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ABSTRACT

The objective of this study is to present an eXtended IsoGeometric formulation

for cohesive fracture. The approach exploits the higher-order inter-element continu-

ity property of Non-Uniform Rational B-Splines (NURBS), in particular the higher

accuracy that results for the stress prediction, which yields an improved estimate for

the direction of crack propagation compared to customary Lagrangian interpolations.

Shifting is used to ensure compatibility with the surrounding discretisation, where,

different from eXtended Finite Element Methods, the affected elements stretch over

several rows perpendicular to the crack path. To avoid fine meshes around the crack

tip in case of cohesive fracture, a blending function is used in the extension direc-

tion of the crack path. To comply with standard finite element data structures Bézier

extraction is used. The absence of the Kronecker-delta property in the higher-order

interpolations of Isogeometric Analysis impedes the enrichment scheme and compat-

ibility enforcement. These issues are studied comprehensively at the hand of several

examples, while crack propagation analyses show the viability of the approach.

KEYWORDS:
Isogeometric analysis, cohesive fracture, Bézier extraction, extended finite element analysis, compatibility

enforcement

1 INTRODUCTION

Fracture is an important topic of study in the mechanics of solids and a good understanding is pivotal for the proper assessment

of structural integrity. Fracture mechanics encompasses a wide spectrum of experimental and theoretical studies, and involves

different physical phenomena. The fracture process zone, a limited zone in front of the crack tip where inelastic deformations

take place, is an important concept, which is central in deciding which modelling approach should be adopted. When the size

of the fracture process zone is small compared to a typical structural dimension, Linear Elastic Fracture Mechanics1,2 is the

method of choice. However, when the fracture process zone becomes non-negligible, cohesive-zone models3,4,5 are often more

applicable from a physics point of view. This holds, for instance, for many problems in fractured, fluid-saturated porous media6.

The incorporation of a displacement discontinuity like a crack, into a continuum mechanics framework can basically be accom-

plished in two different ways: either the discontinuity is captured rigorously and additional degrees of freedom are created, or

the discontinuity is embedded in an element, and the displacement discontinuity is transformed into an additional, incompatible,

Dirac-delta like strain mode inside an element7, and different variants of this approach have been put forward. The downside

of the latter approach, however, is that the discontinuity is not directly resolved. Moreover, although the approach mitigates the

notorious mesh sensitivity issue in strain softening solids, the underlying issue of a loss of well -posedness of the boundary

value problem is not solved8.



2 Fathi, Chen and de Borst

Interface elements are the conventional way to capture a (potential) crack as an inter-element discontinuity which fully pre-

serves the discontinuous crack9,10,11. They are simple to implement and robust in terms of computational performance. Yet, the

approach suffers from the need to know the crack direction beforehand. Re-meshing is an obvious remedy and has been applied

successfully, including in cohesive fracture12,13,14.

In a different approach, an arbitrarily shaped discontinuity can be inserted by adding an additional set of discontinuous func-

tions with own degrees of freedom to the regular displacement field by exploiting the partition of unity property of finite element

basis functions. This method has been coined the eXtended Finite Element Method (XFEM) and can be considered as a gener-

alisation of interface elements, as these elements are retrieved as the limiting case of XFEM when the discontinuity is put at the

edge of an element. Yet, some major differences exist. First, crack propagation can be entirely arbitrary, free of the underlying,

original mesh lay-out. Secondly, the dummy stiffness, which is needed in interface elements to keep the discontinuity closed

prior to local crack initiation, is not needed in XFEM because locally new degrees of freedom are created only when the crack

has propagated to this point,8,15,16. While the eXtended Finite Element Method was originally proposed in conjunction with

Linear Elastic Fracture Mechanics17,18, applications of XFEM to cohesive-zone models have also been proposed19,20.

The latter contributions were also the first to utilise a higher-order XFEM for both the regular and the extended parts. Six-noded

triangular elements were employed, even though the crack was still conceived as a set of straight discontinuities approximated

with lines, which restriction was dropped by Stazi et al.21, who used a quadratic discretisation for the regular part and for

approximating the geometry of the curved crack, while the interpolation of the extended part remained linear. A convergence

study for higher-order extended finite element methods22 showed that the same polynomial order has to be utilised in the standard

as well as in the extended part in order to resolve the displacement field properly.

IsoGeometric Analysis (IGA) was proposed with the aim to have the same set of basis functions for the design process and

for the analysis23. Aside from capturing the geometry exactly, the method has the major advantage that it provides a higher-

order inter-element continuity, enabling, for instance, to have a continuous stress field across element boundaries. The enhanced

accuracy in stress prediction is particularly important in the vicinity of crack tips, where traditional Lagrange basis functions

usually perform rather poorly. This is most relevant for free crack propagation, where the direction of crack extension is fully

governed by the accuracy of the local stress field.

An eXtended IsoGeometric Analysis method (XIGA) was first proposed by De Luycker et al.24 for Linear Elastic Fracture

Mechanics. Two types of interpolation were investigated: the same order of interpolation for both parts, and a higher-order

interpolation for the standard part combined with a linear interpolation for the extended part. Different from XFEM, eXtended

IsoGeometric Analysis cannot handle a linear interpolation in the extended part when the standard part has a higher-order

interpolation24. Moreover, a conflict in the blending element where the tip and the Heaviside enrichments coincide, has been

observed. As a remedy, 0-lines have been suggested for the standard as well as the extended part, such that Non-Uniform Ratio-

nal B-splines (NURBS) reduce to Lagrange basis functions, or in other words, XIGA coincides with XFEM. As an alternative

remedy, a least square technique was utilised in the weight (blending) functions for the tip and Heaviside enrichments. Conver-

gence rates for the case of the same polynomial orders in the standard and extended parts have been reported by De Luycker et

al.24 and Ghorashi et al.25.

Herein, we propose an eXtended IsoGeometric Analysis formulation for cohesive fracture. To enforce compatibility in the

direction perpendicular to the crack path we will use a shifting technique. The use of shifting in isogeometric analysis is more

complicated than in standard finite element analysis, as, due to the higher-order continuity, the area in which compatibility has to

be enforced is several rows of elements wide instead of a single row. Another issue is the fact that the Kronecker delta property

does not hold when using B-splines or Non-Uniform Rational B-Splines (NURBS), the basis functions in isogeometric analysis.

