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The canonical transformation (CT) theory has been developed as a multireference electronic

structure method to compute high-level dynamic correlation on top of a large active space

reference treated with the ab initio density matrix renormalization group method. This article

describes a parallelized algorithm and implementation of the CT theory to handle large

computational demands of the CT calculation, which has the same scaling as the coupled cluster

singles and doubles theory. To stabilize the iterative solution of the CT method, a modification

to the CT amplitude equation is introduced with the inclusion of a level shift parameter.

The level-shifted condition has been found to effectively remove a type of intruder state that

arises in the linear equations of CT and to address the discontinuity problems in the potential

energy curves observed in the previous CT studies.

1 Introduction

Dynamic correlation is a key description in multireference

electronic structure calculations to deliver quantitative accuracy

to the active space description whose accuracy is at a qualitative

level with static correlation alone.1–71 The way of viewing

electron correlation in terms of static and dynamic correlations

is a well-established concept in the multireference theory, and the

active space model that treats these correlations on the separated

physical scales is one of the most successful approaches.

The active space is selected semi-manually so as to provide

a qualitatively good approximation to the exact solution

modeled by full configuration interaction (FCI). This leads

to the following expansion of the FCI wavefunction:

|CFCIi = |Cacti + |CDi, (1)

where |Cacti is the active space wavefunction that is generally

multiconfigurational and describes static correlation. Eqn (1)

is considered to be heavily weighted towards |Cacti, and the

rest of the expansion |CDi is a perturbative or small residual,

corresponding to dynamic correlation.

One of the well-established prescriptions to construct the

multiconfigurational wavefunction for |Cact i is the complete

active space (CAS) approach, developed by Roos et al.,72,73

equivalently by Ruedenberg et al.74 (with the different name

fully optimized reaction space). The CAS model has several

advantages in terms of clearness of specifying active space,

size-consistency, etc. Since |Cacti for CAS is traditionally

determined by CAS-CI calculation, namely FCI diagonalization

of the active space Hamiltonian, the obvious problem arises

from the exponential dependence of the CAS-CI algorithm on

the size of active space.

Recent works of our group or others have approached the

complexity of active space correlation by using the density

matrix renormalization group (DMRG) method75,76 as a direct

substitute for CASCI (or FCI).77–106 The static correlation is

thought of as a manifestation of the inter-atomic overlap of near-

degenerate valence atomic states, and thus can be efficiently,

adaptively described by the local multireference structure of the

DMRG wavefunction. Orbital optimization coupled with the

active space DMRG calculations in a self-consistent field

(SCF) manner was introduced in ref. 97–100 and leads to

the DMRG-SCF or DMRG-CASSCF methods. These models

have been successfully applied to the covalent excited states of

b-carotene99 and the spin states ofm-phenylenecarbene,105 where

unprecedent large-size active spaces, such as CAS(50e,50o),

correlating 50 electrons within 50 active orbitals, were accurately

handled with optimized orbitals. This extensibility is associated

with the DMRG ansatz that is built upon an entanglement of the

local interacting objects, as related to the theme of the present

Special Issue.

The development of efficient multireference methods to

calculate the dynamic correlation in conjunction with the

active space description remains a challenging topic. This type

of correlation, referred to as ‘‘multireference dynamic correlation,’’

should be treated with the low-order many-body theories of weak

correlation, such as perturbation theory (PT),1–31 configuration

interaction (CI),32–49 or coupled cluster (CC) theory.50–71
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In previous papers,107,108 we showed the combination of a

large-active-space DMRG treatment of static correlation and

an exponential based treatment of dynamical correlation

through the canonical transformation (CT) theory. The

developments of CT theory were reported in ref. 107–114.

It uses a canonical (i.e. unitary) exponential ansatz, is

size-consistent, and thus may be considered a kind of multi-

reference coupled-cluster (MRCC) theory. In the CT model,

an emphasis is placed on an effective Hamiltonian picture of

the dynamic correlation. The complexity of the exponential

operator of the dynamic correlation is transferred from the

wavefunction to the Hamiltonian in a way to avoid a

direct manipulation of the complex reference wavefunction

(e.g. DMRG wavefunction). The effective CT Hamiltonian is

constructed approximately as a two-body description using an

operator decomposition based on Mukherjee–Kutzelnigg

normal ordering and density matrix cumulant decomposi-

tion115–117 to achieve a higher-order, size-consistent treatment

of dynamic correlation in a computationally efficient way. For

the construction, the static correlation in the reference is taken

into account using only the one- and two-body reduced

density matrices (RDMs). This reduced reference treatment is

alternatively referred to as the internally-contracted (IC) multi-

reference algorithm, which was first introduced by Meyer,36

was practically used in IC-MRCI by Werner et al.45,46 (with

partial uncontraction) as well as CASPT2 by Roos et al.,1–3

and was recently investigated for the developments of

IC-MRCC.68–71 The CT theory exhibits accuracy on a

par with the best MRCI approaches, but shares the same

favorable sixth-power computational scaling as the single-

reference coupled cluster theory. The quantum chemical

applications of the joint CT and DMRG theory were shown

in the copper-oxo dimer isomerization problem,107 as well as

in the study of excited states in porphin.108 With the DMRG,

we handled large active spaces (e.g. CAS(28e, 32o) and

CAS(24e,24o) for Cu2O2 and porphin, respectively), and the

remaining orbital correlation was incorporated through CT

theory. It should be mentioned that two of the authors

recently reported a combination of the DMRG-CASSCF

and CASPT2 methods with the use of the three-body and

contracted four-body RDMs of active space.31

In this paper, we present a detailed description of the

parallelized implementation of the CT theory. The accurate

evaluation of dynamic correlation requires a large basis

representation, including polarization functions and in some

cases diffuse Rydberg-like functions. The CT algorithm has a

steep dependence of the computational demanding on the

size of basis sets: O(n2a N4) and O(N4) for operation counts

and memory storage, respectively, where na and N refer to

the number of active orbitals and all the correlated orbitals,

respectively. We attempt to overcome this computational

difficulty by the parallelization method that distributes

computational efforts and data across network-connected

computers.

In addition, we will show an extension of CT theory with

introduction of a level shift to the stationary condition for CT

solutions. The central underlying numerical difficulties in the CT

calculations are intruder states, which arise from the cumulant

and operator decomposition approximations (see ref. 109–113),

both making the CT equations too poorly conditioned.

Previously, we developed two approaches to circumvent

the intruder states: (1) the overlap truncation method,110

aggressively eliminating linear dependence from the first order

interacting basis through orthogonalization that involves

O(n9a) cost diagonalization, and (2) the use of strongly

contracted excitation operators,108 which was first introduced

by Malrieu et al. in n-electron valence perturbation (NEVPT2)

theory,27–30 and intelligently restricts the first order basis to a

single linear combination of active states for a given set of

external orbitals. In this study, we propose an alternative

approach which makes a radical change to the CT stationary

equation so as to regularize its singularity. When this

approach is used together with the orthogonalized or strongly

contracted basis operators, the aggressive truncation in the

construction of this basis can be avoided. This leads to a

remediation in the undesirable feature of the CT method that

yields nonsmooth (stepwise) potential curves.109,110,112,113

This paper proceeds as follows. In Section 2, a brief review

of the CT method is followed by the introduction of the level-

shifted stationary condition. Section 3 shows the details of the

parallel algorithm for the CT theory along with its tensor

contraction expressions. In Section 4, illustrative calculations

are shown. We finish then with our summary.

