parameter K is defined as

K ¼ 1

d
2Q

E�
X

q

 !1
3

(12)

Curvature difference of two bodies in contact is nondimensional
term; therefore, it is not considered in the definition of K.
Moreover, its affect was found to be captured by regression
coefficients.

Fig. 5 Mesh convergence study for axisymmetric ball-plate
model
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MATLAB software program was used for the regression analysis
to determine curve fit equation based on the 33 training data
points presented in Tables 3 and 4. Values of the nondimensional
model design parameter K were determined for each test case. It
was found that linear regression techniques do not provide satis-
factory surrogate based on these 33 training data points. However,
it was observed that nonlinear regression techniques provide a rea-
sonable surrogate to predict Eeffective as a function of Esurface, Ecore,
d, and K. Using the simplest nonlinear form, this surrogate can be
represented as

Eeffective ¼
c1Esurface þ c2Ecore

1þ c3dK
(13)

where c1; c2; and c3 are the constants determined using least-
squares fit methods. It should be noted that in Eq. (13), core
elastic modulus can be represented as Ecore¼ð1� dÞ Esurface. The
nonlinear regression predicts coefficient of determination, i.e.,
R2¼ 0.992 and R2

adj¼ 0.992 for this model. The estimates of
coefficients in Eq. (13) are c1¼ 0.95023, c2¼ 0.050402, and
c3¼ 0.49188. The P-values for the corresponding estimates are
close to 0, indicating that they are statistically significant. The
estimated root-mean-square error based on Eq. (13) and the 33
data points presented in Tables 3 and 4 is 1.01 GPa. Due to very
high coefficient of determination of close to 1, this seminumerical
solution can be considered as correction to Hertz analytical equa-
tions for linear elastically graded materials such as case-hardened
bearing steels. Next section represents validation of this method to
predict peak contact pressure for case-carburized bearing steels.

Validation Study

To validate this approach of equivalent peak contact pressures,
FEA simulations were performed again with effective elastic
modulus for raceway/plate/channel material for all the 33 sample
test cases presented in Table 3. The results obtained for this cross-
validation of peak contact pressures are also presented in Table 4,
which shows that this approach works very well for up to 10%
and 20% gradations in elastic modulus over 2 mm and 1 mm case
depth. For these cases, the errors in actual peak contact pressures
experienced by case-hardened steels and the ones obtained using
effective elastic modulus of raceway materials are less than 1%.
For axisymmetric ball-plate models, all the errors are less than
0.2%, even for up to 9.1% gradation in elastic modulus over
0.5 mm case depth and 16.67% gradation over 1.5 mm case depth
(as per test cases # 29–31). Comparing the results for models 2
and 8, we can see that for identical geometry and material
properties (i.e., ball–raceway contact with M50-NiL raceway), the
effective elastic modulus of case-hardened steel is lower at higher
loads. For 1279.1 N load, it is 223.1 GPa, whereas for 2800 N
load, it is 221.74 GPa. Therefore, account of gradations in
elastic modulus of carburized steels is particularly useful for
ball–raceway contact area with larger dimensions and at higher
loads. Results for test case #33 indicate that effective elastic mod-
ulus is significantly lower than surface elastic modulus for
extreme gradations in elastic modulus, i.e., up to 13.04% grada-
tion over 1.5 mm case depth. For ceramic ball-steel raceway con-
tact, the effective elastic modulus is just 215.66 GPa compared to
230–200 GPa variation in elastic modulus over 1.5 mm case layer
used in this model. Even for such an extreme design case,

Table 4 Validation of equivalent contact pressure approach and effective elastic modulus

Test
case
no.