In the direction of the crack, i.e. ahead of the crack tip, a blending technique has been used to avoid the required very fine meshes

ahead of the crack tip, which is particularly relevant for cohesive fracture. Finally, to achieve compatibility with standard finite

element data structures, Bézier extraction has been used similar to an XIGA application in Linear Elastic Fracture Mechanics26.

Rate-independent, isotropic linear elasticity has been used for the bulk material, while the displacement gradients are assumed

to be small throughout.

This contribution starts with a succinct discussion of the cohesive-zone approach, including a discussion how to extend the

crack. The strong and weak forms of the governing equations are stated to set the scene for the ensuing discussion on a Bézier

extraction based eXtended IsoGeometric Analysis method. Aspects of compatibility and implemenation are covered as well.

Next is an assessment of the properties of the approach, including the effect of the order of the interpolation, and the order of

the continuity. The paper concludes with case studies of a plate with a circular void, and crack propagation along straight and

curved paths.
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FIGURE 1 Non-local calculation of the crack propagation direction. The blue arrow illustrates the direction of the crack tip

front. In (a), the green dashed circle determines which Gauss points are considered for non-local computation, while red marks

are Gauss points used in the computation of the non-local stress. In (b), the crack tip and real crack tip are defined, which is

determined by comparing the principal stress � with the fracture strength ft.

2 COHESIVE-ZONE MODEL

In this contribution we adopt the cohesive crack concept, in which the inelastic deformations in the fracture process zone are

thought to be concentrated in a line. Tractions act across this discontinuity which are a function of the local crack opening.

2.1 Traction-separation relation

Herein, we assume that the relation between the normal traction and the crack opening follows an exponential curve:

tn = ftexp

(
−
ft

Gf

�

)
(1)

where ft and Gf are the tensile strength and the fracture energy, respectively, and � is a history parameter equal to the largest

value attained till the current loading step. The loading/unloading condition is based on a loading function

f
(
JunK, �

)
= JunK − � (2)

such that f ≥ 0 denotes loading, while f < 0 indicates unloading.

In order to obtain a symmetric tangent, the crack shear stiffness is assumed to be zero. To obtain the linearised tangent in the

local coordinates, Equation (2) is differentiated with respect to time:

{
ṫs
ṫn

}
=

[
0 0

0 −
f 2

t

Gf

exp
(
−

ft

Gf

�
)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

{
Ju̇sK

Ju̇nK

}

Td

(3)

A secant stiffness is assumed for unloading.

2.2 Direction of the extension of the discontinuity

Even though isogeometric analysis vastly improves the stress prediction around the crack tip for B-splines, the direction of

crack propagation can be highly influenced by small accuracies in the principal stresses, which determine the crack extension.

Therefore, we adopt a non-local approximation of the stresses around the crack tip earlier considered in eXtended Finite Element
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analysis19. We emphasise that only Gauss points in front of the crack tip are considered, i.e. the red-coloured Gauss points in

Figure 1. The Gaussian distribution function is used as the weighting function for the non-local approximation27:

w =
1

(2�)3∕2l3
exp

(
−

r2

2l2

)
(4)

where r and l are the distance vector of each Gauss point and a length parameter, respectively, see Figure 1. The length parameter

is typically taken 2-3 times the length of a diagonal of a typical element19. Calculating the non-local stress components for the

crack tip, we can locate the new crack propagation direction based on the principal stresses (dashed red line in Figure 1). After

determining the crack direction, the end point of the crack can be located, since the crack is assumed as a straight line passing

throughout the element.

3 GOVERNING EQUATIONS

We now briefly discuss the kinematics of a discontinuity within a continuum formulation. The enhanced displacement field is

defined, including the calculation of the displacement at the discontinuity. Next, the discontinuous displacement fields and a

traction-separation relation are defined and the weak forms are derived. The latter are the starting point for the discretisation in

an isogeometric framework.

FIGURE 2 Body Ω with a discontinuity Γd .

3.1 Kinematics of the displacement discontinuity and constitutive equilibrium equation

The partition of unity property holds for Lagrange interpolation functions, typically used within standard finite element methods,

as well as for B-splines and NURBS, which are the prototypical interpolation functions used in isogeometric analysis. Exploiting

this property the total displacement field can be written as the sum of two sub-fields, as follows:

u(x) =

n∑
i=1

�i(x)

(
ai +

m∑
j=1

bij
j(x)

)
(5)

In Equation (5), �i are the regular basis functions, 
j is an enhanced basis with m terms, ai and bij are the regular and the

enhanced nodal degrees of freedom, respectively. For our purpose a single additional term suffices, so that m = 1. However,

cases with m > 1 have been reported28,29 for different reasons, including robust conditioning or an improved convergence rate.

In standard finite element methods, the enhanced basis is empty, unlike in eXtended or Generalised Finite Element methods

(GFEM or XFEM) in order to improve the approximation. Employing a standard finite element notation for an n-noded element
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with one enriched term, Equation (5) can be written in matrix-vector form as:

u(x) = N(x)a + Ñ(x)N
 (x)Hb (6)

where N contains the standard finite element shape functions and N
 is the matrix which contains the enhancement, while a and

b are the regular and enhanced degrees of freedom, respectively. To generalise the formulation, a different set of basis functions

Ñ has been used in the extended part. H is a diagonal matrix to include or remove enriched nodes by switching the corresponding

diagonal entries between 0 and 1, so that Equation (6) implies a bijective relation between the standard and enhanced degrees of

freedom for each node which enables activation or deactivation of the enriched part30. This feature provides a conventional finite

element displacement field with a customised local enrichment. We consider the body of Figure 2. While the regular degrees of

freedom represent the continuous displacement field, the enhanced degrees of freedom can represent a discontinuity when:

u(x) = N(x)a +Γd
(x)Ñ(x)b (7)

The choice for the (discontinuous) enrichment function differs depending on the physics of discontinuity. Herein, a crack is

considered, which is modelled as a strong discontinuity, but weak discontinuities can be modelled as well31,15.

As not uncommon in eXtended Finite Element methods, we have adopted level sets for tracking the crack as a moving interface.