2 Algorithm

2.1 Canonical transformation

Our canonical transformation (CT) theory107–114 claims that

dynamic correlation is described by a similarity transformation

of bare Hamiltonian Ĥ, leading to effective Hamiltonian �̂H, as

given by

�̂H ¼ eÂ
y

ĤeÂ; ð2Þ

where the many-body operator eÂ is set to be unitary with the

excitation amplitude Â = �Âw. In second quantization with

given orbital basis {fp(r)}, Ĥ is expressed as,

Ĥ = h0 + ĥ1 + ĥ2, (3a)

ĥ1 ¼ tp1q1 Ê
p1
q1

; ð3bÞ

ĥ2 ¼
1
2
gp1p2q1q2

Ê
p1p2
q1q2

; ð3cÞ

where h0 is a constant, and tp1q1 and gp1p2q1q2
are one- and two-

electron elements (or integrals), respectively, with all indices

summed over. We work in the spin-free form based on the so-

called group generators, as given by

Ê
p1
q1

¼
X

s¼a;b

âyp1sâq1s; ð4aÞ

Ê
p1p2
q1q2

¼
X

st¼a;b

âyp1sâ
y
p2t

âq2tâq1s; ð4bÞ

Ê
p1p2p3
q1q2q3

¼
X

stu¼a;b

âyp1sâ
y
p2t

âyp3uâq3uâq2tâq1s; ð4cÞ

for the one-, two-, and three-body operators, respectively.

Related to these, the reduced density matrices (RDMs) are
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introduced as follows,

Dp1
q1

¼ hC0jÊ
p1
q1
jC0i; ð5aÞ

Dp1p2
q1q2

¼ hC0jÊ
p1p2
q1q2

jC0i; ð5bÞ

Dp1p2p3
q1q2q3

¼ hC0jÊ
p1p2p3
q1q2q3

jC0i; ð5cÞ

for the one-, two-, and three-body RDMs, respectively.

Ahead of the transformation eqn (2), the so-called ‘‘active-

space’’ description of electron correlation needs be determined

as a starting reference electronic state, on top of which

dynamic correlation is folded in from the external space when

�̂H in eqn (2) is constructed. We normally employ the CASSCF

wavefunction for it, although any type of ansatz can be

adopted as long as its reduced density matrices (RDMs) are

available. Like other active-space methods, it requires one to

model the reference space by dividing an entire set of orbitals

(generally indexed by pi and qi) into core (doubly-occupied),

active (fractionally-occupied), and virtual (unoccupied) orbitals,

which are hereafter referred to by the orbital indices ci, oi and vi,

respectively. The CASSCFmethod expands the wavefunction |C0i

into the reference configuration space, covering a full correla-

tion of chemically-relevant active electrons within optimized

active orbitals, so as to satisfy the following eigen-equation,

Ĥact|C0i = ECASSCF|C0i, (6)

through exact diagonalization of active-space Hamiltonian Ĥact =

hact0 + ĥact1 + ĥact2 where hact0 ¼ h0 þ 2tc1c1 þ ð2gc1c2c1c2
� gc1c2c2c1

Þ,

ĥ
act

1 ¼ �to1o2 Ê
o1
o2
, and ĥ

act

1 ¼ 1
2
go1o3o2o4

Ê
o1o3
o2o4

with �to1o2 ¼ to1o2 þ ð2go1c3o2c3
�

go1c3c3o2
Þ. Since |C0 i exists only in the active space, ECASSCF is given

as an expectation value of not only Ĥact but also Ĥ,

hC0|Ĥ|C0i = ECASSCF (=hC0|Ĥ
act|C0i), (7)

accounting for static correlation energy. In addition, when this

reference |C0i acts on �̂H [eqn (2)], it yields the CT energy

ECASSCF–CT, as follows,

hC0j �̂HjC0i ¼ ECASSCF�CT; ð8Þ

which includes the multireference dynamic correlation energy.

2.2 Amplitude

The singles and doubles CT, termed CT-SD, is our standard

model, in which the amplitude operator Â is written as a sum

of one- and two-body operators,

Â = Â1 + Â2, (9a)

Â1 ¼ Ae1
a1
êe1a1

Â2 ¼
1
2
Ae1e2

a1a2
êe1e2a1a2

8

<

:

; ð9bÞ

where anti-Hermitian excitation operators are defined as

êe1a1 ¼ ðÊ
e1
a1
� Ê

a1
e1
Þ and êe1e2a1a2

¼ ðÊ
e1e2
a1a2

� Ê
a1a2
e1e2

Þ, and the indices

ai and ei run over the joint orbital spaces defined by

{ai} ={ci}" {oi}, (10a)

{ei} ={oi}" {vi}, (10b)

respectively. Excitation components of Â [eqn (9)] are then

classified into eleven types, as summarized in Table 1, so that

we rewrite it as

Â ¼ Ao1
c1
êo1c1 þ Ao1o2

c1o3
êo1o2c1o3

þ
1

2
Ao1o2

c1c2
êo1o2c1c2

þ Av1
c1
êv1c1 þ

1

2
Av1v2

c1c2
êv1v2c1c2

þ Av1
o1
êv1o1 þ Ao3v1

o1o2
êo3v1o1o2

þ
1

2
Av1v2

o1o2
êv1v2o1o2

þ Ao1v2
c1o2

êo1v2c1o2
þ Av1v2

c1o2
êv1v2c1o2

þ Ao1v2
c1c2

êo1v2c1c2
;

ð11Þ

in which internal elements Ao2
o1

and Ao3o4
o1o2

are not included.

Here we again rewrite eqn (9) (or eqn (11)) in a generalized

form as Â =
P

mAn
êm, and then a matrix form of overlap

between the operator basis {êm} is given by Smn =

hêm|êni(=hC0|ê
w
mên7C0i). It is readily shown that the matrix S

is not diagonal in multireference setting, and thus the singles

and doubles basis that represent Â are generally non-

orthogonal, unlike single-reference formalism. For the sake

of numerical stabilization, we alternatively expand Â in

orthogonalized basis operators {êorthi },110 which are given as

linear transformation of êm,

êorthi ¼
X

m

Uimêm; ð12Þ

where Uim is the eigenvector (unitary) matrix with which to

diagonalize S, i.e.
P

mnUimUjnSmn = dijsi. As seen in Table 2

that shows the elements of S, it is block-diagonal, so that

the largest dimension of the block matrices each to be

diagonalized is o3, where o is the number of active orbitals.

To remove linear dependencies of the basis, the eigen-components

with si o t (threshold) are truncated. Then, Â is expanded into

orthogonal êorthi ,

Â ¼
X

i

Aorth
i êorthi ð13Þ

which is equated to eqn (9) via Aorth
i = UimAm.

Table 1 All types of excitation components for the CTSD amplitude
Â [eqn (11)]

Type

Core-active
co êo1c1 ¼ Ê

o1
c1
� Ê

c1
o1

cooo êo1o2c1o3
¼ Ê

o1o2
c1o3

� Ê
c1o3
o1o2

ccoo êo1o2c1c2
¼ Ê

o1o2
c1c2

� Ê
c1c2
o1o2

Core-virtual
cv êv2c1 ¼ Ê

v1
c1
� Ê

c1
v1

ccvv êv1v2c1c2
¼ Ê

v1v2
c1c2

� Ê
c1c2
v1v2

Active-virtual
ov êv1o1 ¼ Ê

v1
o1
� Ê

o1
v1

ooov êo3v2o1o2
¼ Ê

o3v2
o1o2

� Ê
o1o2
o3v2

oovv êv1v2o1o2
¼ Ê

v1v2
o1o2

� Ê
o1o2
v1v2

Core-active-virtual
ccov êo1v2c1c2

¼ Ê
o1v2
c1c2

� Ê
c1c2
o1v2

coov êo1v2c1o2
¼ Ê

o1v2
c1o2

� Ê
c1o2
o1v2

covv êv1v2c1o2
¼ Ê

v1v2
c1o2

� Ê
c1o2
v1v2
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Particular care is taken to the orthogonalization between

one-body and semi-internal two-body operators, such as êv1o1
and êo3v2o1o2

, respectively, which may have nonzero overlap. In

some approximation made in CT as mentioned later, one-

body orbital rotation arising from semi-internal êo3v2o1o2

cannot be evaluated exactly, whereas it is done exactly

with êv1o1 , explicit one-body operator. Therefore, we project

out the pure one-body components from semi-internal two-

body operators, which are thus modified to the following

intermediates,

ê
0o3v2
o1o2

¼ êo3v2o1o2
� êv4o4 ĥe

v4
o4
ĵev5o5i

�1hêv5o5 ĵe
o3v2
o1o2

i

¼ êo3v2o1o2
� êv2o4 ½D

�1�o4o5D
o3o5
o1o2

:

ð14Þ

They fulfill hê
0o3v2
o1o2

ĵev4o4i ¼ 0, and are orthogonalized by

diagonalizing their overlap matrix, leading to a proper style

of orthogonal basis.