Model
type

Surface elastic
modulus of

raceway/plate/
channel (GPa)

Percent gradation
in modulus

from surface to
core: d%

Case-depth,
d (mm)

Effective
elastic

modulus
(MPa)

Actual peak
pressure for

graded material,
S (GPa)

Peak pressure
using effective

elastic
modulus

% validation
error

1 Ball–raceway 200 0.0 2 200.00 1.663 1.663 0
2 Ball–raceway 228 11.4 2 223.10 1.723 1.722 0.06
3 Ball–raceway 200 0.0 2 200.00 1.910 1.91 0
4 Ball–raceway 228 11.4 2 223.19 1.996 1.994 0.10
5 Ball–raceway 224 9.8 1 219.80 1.984 1.991 0.35
6 Ball–raceway 224 9.8 1 221.87 1.720 1.73 0.58
7 Ball–raceway 200 0.0 2 200.00 2.172 2.172 0
8 Ball–raceway 228 11.4 2 221.74 2.246 2.244 0.09
9 Ball–raceway 200 0.0 2 200.00 2.484 2.484 0
10 Ball–raceway 228 11.4 2 222.13 2.591 2.588 0.12
11 Ball-plate; (D¼ 12.7 mm) 200 0.0 2 200.00 1.785 1.785 0
12 Ball-plate; (D¼ 12.7 mm) 228 11.4 2 226.04 1.859 1.856 0.161
13 Ball-plate; (D¼ 12.7 mm) 200 0.0 2 200.00 2.048 2.048 0
14 Ball-plate; (D¼ 12.7 mm) 228 11.4 2 226.61 2.153 2.153 0
15 Ball-plate; (D¼ 12.7 mm) 224 9.8 1 221.54 2.134 2.134 0
16 Ball-plate; (D¼ 12.7 mm) 224 9.8 1 221.05 1.844 1.843 0.054
17 Ball-plate; (D¼ 12.7 mm) 200 0.0 1 200.00 2.582 2.582 0
18 Ball-plate; (D¼ 12.7 mm) 224 9.8 1 220.17 2.664 2.664 0
19 Ball-plate; (D¼ 12.7 mm) 200 0.0 1 200.00 2.963 2.963 0
20 Ball-plate; (D¼ 12.7 mm) 224 9.8 1 220.56 3.082 3.081 0.032
21 Ball-plate; (D¼ 12.7 mm) 228 11.4 2 225.88 3.111 3.11 0.032
22 Ball-plate; (D¼ 12.7 mm) 228 11.4 2 225.73 2.685 2.685 0
23 Ball-plate; (D¼ 25.4 mm) 200 0.0 2 200.00 1.627 1.627 0
24 Ball-plate; (D¼ 25.4 mm) 228 11.4 2 224.49 1.689 1.687 0.118
25 Ball-plate; (D¼ 25.4 mm) 200 0.0 2 200.00 1.867 1.867 0
26 Ball-plate; (D¼ 25.4 mm) 228 11.4 2 225.51 1.959 1.959 0
27 Ball-plate; (D¼ 25.4 mm) 224 9.8 1 219.70 1.939 1.939 0
28 Ball-plate; (D¼ 25.4 mm) 224 9.8 1 218.66 1.675 1.673 0.119
29 Ball-plate; (D¼ 25.4 mm) 240 16.7 1.5 232.71 1.708 1.705 0.176
30 Ball-plate; (D¼ 25.4 mm) 220 9.1 0.5 212.22 1.659 1.659 0
31 Ball-plate; (D¼ 25.4 mm) 230 8.7 0.5 223.17 1.951 1.952 0.051
32 Ball-channel 200 0.0 1.5 200.00 2.908 2.908 0
33 Ball-channel 230 13.04 1.5 215.66 2.998 2.99 0.267
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validation error is still less than 0.3%. For this test case, contact
pressure variation along semiminor axis is also plotted in Fig. 3.
From this figure, it can be inferred that contact pressure profile for
case-carburized steel with graded material properties is nearly
same as that for through-hardened steel with elastic modulus of
Eeffective. Figure 6 shows plot of 33 data points where peak contact
pressures obtained using effective elastic modulus are plotted
against peak contact pressures obtained using elastically graded
raceway/plate/channel material. As expected, the trend line has an
approximate slope of 1 with coefficient of determination: R2 ¼ 1,
which confirms validity of this method.