A zero level set denotes the interface itself and higher levels represent the propagation of the interface. This eliminates the

necessity to explicitly define the interface geometry. The most common level set function is the signed distance defining the

position of an arbitrary point with respect to the interface, see Figure 315:

'(x) = ‖x − x∗‖ sign
(
nΓd

⋅ (x − x∗)
)

(8)

where ‖ ⋅ ‖ denotes the Euclidean norm, x∗ is the closest projection of point x onto the interface, and nΓd
is the normal vector

at point x∗ on the interface. Based on Equation (8), the level set function divides the domain into three zones:

'(x) =

⎧⎪⎨⎪⎩

< 0 if x ∈ Ω−

= 0 if x ∈ Γd

> 0 if x ∈ Ω+

(9)

The Heaviside function adopted in this paper is defined as:

Γd
(x) = sign('(x)) =

⎧
⎪⎨⎪⎩

−1 if '(x) < 0

0 if '(x) = 0

+1 if '(x) > 0

(10)

Recalling the small strain assumption, the strain field can be calculated by taking the gradient of Equation (7):

��� = Ba +Γd
B̃b + 2

(
�Γd

nΓd

)
Ñb (11)

where B̃ is the matrix of derivatives corresponding to the set of basis functions Ñ in the extended part. �Γd
is the Dirac-delta

function and nΓd
is the matrix containing the components of the normal vector to the discontinuity:

n
T
Γd

=

[
(nΓd

)x 0 (nΓd
)y

0 (nΓd
)y (nΓd

)x

]
(12)

In the absence of the acceleration and body forces, the equilibrium equation reads:

⎧⎪⎪⎨⎪⎪⎩

∇ ⋅ ��� = 0 x ∈ Ω

u = u x ∈ Γu

n ⋅ ��� = t x ∈ Γt

nΓd
⋅ ��� = td x ∈ Γd

. (13)

where ��� is the Cauchy stress tensor, n is the normal vector to the external traction surface and nΓd
is the vector normal to

the crack surface, see Figure 2. The prescribed displacement and traction are defined as u and t, respectively. The stress-strain

relation for the bulk material is assumed to be linear-elastic:

��� = D ∶ ��� (14)
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where D is the fourth-order linear-elastic stiffness tensor. In a similar fashion, the traction in a local coordinate system is a

function of the crack opening as:

t loc
d

= t loc
d

(
JudK

)
(15)

where JudK is the displacement jump at the discontinuity. For use within a Newton-Raphson type iterative scheme this relation

must be linearised, leading to

ṫ loc
d

= Td ⋅ Ju̇
loc
d

K (16)

where Td has already been defined in Equation (3). Using the rotation tensor Q between the local and the global coordinate

systems, this relation can be modified as:

ṫd = QT ⋅ Td ⋅QJu̇dK (17)

FIGURE 3 Determination of the signed distance. The point X∗ is the closest projection of the point X onto the discontinuity Γd

.

3.2 Variational formulation

To generalise the variational formulation, � (�̂ for the standard and �̃ for the extended part) is used to cover all admissible

variables, including u. Employing the principle of virtual work, the equilibrium equation from (13) can be written in a weak

form:

∫
Ω

∇s��� ∶ ���dΩ − ∫
Γu

��� ⋅ t̄dΓ = 0 (18)

which must hold for all admissible variations, and where in line with Equation (7), the variations of the displacement are

decomposed into the regular displacement �̂ and the displacement jump �̃ as19:

��� = �̂�� +Γd
�̃�� (19)

Inserting Equation (19) into Equation (18) yields:

∫
Ω

∇s(�̂�� +Γd
�̃��) ∶ ���dΩ = ∫

Γu

(�̂�� +Γd
�̃��) ⋅ t̄dΓ (20)

The gradient of the displacement field in Equation (20) reads:

∇s��� = ∇s�̂�� +Γd
(∇s�̃��) + 2�Γd

(�̃�� ⊗ nΓd
)s (21)
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Inserting Equation (21) into Equation(20) and using the identity ∫
Ω
�Γd

(x)�(x)dΩ = ∫
Γ
�(x)dΓ, leads to the following weak

form:

∫
Ω

∇s�̂�� ∶ ���dΩ + ∫
Ω

Γd
(∇s�̃��) ∶ ���dΩ + 2∫

Γd

(
�̃�� ⊗ nΓd

)s
∶ ���dΓ = ∫

Γu

(�̂�� +Γd
�̃��) ⋅ t̄dΓ (22)

where
(
�̃�� ⊗ nΓd

)
∶ ��� can be rewritten as �̃�� ⋅

(
��� ⋅ nΓd

)
, which yields:

∫
Ω

∇s�̂�� ∶ ���dΩ + ∫
Ω

Γd
(∇s�̃��) ∶ ���dΩ + 2∫

Γd

�̃�� ⋅ tddΓ = ∫
Γu

(�̂�� +Γd
�̃��) ⋅ t̄dΓ (23)

which results in two separate variational equations for �̂ and �̃:

∫
Ω

∇s�̂�� ∶ ���dΩ = ∫
Γu

�̂�� ⋅ t̄dΓ (24a)

∫
Ω

Γd
(∇s�̃��) ∶ ���dΩ + 2∫

Γd

�̃�� ⋅ tddΓ = ∫
Γu

Γd
�̃�� ⋅ t̄dΓ. (24b)

4 EXTENDED ISOGEOMETRIC ANALYSIS

The possibility to control the inter-element continuity is the salient characteristic of B-splines and has been used to introduce

discrete discontinuity by order reduction32,13. Alternatively, similar to the extended finite element method, B-splines can be

enriched by a Heaviside function to introduce a discontinuity, since they also form a partition of unity, cf Equation (7). We will

now succinctly review the main features of B-splines, and subsequently we employ them in an extended framework.

4.1 Bézier extraction for NURBS

B-splines are the basis technology used in Computer-Aided Design, and were subsequently also used for analysis. Their higher-

order inter-element continuity is highly advantageous for solving higher-order differential equations, which are frequently

encountered in structural analysis33.