In the earlier work, we proposed another choice for

stabilized basis operators, employing the strong contrac-

tion (SC) scheme,108 which was first introduced by Malrieu

et al. in the context of NEVPT2 theory27–30 that addresses

instability problems associated with intruder states in

CASPT2. In the basis of the SC scheme, the excitation

operators êm are strongly contracted in such a way that SC

operators consist of a drastic simplification of the first order

interaction basis in which each external orbital (for singles) or

orbital pair (for doubles) has only one excitation operator that

connects it to the active space. An immediate consequence of

this formulation is that SC operators are mutually orthogonal.

Importantly, they avoid completely the difficulties in building

and diagonalizing overlap matrices and therefore require

neither o9 cost diagonalization step nor the reference func-

tion’s three-body RDM [eqn (5c)]. Each SC operator is formed

as the sum of all contracted operators of its type (e.g. double

excitations from active space into virtual orbitals v1 and v2)

weighted by their coefficients in electronic Hamiltonian Ĥ. For

the example of double excitations between active and virtual

orbitals, the operator corresponding to the pair of virtual

orbitals (v1, v2) is

êSCv1v2 ¼
X

a1a2

gv1v2a1a2
êv1v2a1a2

: ð15Þ

The details of the use of strongly contracted excitation opera-

tors in CT are described in ref. 108. In this paper, unless

otherwise mentioned, we use overlap orthogonalization op-

erators êorthi [eqn (12)] for the amplitude space.

2.3 Operator decomposition

In the CT-SD model, the effective Hamiltonian [eqn (2)] is

approximately evaluated in the Baker–Campbell–Hausdorff

(BCH) expansion,

�̂H ¼ Ĥ þ ½Ĥ; Â� þ
1

2!
½½Ĥ; Â�; Â� þ . . .

�Ĥ þ ½Ĥ; Â�1;2 þ
1

2!
½½Ĥ; Â�1;2; Â�1;2 þ . . . ;

ð16Þ

where the notation [Ĥ,Â]1,2 indicates that we replace three-

body operators resulting from the commutator [Ĥ,Â] by

decompositions into one- and two-body interactions in a

way of effectively averaging higher-particle-rank correla-

tion. This approximation, which is recursively applied to

the nesting of commutators, allows the infinite BCH expan-

sion of �̂H to be closed and represented with a linear com-

bination of only one- and two-body operators, and its

exponential complexity to be reduced to polynomial computa-

tional cost.

The operator decomposition mentioned above is based on

Mukherjee and Kutzelnigg’s formalism of extended normal

ordering (ENO).115–117 The spin-free form of the three-body

operator, Ê
p1p2p3
q1q2q3

[eqn (4c)], is expressed using the corresponding

Table 2 Expressions of the overlap matrices between the excitation
operator basis hêm|êni

Type Overlap

co-co ĥeo1c1 ĵe
o0
1

c0
1

i ¼ d
c1
c0
1

ð2d
o0
1
o1 �D

o0
1
o1 Þ

co-cooo ĥeo1c1 ĵe
o0
1
o0
2

c0
1
o0
3

i ¼ d
c1
c0
1

ð2d
o0
1
o1D

o0
2

o0
3

� d
o0
2
o1D

o0
1

o0
3

�D
o0
1
o0
2

o1o
0
3

Þ

cooo-cooo ĥeo1o2c1o3
ĵe
o0
1
o0
2

c0
1
o0
3

i ¼ d
c1
c0
1

fð2d
o0
1
o1d

o0
2
o2 � d

o0
1
o2d

o0
2
o1 ÞD

o3
o0
3

�D
o0
1
o3o

0
2

o1o2o
0
3

þ 2d
o0
1
o1D

o3o
0
2

o2o
0
3

� d
o0
2
o2D

o0
1
o3

o1o
0
3

� d
o0
2
o1D

o0
1
o3

o0
3
o2
� d

o0
1
o2D

o3o
0
2

o1o
0
3

g

ccoo-ccoo ĥeo1o2c1c2
ĵe
o0
1
o0
2

c0
1
c0
2

i ¼ d
c1
c0
1

d
c2
c0
2

f4d
o0
1
o1d

o0
2
o2 � 2d

o0
1
o2d

o0
2
o1 þD

o0
1
o0
2

o1o2

� 2ðd
o0
1
o1D

o0
2
o2 þ d

o0
2
o2D

o0
1
o1 Þ þ ðd

o0
1
o2D

o0
2
o1 þ d

o0
2
o1D

o0
1
o2 Þg

þ ½c01 , c02; o
0
1 , o02�

cv-cv ĥev1c1 ĵe
v0
1

c0
1

i ¼ 2d
c1
c0
1

d
v0
1
v1

cv-coov ĥev1c1 ĵe
o0
1
v0
2

c0
1
o0
1

i ¼ �d
c1
c0
1

d
v0
2
v1D

o0
1

o0
2

cv-covo ĥev1c1 ĵe
v0
2
o0
1

c0
1
o0
2

i ¼ 2d
c1
c0
1

d
v0
2
v1D

o0
1

o0
2

coov-coov ĥeo1v2c1o2
ĵe
o0
1
v0
2

c0
1
o0
2

i ¼ d
c1
c0
1

d
v2
v0
2

ð2d
o0
1
o1D

o2
o0
2

�D
o0
1
o2

o1o
0
2

Þ

coov-covo ĥeo1v2c1o2
ĵe
v0
2
o0
1

c0
1
o0
2

i ¼ �d
c1
c0
1

d
v2
v0
2

ðd
o0
1
o1D

o2
o0
2

þD
o2o

0
1

o1o
0
2

Þ

covo-coov ĥev2o1c1o2
ĵe
o0
1
v0
2

c0
1
o0
2

i ¼ �d
c1
c0
1

d
v2
v0
2

ðd
o0
1
o1D

o2
o0
2

þD
o2o

0
1

o1o
0
2

Þ

covo-covo ĥev2o1c1o2
ĵe
v0
2
o0
1

c0
1
o0
2

i ¼ 2d
c1
c0
1

d
v2
v0
2

ðd
o0
1
o1D

o2
o0
2

þD
o2o

0
1

o1o
0
2

Þ

ccov-ccov ĥeo1v2c1c2
ĵe
o0
1
v0
2

c0
1
c0
2

i ¼ d
v2
v0
2

D
o0
1
o1 ð2d

c1
c0
1

d
c2
c0
2

� d
c1
c0
2

d
c2
c0
1

Þ

ccvv-ccvv ĥev1v2c1c2
ĵe
v0
1
v0
2

c0
1
c0
2

i ¼ d
v0
1
v1d

v0
2
v2 ð2d

c1
c0
1

d
c2
c0
2

� d
c1
c0
2

d
c2
c0
1

Þ

þ ½c01 , c02; v
0
1 , v02�

covv-covv ĥev1v2c1o2
ĵe
v0
1
v0
2

c0
1
o0
2

i ¼ d
c1
c0
1

D
o2
o0
2

ð2d
v0
1
v1d

v0
2
v2 � d

v0
1
v2d

v0
2
v1 Þ

ov-ov ĥev1o1 ĵe
v0
1

o0
1

i ¼ d
v0
1
v1D

o1
o0
1

ov-ooov ĥev1o1 ĵe
o0
3
v0
2

o0
1
o0
2

i ¼ d
v0
1
v1D

o0
3
o1

o0
1
o0
2

ooov-ooov ĥeo3v2o1o2
ĵe
o0
3
v0
2

o0
1
o0
2

i ¼ d
v0
1
v1 ðd

o0
3
o3D

o1o2
o0
1
o0
2

�D
o1o2o

0
3

o3o
0
2
o0
1

Þ

oovv-oovv ĥev1v2o1o2
ĵe
v0
1
v0
2

o0
1
o0
2

i ¼ d
v0
1
v1d

v0
2
v2D

o1o2
o0
1
o0
2

þ ½o01 , o02; v
0
1 , v02�
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ENO, ~̂E
p1p2p3