Summary

Many modern bearing steels such as M50-NiL and P-675 are
case-hardened, to develop a high fracture toughness core with
lower carbon content and hardened surface region with higher
carbon content. Due to this gradation in carbide microstructure
from surface to core, there exists gradient in material properties
such as elastic modulus, hardness, and yield strength over the
case layer. Due to high stress-life exponents of 9, 12, or 12.3,
bearing fatigue life is very sensitive to variations of peak Hertz
pressure experienced by ball–raceway contact. Therefore, deter-
mination of accurate Hertz contact pressure experienced by
ball–raceway contact is necessary for accurate fatigue life pre-
diction and reliable bearings design. Hertz theory is mainly
applicable for homogeneous materials such as through-hardened
steels. It cannot be directly used for inhomogeneous materials
such as case-carburized bearing steels. In this study, comprehen-
sive finite element analyses were performed to study peak con-
tact pressure for elastically graded materials for different
variations of ball–raceway contact design parameters. Because
of the inverse elastic gradient, the peak contact pressure experi-
enced by case-hardened steel is different than that experienced
by through-hardened steel, under identical geometry and load-
ing. The concept of effective elastic modulus is introduced,
which may enable the use of Hertz equations for case-
carburized bearing steels. Results from a wide range of simula-
tions are used to determine an accurate regression equation for
an effective elastic modulus of case-hardened steel. Using this
surrogate, effective elastic modulus can be determined as
weighted sum of surface and core elastic moduli of case-
hardened bearing steel and geometrical and loading parameters.
Even though in present work, gradations in elastic modulus
were assumed to be from 230 to 200 GPa or 240 to 200 GPa,
this analysis can be adopted for any possible gradations in elas-
tic modulus over different possible case depths. This approach
can significantly simplify stress-life analysis for case-carburized
bearing steels, as complex, time-consuming, 3D finite element
simulations can be avoided.
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Nomenclature

a ¼ semimajor axis of elliptical contact area; i and o
denotes inner and outer raceway contact,
respectively

a� ¼ dimensionless semimajor axis of the contact
ellipse

b ¼ semiminor axis of elliptical contact area; i and o
denotes inner and outer raceway contact,
respectively

b� ¼ dimensionless semiminor axis of the contact
ellipse

cj ¼ nonlinear regression equation coefficients for j �
[1, 3]

d ¼ percent (%) drop in elastic modulus from Esurface

to Ecore

D ¼ ball diameter
di ¼ inner raceway diameter

dm ¼ bearing pitch diameter
do ¼ outer raceway diameter

Eball ¼ elastic modulus of ball material
Ecore ¼ elastic modulus of raceway/plate/channel material

at core
Eeffective ¼ effective elastic modulus of case hardened bear-

ing steel
Esurface ¼ surface elastic modulus of raceway/plate/channel

material
E0 ¼ coefficient term in simple power law and

exponential variation of elastic modulus
E� ¼ effective elastic modulus of two bodies in contact

EI and EII ¼ elastic modulus of body I and II
fi ¼ inner raceway groove radius to ball diameter ratio
fo ¼ outer raceway groove radius to ball diameter ratio

Fe ¼ equivalent dynamic load
Fr ¼ applied radial load

FðqÞ ¼ curvature difference of two bodies in contact
FðqÞi ¼ curvature difference at inner raceway contact
FðqÞo ¼ curvature difference at outer raceway contact

k ¼ proportionality constant for maximum shear
stress and peak contact pressure relation

K ¼ nondimensional model design parameter
k0 ¼ depth exponent in power-law variation in elastic

modulus
L ¼ bearing fatigue life, millions of revolutions or

millions of stress cycles
Li ¼ fatigue life of inner raceway, millions of

revolutions or millions of stress cycles
Lo ¼ fatigue life of outer raceway, millions of

revolutions or millions of stress cycles
L10 ¼ bearing fatigue life in millions of revolutions

corresponding to 90% survival probability
LF ¼ elastic modulus gradation life factor

n ¼ stress-life exponent
N ¼ rpm
p ¼ load-life exponent
Q ¼ normal load experienced by the contact