A univariate B-spline is a piecewise polynomial represented with a monotonically increasing set of values, usually referred

to as the knot vector, Ξ =
{
�1, �2,⋯ �n+p+1

}
. n and p denote the number and the order of the knot vector, respectively. The

customary choice of open knot vectors has followed here, where the multiplicity of the first and the last knot value are elevated

to p + 1. For simplicity, open knot vectors will be referred to as knot vectors in the remainder. The knot vector Ξ is constructed

of m non-negative intervals representing the number of elements in the parameter domain. The geometry of a B-spline is also

parametrised as a linear combination of basis functions N :

x(�) = PT
k
Nk(�) (25)

where Pk denotes the set of control points in the physical domain, and Nk(�) maps a coordinate � from the parameter domain

onto the physical domain. The B-spline basis functions are recursively defined by the Cox-de Boor formula8:

Nk,p(�) =
� − �k

�k+p − �k
Nk,p−1(�) +

�k+p+1 − �

�k+p+1 − �k+1
Nk+1,p−1(�) (26)

with the initial value for zeroth order (p = 0):

Nk,0(�) =

{
1 �k ≤ � < �k+1
0 otherwise.

(27)

B-splines were replaced by Non-Uniform B-Splines (NURBS) in Computer-Aided Design owing to their ability to accurately

parametrise conic shapes8. A NURBS basis function R is defined as a weighted B-spline basis function N ,

Rk,p(�) =
wkNk,p

W (�)
. (28)
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with Nk,p defined in Equations (26), wk is the weight of the corresponding knot, and W (�) =
∑n

k=1
Nk(�)wk is the weighting

function. A NURBS curve can be extended to a NURBS surface

S(�, �) =

n∑
k=1

m∑
l=1

R
p,q

k,l
(�, �)pk,l (29)

with the bivariate NURBS basis function defined as the tensor product of univariate bases34:

R
p,q

k,l
(�, �) =

Ml,q(�)Nk,p(�)wk,l∑n

k̂

∑m

l̂
Mk̂,q(�)Nl̂,p(�)wk̂,l̂

. (30)

To provide an element-wise framework for B-splines and NURBS, similar to standard finite elements, Bézier extraction has

been proposed34,35. A degree p Bézier curve can be defined as a linear combination of Bernstein polynomial basis functions and

a set of control points34. The Bernstein polynomials can be recursively defined over [-1 1]. These polynomials were originally

defined for � ∈ [0 1], while have been redefined on [-1 1] to facilitate the integration34:

Bk,p(�) =
1

2
(1 − �)Bk,p−1(�) +

1

2
(1 + �)Bk−1,p−1(�) (31)

where

B1,0(�) ≡ 1 (32)

and

Bk,p(�) ≡ 0 if k < 1 or k > p + 1. (33)

A combination of the chain rule and the tensor product results in bivariate basis functions of Bernstein polynomials. Derivatives

of Bernstein basis functions are given in Appendix A.

B
p,q

k,l
(�, �) = Bk,p(�)⊗Bl,q(�). (34)

FIGURE 4 Comparison between classical integration and a Bézier-extraction based integration scheme, where C is the Bézier

extraction operator

.
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Using knot insertion, i.e. increasing the multiplicity of knot values and consequently decreasing the order of the continu-

ity without changing geometric and parametric properties of the curve34, Bézier elements of the curve can be generated. In

this process, the multiplicity of each interior knot is increased to the order of the knot vector p to obtain 0-continuity at the

boundaries of the elements. A detailed description of Bézier extraction has been given by Borden et al.34, while it has been

extended to Bézier interface elements by Irzal et al.10. The element-specific B-spline basis functions can be constructed as a

linear combination of a canonical set of polynomial basis function, :

Ne = Ce (35)

with Ce the transformation matrix which is also referred as Bézier extraction operator. contains the Bernstein basis functions.

From an implementation perspective Bézier extraction does not affect the model-specific process since it only modifies the basis

function34. Therefore, the same B-spline bases can be used for the model. Furthermore, by calculating the Bézier extraction

operator, there is no need to construct the parametric domain explicitly. This facilitates the integration process since the physical

domain can be directly mapped to the parent element similar to the traditional finite element, while classical process necessitates

two mappings, Figure 4.

Since the only difference between B-splines and NURBS is the weight used in the latter, the first step towards a Bézier element

based NURBS formulation is the redefinition of the weight function in Equation (28)34,35:

W (�) =

n∑
k=1

Nk(�)wk = wTN(�) = wTC(�) =(CTw
)T (�) = (

wb
)T (�) = W b(�) (36)

Substitution of Equations (35) and (36) into Equation (28) then gives the NURBS basis function:

Re(�) = We N
e(�)

W e(�)
= WbeCe e(�)

W be(�)
(37)

with w the vector associated with the weights in the diagonal matrix of weights, w = {wk}
n
k=1

. Thus, in the same manner

wb = {wb
k
}n+m
k=1

, andWb is the corresponding diagonal matrix of weights. The element-wise derivatives of NURBS basis function

are given in Appendix A.

4.2 Compatibility enforcement

Numerous contributions have been devoted on how to enforce compatibility of the standard and the enhanced displacement

fields in the in extended finite element method. Enforcing compatibility in extended isogeometric analysis, however, is a chal-

lenge which has hardly been addressed. Nevertheless, the issue is even more pressing, and complicated, due to the very reason

that isogemetric analysis can enhance the order of continuity at element boundaries. De Luycker et al.24 have studied the limita-

tions and the difficulties of the blending technique in a comprehensive manner, but have mentioned another possible technique

to enforce compatibility, namely shifting, only in passing. Herein, we will describe the shifting technique for higher-order inter-

polations, see Figure 5c for a definition. Figure 5 illustrates the effect of the Bézier extraction operator on the Bernstein basis

functions containing the discontinuity with shifting.

Remark 1: In this manuscript, the notion order of continuity relates to the element boundaries, unless mentioned otherwise.

For example, 0 element denotes all interpolations with 0-continuity at element boundaries, e.g. quadratic0 means a quadratic

element with C1 non-zero continuity inside the element and 0-continuity at element boundaries.

Remark 2: B-splines generally do not provide the Kronecker-delta property. However, similar to open knot vectors, Bézier B-

spline elements partially provide this property at element boundaries. Therefore, "weak Kronecker-delta property" is meant

when the Kronecker-delta property is utilised in the remainder of the manuscript.