q1q2q3
, as follows,

Ê
p1p2p3
q1q2q3

¼ ~̂E
p1p2p3

q1q2q3
þ cp1p2p3q1q2q3

þ fDp1
q1
D
� p2p3

q2q3
� 1

2
Dp1

q2
D
� p2p3

q1q3
� 1

2
Dp1

q3
D
� p2p3

q2q1

þDp2
q2
D
� p3p1

q3q1
� 1

2
Dp2

q3
D
� p3p1

q2q1
� 1

2
Dp2

q1
D
� p3p1

q3q2

þDp3
q3
D
� p1p2

q1q2
� 1

2
Dp3

q1
D
� p1p2

q3q2
� 1

2
Dp3

q2
D
� p1p2

q1q3
g

� fÊ
p1
q1
�D
p2p3
q2q3

� 1
2
Ê

p1
q2
�D
p2p3
q1q3

� 1
2
Ê

p1
q3
�D
p2p3
q2q1

þ Ê
p2
q2
�D
p3p1
q3q1

� 1
2
Ê

p2
q3
�D
p3p1
q2q1

� 1
2
Ê

p2
q1
�D
p3p1
q3q2

þ Ê
p3
q3
�D
p1p2
q1q2

� 1
2
Ê

p3
q1
�D
p1p2
q3q2

� 1
2
Ê

p3
q2
�D
p1p2
q1q3

g

þ fDp1
q1
Ê

p2p3
q2q3

� 1
2
Dp1

q2
Ê

p2p3
q1q3

� 1
2
Dp1

q3
Ê

p2p3
q2q1

þDp2
q2
Ê

p3p1
q3q1

� 1
2
Dp2

q3
Ê

p3p1
q2q1

� 1
2
Dp2

q1
Ê

p3p1
q3q2

þDp3
q3
Ê

p1p2
q1q2

� 1
2
Dp3

q1
Ê

p1p2
q3q2

� 1
2
Dp3

q2
Ê

p1p2
q1q3

g

ð17Þ

with

D
� p1p2

q1q2
¼ �Dp1p2

q1q2
þ 4

3
ðDp1

q1
Dp2

q2
� 1

2
Dp1

q2
Dp2

q1
Þ; ð18Þ

and

�D
p1p2
q1q2

¼ �Dp1p2
q1q2

þ 2ðDp1
q1
Dp2

q2
� 1

2
Dp1

q2
Dp2

q1
Þ; ð19Þ

where cp1p2p3q1q2q3
is the three-body cumulant, which physically

represents connected three-body fluctuation from average one-

and two-particle interactions. Note that ~̂E
p1p2p3

q1q2q3

D E

¼ 0 by

definition.

Following the cumulant decomposition of RDMs, we can

write the three-body RDM element Dp1p2p3
q1q2q3

[eqn (5c)] in terms

of products of lower-body RDMs along with the three-body

cumulant cp1p2p3q1q2q3
as,

Dp1p2p3
q1q2q3

¼ cp1p2p3q1q2q3

þDp1
q1
�Dp2p3
q2q3

� 1
2
Dp1

q2
�Dp2p3
q1q3

� 1
2
Dp1

q3
�Dp2p3
q2q1

þDp2
q2
�Dp3p1
q3q1

� 1
2
Dp2

q3
�Dp3p1
q2q1

� 1
2
Dp2

q1
�Dp3p1
q3q2

þDp3
q3
�Dp1p2
q1q2

� 1
2
Dp3

q1
�Dp1p2
q3q2

� 1
2
Dp3

q2
�Dp1p2
q1q3

;

ð20Þ

where

�Dp1p2
q1q2

¼ Dp1p2
q1q2

� 2
3
ðDp1

q1
Dp2

q2
� 1

2
Dp1

q2
Dp2

q1
Þ: ð21Þ

The lower-body decomposition ([. . .]1,2), which is the central

approximations in the CT theory, is achieved by neglecting the

three-body ENO and cumulant, as follows,

~̂E
p1p2p3

q1q2q3
) 0; ð22aÞ

cp1p2p3q1q2q3
) 0; ð22bÞ

for eqn (17) and eqn (20). According to the above formulae for

our decomposition, it can be readily shown that the approx-

imate commutator [Ĥ,Â]1,2 takes the following general form:

[Ĥ,Â]1,2 = C0 + Ĉ1 + Ĉ2, (23a)

Ĉ1 ¼ C1
p1
q1
Ê

p1
q1

; ð23bÞ

Ĉ2 ¼
1
2
C2

p1p2
q1q2

Ê
p1p2
q1q2

; ð23cÞ

and it is, by design, of exactly the same form as the Hamiltonian

Ĥ, given by eqn (3).

2.4 Shifted amplitude equation

The amplitudes of Â (e.g. eqn (13)) are determined by solving

the following non-linear projected equations, using the iterative

Newton–Raphson (NR) method with the typical initial guess

Â = 0,

Ri ¼ h½ �̂H; êorthi �1;2i ¼ 0; ð24Þ

which are regarded as a stationary condition,109 analogous to its

counterparts in coupled-cluster theory. These take the form of

the generalized Brillouin conditions.118

In this study, as a robust way of avoiding nontrivial

convergence issues that arise when solving them, let us introduce

an alternative stationary condition, which is formulated as the

shifted amplitude equations,

R0
i ¼ Ri þ lAorth

i ¼ 0; ð25Þ

where l is a level-shifting parameter. In each NR iteration, the

following first-order linear equations are solved to update Â

with the NR step DÂ (i.e. Â’ Â + DÂ),
X

j

J 0
ijDA

orth
j ¼ �R0

i; ð26Þ

where J 0
ij is the shifted CT Jacobian matrix, defined by

J 0
ij ¼ Jij þ ldij; ð27Þ

Jij ¼ h½½ �̂H; êorthj �1;2; ê
orth
i �1;2i; ð28Þ

with Kronecker delta dij.

The diagonal shifting l terms significantly remedy the

condition of the Jacobian matrix, which can have spuriously

small eigenvalues of a non-physical nature associated with the

operator decomposition, while a constant l is chosen ad hoc. It

is closely related to the level shift often employed in multi-

reference perturbation theory calculations to regularize singu-

larity associated with intruder states.119–124

Although the level shift l stabilizes the stationary condition,

the solution (amplitudes and energy) has to depend on l,

which is of arbitrary choice. Let us consider how we can

recover the unshifted solution from the shifted results. As DĈ

is defined as the correction to the shifted amplitudes Â, the

unshifted solution satisfies the following stationary equation

(as originally given in eqn (24))

h[e�(Â+DĈ)Ĥe(Â+DĈ),êorthi ]1,2i = 0, (29)

Using eqn (25), we arrive at the following equation,

lAi ¼
X

j

GijDCj þOðDC2Þ; ð30Þ

where Gij = h[[H,êj] + 1
2
[[H,A],êj] + 1

2
[[H,êj],A] + � � �,êi]i.

The approximate first-order correction is thus formulated as
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DC E l(G + l)�1 A + l2(G + l)�2 A + � � �, which exhibits

a similar structure to the formulas developed in earlier

multireference perturbation studies.119–124 In contrast to

multireference perturbation methods, the evaluation of our

formula adapted to CT, however, does not seem to be trivial.