Qc ¼ basic dynamic capacity of raceways; i and o
denote inner and outer raceway contacts,
respectively

Fig. 6 Comparison of actual peak contact pressure for case-
hardened bearing steel and through-hardened bearing steel
with elastic modulus of Eeffective

Journal of Tribology MARCH 2018, Vol. 140 / 021401-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/140/2/021401/6407326/trib_140_02_021401.pdf by guest on 20 August 2022



Qe ¼ cubic mean equivalent radial load experienced by
raceway; i and o denote inner and outer raceway
contacts, respectively

Qmax ¼ maximum load experienced by ball-raceway
contact

ri ¼ inner raceway groove radius
ro ¼ outer raceway groove radius
R2 ¼ coefficient of determination

R2
adj ¼ adjusted coefficient of determination

s ¼ probability of survival
S ¼ maximum compressive stress/peak contact stress

SCH ¼ maximum contact pressure for graded/
case-hardened raceway

Smaxi ¼ maximum compressive hertz stress experienced
by inner raceway

Smaxo ¼ maximum compressive hertz stress experienced
by outer raceway

STH ¼ maximum contact pressure with uniform elastic
modulus/through-hardened raceway material

x ¼ x-coordinate
y ¼ y-coordinate
z ¼ subsurface depth below the center of contact area
Z ¼ number of rolling elements/balls in ball bearings
a ¼ bearing contact angle
d ¼ case depth

nI and nII ¼ Poisson’s ratio of body I and II
q1I and q2I ¼ principal curvatures of body I

q1II and q2II ¼ principal curvatures of body II
r ¼ Hertz pressure in the contact regionX
q ¼ curvature sum of two bodies in contactX
qi ¼ curvature sum at inner raceway contactX
qo ¼ curvature sum at outer raceway contact

smax ¼ maximum shear/Tresca stress
soct ¼ maximum octahedral shear stress
s0 ¼ orthogonal shear stress
/i ¼ inner contact osculation
/o ¼ outer contact osculation

Appendix

To demonstrate the influence of elastic modulus variations on
the bearing fatigue lives, a 209 single row deep groove ball bear-
ing example from Londhe [21] will be used. Detailed information
about its component geometries and material properties is pro-
vided in Table 5.

Using standard bearing macrogeometry relations, we can deter-
mine the osculation values for the inner and outer raceways as

fi ¼
ri

D
¼ 0:52; ui ¼

1

2fi
¼ 0:962

fo ¼
ro

D
¼ 0:52; uo ¼

1

2fo
¼ 0:962

For inner raceway-ball contact, curvature sum, and curvature
difference were calculated using principal radii of curvatures for
two bodies q1I ¼ q2I ¼ ð2=DÞ, q1II ¼ ð2=diÞ and q2II ¼ ð1=fiDÞ,
respectively,X

qi ¼ q1I þ q2I þ q1II þ q2II ¼ 0:2018 mm�1

F qð Þi ¼
q1I � q2Ið Þ þ q1II � q2IIð ÞX

q
¼ 0:93997

(A1)

Similarly for outer raceway-ball contact, curvature sum and cur-
vature difference can be calculated asX

qo ¼ 0:1378 mm�1

FðqÞo ¼ 0:91209

After determining the geometrical properties of the bearing, con-
tact stresses and deformations can be determined.

Case A: Elastic Modulus of Raceway Material 5 200 GPa. To
determine ball-raceway contact dimensions, MATLAB subroutines
were developed to solve for complete elliptical integrals of first
and second kind, and load distribution integrals [7]. Maximum
load experienced by ball-raceway contact was found to be Qmax

¼ 4527.88 N. At this load, inner and outer raceway contact
dimensions were determined to be

ai ¼ 2:591 mm; bi ¼ 0:2772 mm;

ao ¼ 2:5054 mm; bo ¼ 0:3424 mm

Using traditional Hertz solutions, peak compressive stress
experienced by inner and outer raceways were determined as
Smaxi¼ 3011.59 MPa and Smaxo¼ 2521.42 MPa. Basic dynamic
capacities for inner and outer raceways were determined using fol-
lowing equations [7]:

C ¼ 93:2
2f

2f � 1

� 	0:41
17cð Þ1:39

16cð Þ
1
3

c
cos a

� 	0:3

D1:8Z
�1
3 (A2)

Table 5 Bearing properties used for sensitivity study

209 Single row radial deep groove ball bearing

Inner raceway diameter, di 52.291 mm
Outer raceway diameter, do 77.706 mm
Ball diameter, D 12.7 mm
Number of balls, Z 9
Inner groove radius, ri 6.6 mm
Outer groove radius, ro 6.6 mm
Radial load applied, Fr 8900 N
rpm, N 1800
Contact angle, a 0 deg
Bearing pitch diameter, dm 65 mm

Quantities Cases A Cases B

Young’s modulus (EI), Poisson’s ratio (nI) of raceway EI ¼ 200 GPa, nI ¼ 0.3 EI ¼ 180 GPa, nI ¼ 0.3
Young’s modulus (EII), Poisson’s ratio (nII) of balls EII ¼ 200 GPa; nII ¼ 0.3
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where c ¼ ðD cos aÞ=dm. Using Eq. (A2), basic dynamic capacity
for inner and outer raceway contact was found to be
Qci¼ 7054.95 N and Qco¼ 13,958.14 N, respectively. Cubic mean
equivalent radial load [7] experienced by rotating inner and outer
raceways is Qei¼ 2489.76 N and Qeo¼ 2604.82 N, respectively.
In this analysis, Lundberg–Palmgren model is used to compare
fatigue lives obtained from elastic modulus variations

L ¼ Qc

Qe

� 	3

(A3)

Therefore, based on dynamic capacity and equivalent radial load,
we can calculate fatigue lives for both inner and outer raceways
using Eq. (A3) as

Li ¼
Qci

Qei

� 	3

¼ 22:75 million cycles

Lo ¼
Qco

Qeo

� 	3

¼ 153:87 million cycles

Combined life of bearing can be obtained from following equation
[7]:

L10 ¼ ðL�1:11
i þ L�1:11

o Þ�0:9 ¼ 20:485 million cycles ¼ 189:672 h

(A4)

Case B: Elastic Modulus of Raceway Material 5 180 GPa. Now,
let us assume that elastic modulus of the bearing raceway material
is decreased by 10% from 200 GPa to 180 GPa. Also, it will be
assumed that Poisson’s ratio of the material and elastic modulus
of the ball remains constant. Using MATLAB subroutine, maximum
load (Qmax) experienced by ball-raceway contact was determined
to be 4521.44 N. At this load, inner and outer contact dimensions
were found to be

ai ¼ 2:6364 mm; bi ¼ 0:2821 mm;

ao ¼ 2:5497 mm; bo ¼ 0:3485 mm

Peak compressive Hertz stress experienced by inner and outer
raceways were Smaxi¼ 2904.18 MPa and Smaxo¼ 2430.79 MPa,
respectively. Using Eq. (5) and stress life exponent of 9, we can
relate fatigue lives with peak hertz stresses experienced by the
raceways in cases A and B as

LB

LA
¼ SmaxA

SmaxB

� 	9

(A5)

Solving Eq. (A5), we get fatigue life of the inner and outer race-
ways of the bearing in case B as, Li ¼ 31.55 million cycles and
Lo¼ 213.92 million cycles, respectively. From Eq. (A4), com-
bined fatigue life of the bearing in case B is 28.404 million cycles.
Therefore, if we decrease elastic modulus of the raceway material
by 10% then, the combined bearing fatigue life is corrected by
38.66% from case A to case B. Hence, this analysis confirms that
bearing fatigue lives are highly sensitive to the variations in elas-
tic modulus of raceways and there is need to account for gradient
in elastic modulus for accurate prediction of fatigue lives for

case-hardened bearing steels. It should be noted that in this analy-
sis, elastic modulus of 180 GPa is used just as a representative
case. The actual variations in elastic modulus for case-carburized
steels are from 230 to 200 GPa over different possible case depths
as considered in FEA.
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