In conventional finite element methods the 0-continuity which underlies the Lagrangian interpolation provides the

Kronecker-delta property which is ideal for the shifting technique. With the Kronecker-delta property at hand and employing

shifting, the Heaviside function will be confined to the cracked element where the nodal points are also interpolatory. The only

exception is when the crack passes the location of an enriched nodal/control point, which is likely for higher-order interpola-

tions. On the other hand, the blending technique brings the effect of the Heaviside function to the adjacent rows of elements. A

drawback of this technique is indeed the presence of additional terms in nodal points, which was circumvented by the Corrected
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FIGURE 5 Effect of shifting on the basis functions for quadratic Bézier elements under mode-I fracture (a) in the X-direction

and (b) in the Y-direction. The shifting technique is demonstrated in (c) where  corresponds to the Heaviside function of the

Gauss point location and i indicates the Heaviside value for control points. The boundaries of each Bézier element are marked

by the solid blue lines. ■ is the Bézier point, and ○ indicates the control point. Only basis functions in the y-direction are

affected by shifting. C is the Bézier extraction operator.

eXtended Finite Element Method36. This approach effectively utilises shifting and blending concurrently perpendicular to the

crack path, in order to confine the Heaviside effect and to maintain nodal points interpolatory.

Owing to the absence of the Kronecker-delta property in isogeometric analysis, shifting, which affects the extended part,

will also involve adjacent rows of elements similar to blending. The number of control point rows involved perpendicular to

the crack path is entirely dependent on the position of the control points and the adopted interpolation order. For example, for

quadratic and cubic interpolations one row of control points at each side of the crack will be affected, while quartic and quintic

interpolations will affect even two rows of control points at each side. In sum, the spread of the Heaviside effect to the adjacent

elements is inevitable regardless of the technique adopted to enforce compatibility. Nevertheless, shifting and blending are still

possible techniques to enforce compatibility. It is noted that the Kronecker-delta property can be brought back when considering
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FIGURE 6 Comparison between control and Bézier points for a cracked set of quadratic elements: (a) regular basis functions

for the control points, (b) extended basis functions for the control points, (c) regular basis functions for Bézier points and (d)

extended basis functions for Bézier points. Here, (a) and (c) present the basis functions employed for the regular part in Equation

(5), while (b) and (d) present the basis functions used for the extended part in Equation (5).

Bézier points instead of control points, which will be at the expense of lowering the continuity at element boundaries to 0.

The effect of the shifting technique for these two sets of points is compared in Figure 6. By virtue of the tensor product of the

univariate bases, bivariate bases can be generated, see Figure 7 for the effect of a crack on a bivariate basis function.

The shifting technique adopted here is analogous to the blending technique employed in the extended finite element method

in the direction perpendicular to the crack path, see Figures 8a, 6b and 6d, which illustrate how the presence, respectively the

absence of the Kronecker-delta property affect the proposed shifting technique. Due to the fact that the crack is considered as a

straight line passing through an entire element, the element size plays a significant role, since some parts of the crack may still

violate the crack initiation criterion. Thus, to fulfill the initiation criterion along the crack path, yet to avoid ultra-fine meshes, a

blending technique has been adopted to partially apply the cohesive rule inside a cracked element, see Figure 8. This blending

technique utilises another Heaviside function in the tangential direction, a step function as a new blending, to remove integration

points in front of the real crack tip, see Figures 8b and 8c. Here, the real crack tip is given in Figure 1. It is noteworthy that the

enrichment is still based on the crack tip at the end of the element, compare Figure 8a where the real crack tip coincides with

the end of the discontinuity and Figure 8b, where the the real crack tip is inside the element, but both have the same enrichment.

Finally, we can rewrite Equation (7) incorporating shifting and blending technique to enforce compatibility.

u(x) =
∑
∈

N(x)a +
∑

∈
Bl

Γd
(x)

(GP
Γd

(x) −
Γd

)
Ñ(x)b (38)
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FIGURE 7 Two-dimensional basis functions for control points used in the description of a cracked medium: (a) Effect of the

crack on the extended basis functions (b) Comparison between the regular (left) and the extended (right) basis functions for the

point in the middle of the domain, control point 13 (see Figure 5b for a comparison with one dimensional basis functions). It is

noted that the basis functions in (a) result from the tensor product of the basis functions in the X and the Y-directions in Figure

6b.

where  ⊂  denoting the subset enriched by Heaviside, and GP
Γd

is the Heaviside value of Gauss points, see Equation

(10). 
Γd

indicates the Heaviside value for the control point , and Bl
Γd

is a step function defined on the location of the Gauss

point with respect to real crack tip rather than crack tip in Figures 8b and 8c:

Bl
Γd

=

⎧⎪⎪⎨⎪⎪⎩

0 if
v ⋅ nrct

‖v‖‖nrct‖ ≥ 0

1 if
v ⋅ nrct

‖v‖‖nrct‖ < 0

(39)

4.3 Discretised and linearised equations

Substituting Equations (7) and (11) for the displacement and the strain fields expressed in discrete values, into the weak forms

of Equations (24a) and (24b), the discrete form of the equation of motion can be derived:

∫
Ω

BT���dΩ = ∫
Γu

RTt̄dΓ (40a)

∫
Ω

Γd
B̃T���dΩ + 2∫

Γd

R̃TtddΓ = ∫
Γu

Γd
R̃Tt̄dΓ. (40b)
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FIGURE 8 Compatibility enforcement for a quadratic interpolation under mode-I fracture: (a) shifting and blending technique

for a fully cracked element, (b) blending technique for a partially cracked element while the crack is aligned with the mesh and

(c) blending technique for a partially cracked element with an inclined discontinuity. The integration border, dashed green line

in (c), is defined as the edge shifted from the green solid line.

Considering Equation (14), the stress in the bulk away from the discontinuity reads:

��� = D��� = D
(
Ba +Γd

B̃b
)

(41)

and the traction at the discontinuity is defined in Equation (17) where the displacement jump based on the adopted Heaviside

function in Equation (10) is:

JudK = 2

nen∑
k=1

R̃k(�)bk (42)

with nen the number of enriched nodes. R̃k is the NURBS set of basis functions corresponding to the extended part. Employing

linearisation and discretisation then results in the following matrix-vector equation:[
Kaa Kab

Kab Kbb

] [
Δa
Δb

]
=

[
fext
a

fext
b

]
−

[
fint
a

fint
b

]
(43)

with the arrays

f ext
a

= ∫
Γu

RTt̄ dΓ (44a)

f ext
b

= ∫
Γu

Γd
R̃Tt̄ dΓ (44b)

f int
a

= ∫
Ω

BT��� dΩ (44c)

f int
b

= ∫
Ω

Γd
B̃T��� dΩ + 2∫

Γd

R̃Ttd dΓ (44d)
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and stiffness matrices:

Kaa = ∫
Ω

BTDBdΩ (45a)

Kab = ∫
Ω

Γd
BTDB̃dΩ (45b)

Kba = ∫
Ω

Γd
B̃TDBdΩ (45c)

Kbb = ∫
Ω

B̃TDB̃ dΩ + 4∫
Γd

R̃TQTTdQR̃ dΓ (45d)

while it is recalled that Q is the rotation matrix. It is important to note that shifting and blending are employed in the numerical

integration level of the current equations, according to Equation (38).