3 Parallelized implementation

The computational tasks executed in CT calculations can be

broken down into roughly two types of repeatedly-called

subroutines, namely, those to evaluate (1) commutator

[Ĥ,Â]1,2 and (2) residual elements h[Ĥ,êi]1,2i. They are the

most computationally intensive and thus pose a challenge to

implementation. We approach this using a parallel algorithm

which distributes the floating point operations and some of the

storage across multiple computer processors.

Our central parallelization strategy designed for the distributed

architecture, which is a prevailing parallel computing platform, is

to distribute the storage of four-index arrays of:

1. General two-body elements (called ‘H2 tensor’), e.g. gp1p2q1q2

and C2
p1p2
q1q2

for Hamiltonian Ĥ [eqn (3)] and the commutator

[Ĥ,Â]1,2 [eqn (23)], respectively, and

2. Two-body amplitude elements (called ‘A2 tensor’), e.g.

Ae1e2
a1a2

and Re1e2
a1a2

for the amplitude Â [eqn (9)] and the residual

elements h½Ĥ; êe1e2a1a2
�1;2i [eqn (24)], respectively.

This strategy is motivated by the n4 and n2actn
2
ext sizes for the

H2 and A2 tensors, respectively, where n is the number of total

orbitals, indexed by pi and qi, and nact is the number of core

and active orbitals, indexed by ai [eqn (10a)], while next is the

number of active and virtual orbitals, indexed by ei [eqn (10b)].

They rapidly become too large to store in the fast memory of a

single processor.

For the H2 tensors ðe:g: gp1p2q1q2
Þ, we have implemented such

storage distribution in a way of splitting each tensor by its p1
index, so that each processor stores the tensor elements for a

limited set of values of p1 and all values of p2, q1, and q2. To

further reduce memory requirements, we store the chopped tensor

on the hard disk of each assigned owner processor, loading its

elements into fast memory one n3 sized block at a time. A block is

defined as the set of all two-body tensor elements associated with

a specific value of p1, say, it can correspond to the FORTRAN array

slicing g (1 :n, 1 :n, 1 :n,p1). As shown later, this data-parallel

model for the H2 tensor allows us to evenly distribute CT theory’s

floating point operations across our processors.

The A2 tensors ðe:g: A e1e2
a1a2

Þ are also physically distributed

across processors by splitting each tensor by its e2 index

running over the sub-range. This parallelism has been

implemented by using the Global Arrays (GA) toolkit125 that

provides a shared memory style programming environment in

the context of distributed array data structures. It facilitates

coding of the distributed data algorithm in which each process

asynchronously accesses remote data blocks of the A2 tensors

via get, put, and accumulate operations with ‘‘one-sided’’-type

communications underneath. With this toolkit, the required

size of fast memory to store a single A2 tensor results in

approximately (n2actn
2
ext/Nproc) words per processor. Our code

is further able to exploit molecular point group symmetry to

reduce the memory usage of the chopped A2 tensor, in which

the elements are zero and thus unallocated in memory unless

the product of the irreducible representations of their a1, a2, e1,

and e2 indices is totally symmetric.

The remaining tensors ðh0; C0; tp1q1 ; C1
p1
q1

; Do1
o2

; Do1o2
o3o4

;

Ae1
a1

; Re1
a1
Þ are stored redundantly in the fast memory of each

processor as replicated data. Table 3 shows a summary regarding

the storage allocations for these tensors.

In what follows, we describe the details of our implementation

to evaluate in parallel the commutator [Ĥ,Â]1,2 [eqn (23)] and

residual elements h[Ĥ,êi]1,2i [eqn (24)], along with the explicit

tensor contraction formulae.

3.1 Commutators

Let us write the approximate commutator eqn (23) by separating

Ĥ and Â into their one- and two-body components as,

[Ĥ,Â]1,2 = [ĥ1,Â1]1,2 + [ĥ1,Â2]1,2 + [ĥ2,Â1]1,2 + [ĥ2,Â2]1,2.

(31)

The coefficients C0, C1
p1
q1
, and C2

p1p2
q1q2

, introduced in eqn (23),

are each decomposed into the contributions from these four

components as follows,

C0 = c0, (32a)

C1
p1
q1

¼ c1
p1
q1
þ c01

p1
q1

; ð32bÞ

C2
p1p2
q1q2

¼ c2
p1p2
q1q2

þ c02
p1p2
q1q2

;þc002
p1p2
q1q2

: ð32cÞ

The expressions to evaluate the above decomposed elements,

c0, c1, c
0
1, c2, c

0
2, and c002 , are shown below.

We begin by formulating the simplest commutator

[ĥ1,Â1]1,2, which is expressed as,

½ĥ1; Â1�1;2 ¼ tp1q1A
e1
a1
½Ê

p1
q1

; Ê
e1
a1
� Ê

a1
e1
�1;2 ¼ c1

p1
q1
Ê

p1
q1

; ð33Þ

where the matrix c1
p1
q1

is given by the symmetrization of the

matrix �c1
p1
q1
,

c1
p1
q1

¼ 1
2
ð�c1

p1
q1
þ �c1

q1
p1
Þ; ð34Þ

Table 3 Distribution and storage of Hamiltonian Ĥ, commutator
[Ĥ,Â]1,2, amplitudes Â, residuals R̂, and reduced density matrix
elements

Variables Memory size per processor

Ĥ [eqn (3)] and
[Ĥ,Â]1,2 [eqn (23)]
h0, C0 Replicated 1
tp1q1 ; C1

p1
q1

Replicated n2

gp1p2q1q2
; C2

p1p2
q1q2

Distributed n3

(for accessing a block
of n4/Nproc elements
on disk)

Â [eqn (9)] and
Ĥ,êi]1,2i [eqn (24)]
Ae1

a1
; Re1

a1
Replicated nactnext

Ae1e2
a1a2

; Re1e2
a1a2

Distributeda n2act n
2
ext/Nproc

Density matrices
[eqn (5a) and (5b)]
Do1

o2
Replicated n2occ

Do1o2
o3o4

Replicated n4occ

a Data-parallel allocation using the global arrays routine. The memory

size is further reduced where the molecular symmetry is available.
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and the matrix elements �c1
p1
q1
are determined from the following

matrix products,

�c1
p1
q1

¼ 2ðtp1e1A
e1
a1
Þdq1a1 � 2ðtp1a1A

e1
a1
Þdq1e1 : ð35Þ

Next, the commutator [ĥ1,Â2]1,2 is written as

½ĥ1; Â2�1;2 ¼
1
2
tp1q1A

e1e2
a1a2

½Ê
p1
q1

; Ê
e1e2
a1a2

� Ê
a1a2
e1e2

�1;2 ¼
1
2
c2

p1p2
q1q2

Ê
p1p2
q1q2

;

ð36Þ

where the symmetrization for the four-index array c2
p1p2
q1q2

is

carried out as follows,

c2
p1p2
q1q2

¼ 1
4
ð�c2

p1p2
q1q2

þ �c2
p2p1
q2q1

þ �c2
q1q2
p1p2

þ c2
q2q1
p2p1

Þ; ð37Þ

and the formula to calculate the array elements �c2
p1p2
q1q2

is

given by

c2
p1p2
q1q2

¼ 4ðtp1e1A
e1e2
a1a2

Þdp2e2 d
q1
a1
dq2a2 � 4ðtp1a1A

e1e2
a1a2

Þdp2a2d
q1
e1
dq2e2 : ð38Þ

The parallel computing of the necessary tensor contractions

eqn (35) and eqn (38) for [ĥ1,Â1] and [ĥ1,Â2], respectively, can

now be feasibly implemented because, as already described,

each processor redundantly owns all tensors in these terms

except the H2 tensor �c2
p1p2
q1q2

, which nevertheless can be evaluated

independently for each block associated with p1 at its owner

processor.

The commutators involving ĥ2 are described as

½ĥ2; Â1�1;2 ¼
1
2
gp1p2q1q2

Ae1
a1
½Ê

p1p2
q1q2

; Ê
e1
a1
� Ê

a1
e1
�1;2 ¼

1
2
c02

p1p2
q1q2

Ê
p1p2
q1q2

;

ð39Þ

½ĥ2; Â1�1;2 ¼ 1
2
gp1p2q1q2

Ae1e2
a1a2

½Ê
p1p2
q1q2

; Ê
e1e2
a1a2

� Ê
a1a2
e1e2

�1;2

¼ c0 þ c01
p1
q1
Ê

p1
q1
þ 1

2
c002

p1p2
q1q2

Ê
p1p2
q1q2

:

ð40Þ

Evaluating these terms is more challenging, as they each have

a couple of the four-index H2 tensors for the input and

output data arrays, gp1p2q1q2
and c02

p1p2
q1q2

ðor c002
p1p2
q1q2

Þ. At first glance,

evaluating these terms requires access to all blocks of c0 (or c00)

for each block of g. However, a careful inspection of these

terms and the 4-fold symmetries of g and c0 (or c00) ðgp1p2p3p4
¼

gp2p1p4p3
¼ gp3p4p1p2

¼ gp4p3p2p1
Þ reveals that each block of g can be made

to contribute only to the same block of c0 (or c00), as long as c0

(or c00) is symmetrized afterwards. This means that a single

index of each of the four-index arrays gp1p2q1q2
;
�c02

p1p2
q1q2

; and �c 002
p1p2
q1q2

can be shared or common. To emphasize this, the common

index is denoted as a bold index p1. We shall thus say that, for

a given p1, the output elements �c02
p1p2
q1q2 and �c002

p1p2
q1q2 (8 p2,q1,q2)

are calculated from the input array g
p1p

0
2

q0
1
q0
2

ð8p02; q
0
1; q

0
2Þ, and

thereby the required storage in fast memory is O(n3). This is

exemplified clearly in the following tensor contraction to

evaluate [ĥ2,Â1]1,2 [eqn (39)],

�c 0
2
p1p2
q1q2

¼ 4ðvp1p2e1q2
Ae1

a1
Þdq1a1 � 4ðvp1p2a1q2

Ae1
a1
Þdq1e1 ; ð41Þ

which is to be symmetrized, resulting in �c 0
2
p1p2
q1q2

. This trick is

exploited in our implementation to achieve memory savings

and a simple parallelization, which means that each processor

can evaluate these terms from the associated block of g

without any network communication for accessing the necessary

blocks of the H2 tensors. The rough sketch of our implementation

to evaluate �c 0
2
p1p2
q1q2 elements given by eqn (41) is:

1. The orbital range for p1 is divided evenly into sub-ranges,

with each sub-range assigned to a different processor. Thus the

two-body integrals gx1p2p3p4
8p2; p3; p4 are stored in the hard disk

of the processor assigned x1.

2. On each processor, select x1 from the assigned range.

3. Load the n3 sized block of two-body integrals

gx1p2p3p4
8p2; p3; p4 into the processor’s fast memory.

4. Evaluate the tensor contractions [eqn (41)] to produce the

block of �c 0
2
x1q2
q3q4

8q2; q3; q4.

5. Write the two-body block �c 0
2
x1q2
q3q4

8q2; q3; q4 to the processor’s

hard disk.

6. Go to step 2 until all values of x1 belonging to this

processor have been exhausted.

7. Symmetrize the H2 tensor �c 0
2 across the processors. This

step requires an n4/nproc amount of data transfer.

For [ĥ2,Â2]1,2 [eqn (40)], the tensor product formulas to

evaluate the coefficients c0, �c
0
1
p1
q1
, �c 002

p1p2
q1q2

are shown below. Bear

in mind that some of them need be symmetrized like eqn (34)

and (37) for �c1
p1
q1

and �c2
p1p2
q1q2

, respectively. First, we now have

c0 ¼ 2ðgp1p2e1q2
Ae1e2

a1a2
ÞD
� p1p2e2

a1q2a2

� 2ðgp1p2a1q2
Ae1e2

a1a2
ÞD
� p1p2a2

e1q2e2
;

ð42Þ

where the definition of D
� p1p2p3

q1q2q3
is given from that of Dp1p2p3

q1q2q3

[eqn (20)] by replacing �Dp1p2
q1q2

(eqn (21)) in it with

D
� p1p2

q1q2
[eqn (18)]. We may also evaluate

�c 0
1
p1
q1

¼ 2ðe01
p1
q1
� a01

p1
q1
Þ; ð43Þ

in which various useful intermediates are defined as

e01
p1
q1

¼ � dq1a2ðg
p1I
e2J

S0
e2I
a2J

þ g
p1I
Je2

S1
e2I
a2J

Þ

� ðgp1Iq1e1
� 1

2
gp1Ie1q1

ÞS2
e1
I þ dq1e2 ðg

IJ
e1p1

S4
e1e2
IJ Þ

� dp1a1d
q1
e1
ðAe1e2

a1a2
� 1

2
Ae1e2

a2a1
ÞS6

a2
e2

;

ð44Þ

and

a01
p1
q1

¼ � dq1e2 ðg
p1I
a2J

S0
e2I
a2J

þ g
p1I
Ja2

S1
e2I
a2J

Þ

� ðgp1Iq1a1
� 1

2
gp1Ia1q1

ÞS3
I
a1

þ dq1a2ðg
IJ
a1p1

S5
IJ
a1a2

Þ

� dp1a1d
q1
e1
ðAe1e2

a1a2
� 1

2
Ae1e2

a2a1
ÞS6

e2
a2

;

ð45Þ

where

S0
e2I
a2J

¼ ½Ae1e2
a1a2

� 1
2
Ae1e2

a2a1
� �D

e1I

a1J
ð46aÞ

S1
e2I
a2J

¼ �1
2
½Ae1e2

a2a1
�D
e1I

Ja1
� � 1

2
½Ae1e2

a1a2
�D
e1I

a1J
�; ð46bÞ

S2
e1
I ¼ ½Ae1e2

a1a2
�D
Ie2
a1a2

�; ð46cÞ

S3
I
a1

¼ ½Ae1e2
a1a2

�D
Ia2
e1e2

�; ð46dÞ
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S4
e1e2
IJ ¼ 1

2
½Ae1e2

a1a2
�D
IJ

a1a2
�; ð46eÞ

S5
IJ
a1a2

¼ 1
2
½Ae1e2

a1a2
�D
IJ

e1e2
�; ð46fÞ

S6
a1
p1

¼ ½gp1p2q1q2
�D
a1p2
q1q2

�: ð46gÞ

Note that the intermediates S0, S1,. . ., S6 can be pre-

computed, and the size to store them in fast memory is

O(nactn
2
ext).

Finally, we may evaluate

�c 002
p1p2
q1q2

¼ 4ðe002
p1p2
q1q2

� a002
p1p2
q1q2

Þ; ð47Þ

using the intermediates

e002
p1p2
q1q2

¼ dq1a1d
q2
a2
ð1
2
gp1p2e1e2

Ae1e2
a1a2

Þ

þ dp2a2d
q2
e2
fg

p1e1
q1I

ðT0
e1e2
Ia2

� 1
2
T0

e2e1
Ia2

Þ

� 1
2
ðg

p1e1
Iq1

T0
e1e2
Ia2

Þg

� dp2a2d
q1
e2
ð1
2
g
p1e1
Iq2

T0
e2e1
Ia2

Þ

� dq1a2d
q2
a1
ð1
2
g
p1p2
e2I

T1
Ie2
a1a2

Þ

þ dq1a2ðg
p1p2
e2q2

T2
e2
a2
Þ

þ dq1a1d
q2
a2
dp2e2 ðA

e1e2
a1a2

T3
p1
e1
Þ;

ð48Þ

and

a002
p1p2
q1q2

¼ dq1e1 d
q2
e2
ð1
2
gp1p2a1a2

Ae1e2
a1a2

Þ

þ dp2e2 d
q2
a2
fg

p1a1
q1I

ðT1
Ie2
a1a2

� 1
2
T1

Ie2
a2a1

Þ

� 1
2
ðg

p1a1
Iq1

T1
Ie2
a1a2

Þg

� dp2e2 d
q1
a2
ð1
2
g
p1a1
Iq2

T1
Ie2
a2a1

Þ

� dq1e2 d
q2
e1
ð1
2
g
p1p2
a2I

T0
e1e2
Ia2

Þ

þ dq1e2 ðg
p1p2
a2q2

T2
e2
a2
Þ

þ dq1e1 d
q2
e2
dp2a2ðA

e1e2
a1a2

T3
p1
a1
Þ;

ð49Þ

where

T0
e1e2
Ia2

¼ ½Ae1e2
a1a2

DI
a1
�; ð50aÞ

T1
Ie2
a1a2

¼ ½Ae1e2
a1a2

DI
e1
�; ð50bÞ

T2
e2
a2

¼ ½Ae1e2
a1a2

� 1
2
Ae2e1

a2a1
�De1

a1
; ð50cÞ

T3
p1
q1

¼ ½gp1p2q1q2
� 1

2
gp1p2q2q1

�Dp2
q2

: ð50dÞ

As before, the tensors T0, . . ., T3 can be precomputed and

stored in fast memory, whose usage is O(n2act next).