5 IMPLEMENTATION ASPECTS

The implementation of the formulation in a finite element data structure requires care, since isogeometric analysis involves

inter-element sharing of control points. Moreover, the possibility to adjust the order of continuity, and consequently the number

of control points shared by two adjacent elements complicates a unique solution to the problem. Therefore, we have examined

various options to check these issues. We note that elements are here defined as sections generated by intersecting 0 lines in

the physical space.

FIGURE 9 Enrichment scheme for a quadratic discretisation. The yellow control points which are shared between split elements

(green) and tip element (blue) have been removed from the enrichment.

5.1 Enhancement of individual control points and the integration scheme

While the inter-element sharing of control points complicates element-wise enrichment in isogeometric analysis, the Kronecker-

delta property of the Bernstein basis functions mitigates the problems encountered in enrichment procedure. Since we deal with

cohesive-zone models there is no singularity at the crack tip, and hence no need to apply asymptotic tip enrichment functions.

As is also customary in extended finite element analysis using cohesive-zone models, the crack is assumed to cross the element

entirely and the crack tip is not considered as opened. The edge where the crack tip lies is denoted as tip edge. For 0 elements

with the Kronecker-delta property, the control points corresponding to the tip edge are not enriched. However, for elements with

higher-order continuity, the enrichment relies on the continuity order at element boundaries. The control points located at, or in

front of the tip edge should be neglected for the enrichment, see Figure 9. Our experiments reveal divergence of the solution if

only the last column of control points is omitted in the enrichment, which is described in the ensuing sections.

To approximate the discontinuous field in a cracked element, an adequate integration scheme at each side of the discontinuity

should be applied. A frequently used scheme is sub-triangulation. This approach is believed to be superior to other methods,
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FIGURE 10 Finding the unknown natural coordinates, P(�̃, �̃), of a known physical point, P(x, y), along the crack.

e.g. the cell approach, since it is separately defined for each section generated by the crack. Therefore, adopting a required

minimum number of Gauss points for each sub-triangle guarantees a sufficient number of Gauss points at each side, even if

the discontinuity splits the element into disproportionate segments, e.g. if the crack path is close to the corner of an element.

Geometrical mapping for these triangles within an isogeometric analysis framework has been presented by Ghorashi et al.25.

5.2 Point projection along the crack path

In cohesive fracture, a line integration is required to integrate the traction which acts at the discontinuity. Gauss integration is

also used for this purpose. As observed in Figure 4, Bézier extraction maps a point in the physical space onto the parameter

domain in the Bernstein parent element. Nevertheless, finding the corresponding natural coordinates of a physical known point

necessitates a point projection37, see Figure 10. Herein, a Newton-Raphson scheme has been utilised to obtain solution, see

Appendix B for the case of NURBS.

6 ASSESSMENT OF THE FORMULATION

We now assess the correctness and the properties of the formulation and implementation aspects at the hand of various examples.

6.1 Interpolation-order: uniform opening

The first example challenges the capability of the extended isogeometric formulation to handle different interpolation orders for

the standard and the extended contributions. This is done using a simple tension test and is compared to a solution obtained

using standard interface elements. The geometry and material properties are shown in Figure 11. A dummy stiffness has been

adopted to constrain the interface before opening.

For higher-order extended finite element methods the same order of interpolation can be adopted for the regular and the

enhanced parts15,22. For different orders the method only works when a linear interpolation is applied to the extended part15,21.

Otherwise, when using blending for the direction perpendicular to the discontinuity, the error in the blending elements will

increase and affect the solution accordingly15. The Corrected eXtended Finite Element Method36 is a remedy15, and involves a

shifting for the interpolations which possess the Kronecker-delta property.

For eXtended IsoGeometric Analysis, De Luycker et al.24 have arrived at the same conclusions for the case of the same orders

of interpolation, and have chosen a linear interpolation for the extended part in the case of different orders of interpolation.

Nevertheless, they have reported convergence issues even with linear interpolation for the extended part, and have suggested 0

lines as a possible remedy.

We first investigate the case of the same interpolation order for the standard and the extended parts. This is examined for

higher-order continuity as well as 0 continuity at the boundaries of the element. The load-displacement curve in Figure 12

agrees with the conclusions reported before22,15,24.

Next, we examine the case where different interpolation orders are taken for the standard and extended parts. Again, the cases

of higher-order continuity and 0 continuous elements are investigated. Figure 13 shows that, when higher-order continuity
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FIGURE 11 Geometry and traction-separation relation employed in the interface element model (left figure) and the XIGA

model (right figure). The dummy stiffness d is utilised to keep the interface element closed until the criterion for fracturing is

met. F and � denote the force and the displacement, respectively.

is used for both parts, the error is considerable. When using 0 continuity, however, the errors are small and the solution is

acceptable. Yet, only a linear interpolation for the extended part reproduces the finite element results. Accordingly, the use of

linear interpolation for the extended part, which produces perfect results for extended finite element methods15,21 is fully correct

in extended isogeometric analysis only when 0-continuity is adopted24. This is reminiscent of results for isogeometric interface

elements, where traction oscillations could also be prevented by inserting 0 lines11, as a possible remedy.

6.2 Effect of the order of continuity on the enrichment: peeling test

A Double Cantilever Beam (DCB) peeling test is now investigated to assess the effect of the interpolation order on the enrichment

scheme. The geometry is shown in Figure 14. The Young’s modulus, Poisson’s ratio, tensile strength and fracture energy are

E = 100 MPa, � = 0.3 , ft = 1 MPa and Gf = 0.1 Nmm−1, respectively. For the interface elements, which serve as the

benchmark, the dummy stiffness, d = 106 Nmm−3, is used to keep the interface closed until the crack propagation criterion is

satisfied.

A comparison between the enrichment schemes for different orders of continuity is given in Figure 15. For presentation

purposes, the enrichment is illustrated for a 7× 7 mesh, instead of the DCB. Following Section 5.1, control points with a location

at or in front of the tip edge are removed from the enrichment. When utilising 0 continuity, however, only one column of control

points at the tip edge will be eliminated from enrichment regardless to interpolation order, see Figure 15, where the control points

and Bézier points are represented by circles and squares, respectively. We observe that, when using control points, only one row

at the tip edge is not enriched for linear interpolation. This is the same for quadratic interpolation: remove one column of control

points in front of the crack tip. For cubic interpolation, however, two columns of control points are not enriched. Control/Bézier

points belonging to the tip element are marked in blue, while the enriched points are filled with green, see Figure 15.

The results are given in Figure 16. For a quadratic interpolation (Figure 15.c), 1-continuity at the element boundaries pro-

vides smoother results compared to 0-continuity (Figure 15.d). It can be inferred that, when enriching the same number of

control/Bézier points, smoother results are obtained in the case of control points. For a cubic interpolation, however, a jagged

response results for the 60 × 9 (the first and the second digits denote the number of element in length and width of the Double

Cantilever Beam, respectively) and 120 × 9 meshes alike. This is because one extra column of control points is removed for the

enrichment in the case of a 2-continuity compared to a 0-continuity, see Figure 15.

To clarify the reason behind the jagged response reported in Figure 16c, higher order interpolations are compared separately

in Figure 17. For cubic-cubic and quartic-quartic results it is observed that when the crack propagates to the next element, the

last split element releases suddenly along with the last crack tip (which is the new split element adjacent to the new tip element).

The release of two elements instead of one (the last crack tip) causes the jagged response. Therefore, a drop is observed whenever
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FIGURE 12 Discretisation and load-displacement curve for the uniform opening problem with the same order for standard and

extended parts. The first and second interpolation terms (left to right) in the figure belong to the standard and extended parts,

respectively. A superscript zero denotes the Bézier elements. Circles indicate the control points and squares denote the Bézier

points. Enriched points are specified with the filled green marker. It is noted that the enriched control points coincide with those

belonging to the cracked element. It is noted that FEM solution denotes the interface element model in the remainder of the

manuscript, see Figure 11.left.

the crack propagates to a new element. This is not the case for quadratic-quadratic since all the control points associated with

the split element adjacent to the tip element are enriched. Hence, this phenomenon is related to the number of control point

columns. If there is more than one column of control points removed from the enrichment we will have a split element that is

not fully enriched. For the same number of control point columns removed, the quartic interpolation has a smoother behaviour

than the cubic interpolation, as observed in Figure 17.

Regarding Figures 16b and 16d, some slight oscillations are observed. This is because we consider the propagation criterion

for only the half the number of Gauss points along the crack path, since otherwise the element would have remained intact. This

is also the reason why two tips are defined: one ending at the element edge crack tip, and another located at the nearest Gauss

point to the tip which has met the fracture criterion � ≥ ft as real crack tip, see Figure 1b. Note that the crack tip is utilised

for the enrichment of control points, while the real crack tip is defined for the blending technique in order to avoid considering

the section of the crack where the fracture criterion has not yet been satisfied (blue Gauss points in Figure 1b with � < ft ). As

mentioned in the preceding, an ultra-fine mesh is required, where all Gauss points along the hypothetical crack path have met

the propagation criterion, in order to obtain a smooth force-displacement response. The results of such an approach are shown

in Figure 18. For the quadratic-quadratic case, the difference between the blue and the yellow marks shows the sensitivity of the
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FIGURE 13 Discretisation and load-displacement curve when different interpolation orders are adopted for the standard and

extended parts. Higher-order continuity (left) and the Kronecker-delta property (right) are compared through different orders

adopted for the standard and extended part. A superscript zero denotes the Bézier elements.

FIGURE 14 Double Cantilever Beam with an initial notch subjected to mode-I loading.

solution to the size of the mesh. Since the quadratic − quadratic and quadratic0 − quadratic0 show the least jagged responses,

we have used them in ensuing sections.

6.3 Infinite plate with a circular void

While several meshing techniques are available in finite element analysis, the discretisation in isogeometric analysis is less

straightforward, and may involve multi-patches even for fairly simple geometries. Since multi-patches typically require additional

care to deal with stress continuity between shared surfaces/edges, it can affect the robustness of the solution. Accordingly,

techniques such as the Finite Cell Method13 or Level Sets may be competitive for modelling, e.g., voids.

Herein, we apply the Level Set technique to a void. The geometry is given in Figure 19. Quadratic interpolation has been

adopted for both standard and extended parts. For the void level set, the degrees of freedom which correspond to control points

which have no influence on the elements of the solid, should be removed from the system of equations, and those belonging to

the elements outside the void should be treated as normal degrees of freedom, see Figure 20a. The remaining elements are those

crossed by the discontinuity (void’s edge), therefore they are partially inside the void. Control points corresponding to this type

of elements will be enriched and a weighting function should be defined to partially inactivate the section inside the void. To
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FIGURE 15 Comparison of the enrichment for different interpolation orders: (a) linear control points, (b) linear Bézier points,

(c) quadratic control points, (d) quadratic0 Bézier points, (e) cubic control points, (f) cubic0 Bézier points. Control/Bézier points

belonging to the tip element are marked in blue, while the enriched points are filled with green. Note that (a) and (b) are the

same and are only presented separately for the sake of compatibility with other cases.

this end, a step function similar to the blending Heaviside function, Equation (38), is defined, where control points inside the

void take the value 0, while those outside take the value 1.

If the discontinuity crosses an element such that it is divided disproportionally (e.g. close to a corner), the stiffness matrix can

become singular. Defining positive and negative parts as in Figure 3 for the elements crossed by the discontinuity, enrichment

should only be done if:
AΩ−

AΩ−∪Ω+
and

AΩ+

AΩ−∪Ω+
> � (46)

where � = 10−3 has been used, since smaller values resulted in singularity of the tangent stiffness matrix. Accordingly, some

elements were exempted from the enrichment, namely the dashed magenta elements in Figure 20b, while the elements with blue

edges are enriched. Priority in enrichment for the shared control points is given to the blue-edged elements. To further clarify,

the enrichment of two adjacent elements with shared control points are illustrated in Figure 20b. We observe that the yellow

element should not be enriched, but the shared control points between this element and the green element are enriched because

of the priority given to the blue-edged element. This will result in the only magenta control point not being enriched for the

yellow element, see the specified yellow element at the right hand side of the zoom Figure 20b.