For the programming of these tensor contractions, there

are simplifications for the RDMs involving the core orbital

indices, Dc1
c2
¼ 2dc1c2 , Dc1o2

c3o4
¼ Dc1

c3
Do2

o4
, Dc1o2

o3c4
¼ �1

2
Dc1

c4
Do2

o3
, and

Dc1c2
c3c4

¼ Dc1
c3
Dc2

c4
� 1

2
Dc1

c4
Dc2

c3
. The parallel algorithm to evaluate

the commutator is summarized in Algorithm 1.

Algorithm 1 Parallel algorithm to evaluate the commutator

1 Evaluate �c1
p1
q1

[eqn (35)] 8 p1,q1 for [ĥ1,Â1]1,2.

2 for p1 A proc do

3 Load g
p1p2
q1q2 8p2; q1; q2.

4 Evaluate �c 0
2
p1p2
q1q2 [eqn (41)] 8 p2,q1,q2 for [ĥ2,Â1]1,2.

5 for e2 do

6 Load Ae1e2
a1a2

8a1; a2; e1 from GA

7 Evaluate �c2
p1p2
q1q2 [eqn (38)] 8 p2,q1,q2 for [ĥ1,Â2]1,2.

8 Evaluate c0 [eqn (42)], �c 0
1

p0
1
q1 [eqn (43)] 8p01; q1, �c

00
2
p1p2
q1q2

[eqn (47)] 8 p2,q1,q2 for [ĥ2,Â2]1,2.

9 end for

10 C0 += c0.

11 �C1
p0
1

q1þ ¼ �c1
p0
1
q1 þ �c 0

1

p0
1
q1 8p

0
1; q1.

12 Load �C
p1p2
q1q2

8p2; q1; q2.

13 �C
p1p2
q1q2

þ ¼ �c2
p1p2
q1q2 þ �c 0

2
p1p2
q1q2 þ �c 002

p1p2
q1q2 8p2; q1; q2:

14 Save �C
p1p2
q1q2

8p2; q1; q2.

15 end for

16 Symmetrize �C1
p1
q1

and �C
p1p2
q1q2

.

3.2 Residual elements

The residual elements are given by

Re1
a1

¼ h½ �̂H; Ê
e1
a1
�1;2i; ð51aÞ

Re1e2
a1a2

¼ h½ �̂H; Ê
e1e2
a1a2

�1;2i; ð51bÞ

and are decomposed into the contributions from the 1- and

2-body operators of �̂H,

Re1
a1

¼ R0
1
e1
a1
þ R00

1
e1
a1

; ð52aÞ

Re1e2
a1a2

¼ R0
2
e1e2
a1a2

þ R00
2
e1e2
a1a2

; ð52bÞ

where R0
1
e1
a1
and R0

2
e1e2
a1a2

are associated with the 1-body operator

ĥ1 [eqn (3b)], and R00
1
e1
a1
and R00

2
e1e2
a1a2

with the 2-body operator ĥ2

[eqn (3c)]. The tensor product forms of R0
1
e1
a1

and R0
2
e1e2
a1a2

are

given by

R0
1
e1
a1

¼ h½ĥ1; Ê
e1
a1
� Ê

a1
e1
�1;2i

¼ 2ðtp1e1D
p1
a1
� tp1a1D

p1
e1
Þ;

ð53Þ

R0
2
e1e2
a1a2

¼ h½ĥ1; Ê
e1e2
a1a2

� Ê
a1a2
e1e2

�1;2i

¼ 1
2
ð �R

0
2
e1e2
a1a2

þ �R
0
2
e2e1
a2a1

Þ;
ð54Þ

R0
2
e1e2
a1a2

¼ 2ðtp1e1D
p1e2
a1a2

� tp1a1D
p1a2
e1e2

Þ; ð55Þ

which can be easily implemented as the multiplications between

the matrix tp1q1 [eqn (3b)] and the 1- and 2-body RDMs, which

are all kept in fast memory. The expressions to evaluate
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R00
1
e1
a1

and R00
2
e1e2
a1a2

are given by

R00
1
e1
a1

¼ hC0j½ĥ2; Ê
e1
a1
� Ê

a1
e1
�1;2jC0i

¼ 2ðvp1p2e1q2
Dp1p2

a1q2
� vp1p2a1q2

Dp1p2
e1q2

Þ;
ð56Þ

R00
2
e1e2
a1a2

¼ hC0j½h2; Ê
e1e2
a1a2

� Ê
a1a2
e1e2

�1;2jC0i

¼ 1
2
ð �R

00
2
e1e2
a1a2

þ �R
00
2
e1e2
a1a2

Þ
ð57Þ

�R
00
2
e1e2
a1a2

¼ ðvp1p2e1e2
Dp1p2

a1a2
� vp1p2a1a2

Dp1p2
e1e2

Þ

þ 2ðvp1p2e1q2
Dp1p2e2

a1q2a2
� vp1p2a1q2

Dp1p2a2
e1q2e2

Þ:
ð58Þ

The last two terms vp1p2e1q2
Dp1p2e2

a1q2a2
and vp1p2a1q2

Dp1p2a2
e1q2e2

are each seven-

fold summations which at first glance have anO(n7) evaluation

cost. This expense, however, can be reduced to O(n6) by using

the decomposed form of the 3-body RDM Dp1p2e2
a1q2a2

, given by

eqn (20).

Once all processors have evaluated their individual contributions,

these are summed together. This final summation requires an

n2occ n
2
ext lognproc amount of data transfer between processors, where

nproc is the number of processors.

4 Numerical results

The performance of the level-shifted condition [eqn (25)],

introduced in this work, has been assessed. We performed

benchmark CT calculations for the symmetric breaking of the

water molecule and the bond breaking curve of the nitrogen

molecule. These molecules were chosen for a direct comparison

with the results in our previous papers.109,110 We used 6-31G

and cc-pVDZ basis sets for H2O and N2, respectively, and

CAS(6e,5o) [H2O] and CAS(6e,6o) [N2] for the CASSCF

references. Fig. 1 and 2 show the errors in the total energies

as measured from the FCI (for H2O) or MRCI+Q (for N2)

calculations at the several points across the dissociation

curves. The plots include the MRCI+Q and CASPT3 results

obtained using the MOLPRO program package.

In the CT calculations, we tested two level shift values

(1/4 and 1) for l. With the level-shifted CT conditions, the

excessive elimination of amplitude basis was avoided in the

overlap orthogonalization [eqn (12)], in which the truncation

threshold was then set to 10�8 for the removal of linear

dependencies. As can be seen in Fig. 1 and 2, the linearized

CT singles and doubles (LCTSD) calculations with the level

shifts yielded the smooth potential curves. The previous CT

calculations without the level shift (i.e. with l = 0) were

performed by setting the truncation thresholds to ts = 10�1

and td = 10�2 for the semi-internal and doubly-external

excitations, respectively.110 Such an aggressive truncation

was required to stabilize the iterative solution of the CT

equation, whereas it caused stepwise fluctuations in the

dimension of the untruncated basis along the coordinates,

resulting in the discontinuity in the curve. Despite the

improvements in the continuity of the potentials, the level-shifted

LCTSD calculations produced the nonparallelity errors (NPEs)

and mean absolute errors (MAEs) more or less similar to those of

the previous calculations. TheNPEs of the LCTSD curves for H2O

were 9.6, 5.4, and 6.9 mEh for l = 1/4, 1 (with all linearly

independent basis), and 0 (with large basis truncation), respectively.

With these level shifts, the L3CTSD approach,112,113 a variant

of LCTSD using the connected three-body RDMs instead of

neglecting three-body cumulants, provided a significant

reduction of the NPEs and MAEs in the potential profiles.

This suggests the importance of the connected three-body

description in the intermediate of dissociation where the balanced

treatment of dynamic and static correlations is critical.

The algorithm described in the previous sections has been

implemented into a parallel program, which adopted the Message

Passing Interface (MPI), OpenMulti-Processing (OpenMP) multi-

threading, and the GA toolkit125 as the parallelization libraries.

Fig. 1 Potential energy curve errors (from FCI) for the simultaneous

bond breaking of H2O with CASSCF(6e,5o) reference and 6-31G basis

sets. L3CTSD is an extension of the LCTSD method using three-body

RDMs. Level shift parameters l = 1/4 and 1 were tested, while no

level shift (i.e. l = 0) was used in the previous calculations (ref. 109).

Fig. 2 Potential energy curve errors (from MRIC+Q) for the bond

breaking of N2 with CASSCF(6e,6o) reference and cc-pVDZ basis

sets. Level shift parameters l = 1/4 and 1 were used. No level shift

(i.e. l = 0) was adopted in the previous calculations (ref. 110), which

used the linear dependency threshold ts = 10�1 and td = 10�2.
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We examined the parallel efficiency of our implementation

with a DMRG-CT calculation on the perylene molecule, using

a large CAS reference correlating 20 p electrons in 20 out-of-

plane 2p orbitals of the C atoms, namely CAS(20e,20o),

treated by the active-space DMRG method. The wall times

were measured with the 6-31G basis set (totally 204 basis

functions) and the molecular point group symmetry set to C1.

The first iteration of the CT calculation was performed on a

cluster of Linux personal computers (PCs) each with 3.16 GHz

Intel Core Duo CPU E8500 (dual cores), 16 GB RAM, and

Gigabit Ethernet interface connected through a network

switch. Table 4 shows the timings and speedup ratios observed

with 4, 10, 20, 30, and 40 CPU cores for the first iteration and its

part for evaluating the BCH expansion [eqn (16)]. The parallel

scaling was observed to be satisfactory, but the scalability was

degraded by the network communication across more processors

to access the distributed data of amplitudes through the GA

library. The low-latency, high-speed network environments, e.g.

InfiniBand interconnection, which are nowadays widely available

in massively parallel computer systems, are necessary for making

an effective use of the GA functions. The evaluation of the BCH

expansion to the tenth order occupied 17–18% of the total

computation time of the first iteration. The rest of the time

was spent mostly on the iterative solution of the amplitude CT

equation [eqn (25)].

We have evaluated the vertical excited energies of perylene

of 11B3u and 21Ag electronic states using the cc-pVDZ basis set

(340 atomic orbital functions) with the CAS(20e,20o) reference

and the geometry optimized with CAM-B3LYP/6-31G* in C2v

symmetry. The state-specific DMRG-CASSCF calculations

employing 1024 DMRG states were performed to obtain each

starting reference of 11Ag (ground state), 11B3u, and 21Ag states.

The evaluation of the density matrices of these references was

followed by the DMRG-L3CTSD calculations with the level shift

l = 0.1 and the C 1s orbitals uncorrelated. The excited energies

are shown in Table 5 including those of the EOM-CCSD

calculations as well as the literature value of the 11B3u excited

energy for the BLYP/6-31+G* level of theory and experiment.126

The EOM-CCSD calculations were performed using the tce

module127–129 in the NWCHEM program package.130 For the

11B3u state, the CT method greatly improved the DMRG-

CASSCF energy with the inclusion of dynamic correlation,

reproducing the EOM-CCSD result based on the HF reference.

This indicates that the accuracy of the description for this excited

state is dominantly characterized by the dynamic correlation.

DMRG-L3CTSD and EOM-CCSD both overestimated the

11B3u energy by approximately 0.7 eV, while BLYP/6-31+G*

underestimated it by approximately 0.5 eV. The 21Ag state was

in contrast found to be a multireference state in the sense that

the DMRG-L3CTSD and EOM-CCSD predictions dissociated.

Because the 21Ag energies obtained with DMRG-CASSCF and

DMRG-L3CTSD were similar, the dynamic correlation did not

seem to be so important in this state. The 21Ag state is a

symmetrically forbidden state, so that it has not been measured

experimentally. Our calculations predicted that there is the dark

21Ag state higher lying at 0.7 eV above the visible 11B3u state.

5 Summary

In the previous work we proposed the combination of DMRG

and CT methods to compute a good description of the multi-

reference problems which require a high-order treatment of

the dynamic correlation as well as the ability to treat large

active space. The key computational advance that has over-

come the high expense of CT calculations using large-size basis

sets for recovering a large amount of dynamic correlation is

the parallelized algorithm and its computer implementation of

the CT theory. This paper has provided a detailed description

of our parallelization as well as the tensor contraction

expressions. A highlight of the parallelization was the way of

distributing the storage of four-index arrays for two-body

Hamiltonian elements and amplitudes across processors. The

second focus of this study was on stabilizing the iterative CT

solution by a modification to the amplitude equation with

the inclusion of the level shift parameter. The level-shifted

condition numerically removes the intruder states easily

so that all linearly independent orthogonal basis states are

incorporated with the small truncation into the amplitude

and thus the resultant potential energy curves maintained

continuity. This way of modifying the stationary equation

can be applied to the other MRCC-type methods, which also

often have convergence difficulty in the solution. Although

the parallelization speeds up CT calculations, further investi-

gations to reduce the total costs of LCTSD calculations by

approximation are necessary for challenging application to

much larger multireference systems.
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Table 4 Wall times (in seconds) and parallel scaling ratios
(in parentheses) for the first iteration and BCH expansion in the
L3CTSD calculation on perylene/6-31G in C1 symmetry. The total
time includes the time for the BCH expansion. Two threads were
assigned to every two CPU cores, which correspond to a single PC
node. Parallel efficiencies are shown in percent

Number of
CPU cores Ratio

The first iteration

Total BCH expansion

Time/sec Ratio Time/sec Ratio

4 (1.0) 218 640 (1.0) 100% 39 398 (1.0) 100%
10 (2.5) 97 819 (2.2) 89% 17 948 (2.2) 88%
20 (5.0) 54 303 (4.0) 81% 9682 (4.1) 81%
30 (7.5) 40 202 (5.4) 73% 7009 (5.6) 75%
40 (10.0) 33 347 (6.5) 66% 5328 (7.4) 74%

Table 5 Vertical excitation energies (in eV) of the 11B3u and 21Ag

states for perylene. The DMRG-CASSCF, DMRG-L3CTSD, and
EOM-CCSD calculations were performed using the cc-pVDZ basis set

Method 11B3u 21Ag

DMRG-CASSCF(20e,20o) 4.89 4.38
DMRG-L3CTSD 3.65 4.35
EOM-CCSD 3.64 5.16
BLYP/6-31+G* a 2.49
exptl.a 2.96

a Ref. 126. The 21Ag state is a forbidden excitation.
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5 F. Aquilante, P.-Å. Malmqvist, T. B. Pedersen, A. Ghosh and
B. O. Roos, J. Chem. Theory Comput., 2008, 4, 694.
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