The results of the void level set approach are compared with those where the void has been modelled explicitly, also using

NURBS shape functions and show a good agreement between both approaches in terms of displacements and stresses, Figure 21.

7 MORE COMPLICATED 2D FRACTURE PROBLEMS

Below we will consider two further cases, to demonstrate the capability of the formulation to handle crack and void concurrently,

and to assess the ability to analyse the propagation of curved cracks. The traction-separation relation of (1) has been employed.
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FIGURE 16 Results of the peeling test for a DCB with the same order adopted for both standard and extended part. (a) Results

for quadratic interpolation, (b) results for quadratic0 interpolation, (c) results for cubic interpolation, (d) results for cubic0

interpolation.

7.1 Straight crack propagation: wedge splitting test

A wedge with an initial void and a notch is considered. Although the crack path is known, we allow the crack to propagate

freely. The geometry is illustrated in Figure 22 with a thickness of 400 mm. A void level set has been used to generate the

notch. Also, a 0 line has been added at the location of the force to enforce the Neumann boundary condition. The material

properties are as follows: Young’s modulus E = 28, 300 MPa, Poisson’s ratio � = 0.18, tensile ft = 2.11 MPa and fracture

energy Gf = 0.482 Nmm−1. A quadratic-quadratic has been adopted.

Figure 22 compares the current results with those obtained using an XFEM-like approach38, although a dummy stiffness was

used to keep the crack closed before crack opening, similar to interface elements. Using the same material properties, the present

results appear to be closer to the experiment.

7.2 Arbitrary crack propagation: L-shaped beam

Finally, free crack propagation is examined for an L-shaped beam, shown in Figure 23, with a thickness equal to 100 mm.

Material properties are given as: Young’s modulus E = 20 GPa, Poisson’s ratio � = 0.18, tensile strength ft = 2.5 MPa

and fracture energy Gf = 0.13 Nmm−1. A void level set has been used to generate the geometry, see Figure 23. A 0 line (in

magenta) has been added at the location of the force to easily enforce the Neumann boundary condition. The other 0 lines (in

black) have been added to align the mesh with the void in order to avoid crack-void interaction.

Based on the results of Figure 16 a quadratic0 − quadratic0 interpolation has been chosen. The difficulty of the example lies

in the role of the stress distribution, where small variations can lead to significant changes in the direction of crack propagation.

Although isogeometric analysis exploiting B-splines vastly improves the stress prediction, using a non-local averaging method as
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FIGURE 17 Comparison between (a) quadratic-quadratic, (b) cubic-cubic and (c) quartic-quartic interpolations for a Double

Cantilever Beam. The last column of control points are illustrated with the magenta marker.

detailed before can often be beneficial to improve the crack path. Indeed, the crack extension is highly sensitive to the computed

stress distribution around the crack tip39,38. In turn, the stress distribution depends on numerical issues like the length scale over

which averaging is done, the number of Gauss points and the adopted continuity order. Therefore, even non-local averaging of

stresses may not lead to sufficiently accurate measures to properly predict the crack path38. This can result in drastic changes in

the crack path which have been already reported for XFEM39,38, and can include a doubling back of the crack on its original path.

The results are shown in Figure 24. A behaviour similar to extended finite elements39 and Powell-Sabin B-splines14 is

observed. An abrupt change occurs in the propagation direction, as shown in Figure 24a, which is not the case for T-splines13.

Apart from the sensitivity of the non-local approach to find the proper crack extension direction, the order of continuity adopted
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FIGURE 18 Double Cantilever Beam with an ultra-fine mesh and all GPs for crack propagation inside an element.

FIGURE 19 Infinite plate with a circular hole subjected to tractions at the boundaries, t̄AB =
(
−�xx,−�xy

)
and t̄BC =

(
�xy, �yy

)
.

for the crack path therefore also appears to play a role. T-splines exploit their higher-order continuity property13, resulting in a

smooth crack path, as illustrated in Figure 25.

To validate the extended isogeometric analysis approach for curved crack propagation, and to examine the behaviour of the

smooth crack path, we have therefore enforced the crack path to become straight before an erratic change in the path, i.e. the

red dashed line deviating from the solid red line in Figure 24a and the cyan solid line in Figure 24c. Then, results are obtained

which are close to those obtained using Powell-Sabin B-splines, see the red dashed line in Figure 24b, while the red solid line

has been terminated around 5 KN.

8 CONCLUDING REMARKS

An extended isogeometric analysis (XIGA) procedure has been developed for cohesive fracture by adding an additional blending

technique which is also capable of locating a more realistic crack tip position inside an element. Moreover, in the direction
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FIGURE 20 Void level set for a perforated plate. (a) Control points of the elements passed by the discontinuity are enriched and

those inside the void are not; (b) Removed elements and enrichment owing to a disproportionate split: dashed magenta edges

and their corresponding control points (filled with magenta) belong to eliminated elements, while the solid blue edges indicate

the enriched elements; (c) Degrees of freedom belonging to control points inside the hole are eliminated from the system of

equations. 1 quadratic interpolation has been adopted for the standard and the extended parts.

perpendicular to the crack path, shifting has been utilised to ensure compatibility with the remainder of the mesh. To ensure

compatibility with standard finite element data structures Bézier extract has been used and in this way the method comes close

to an extended finite element method. Compared to the latter, complications ensue, however, since the higher-order continuity

of B-splines and NURBS used in extended isogeometric analysis affect more rows of elements parallel to the crack when using

a shifting technique to ensure compatibility of the cracked elements with the neighbouring elements, and since the Kronecker-

delta property does not hold anymore. The latter observation is the reason why blending has been introduced ahead of the crack

tip.

The accuracy with respect to different orders of continuity for the regular and extended parts of the displacement field has been

investigated at the hand of a simple tension test. It has been shown that, when using the same order for both parts, the extended

isogeometric analysis approach works perfectly irrespective of the order of continuity at the boundaries of the elements. For a

different order of continuity, however, Bézier points (0-continuity at element boundaries) should be used for both parts. The

differences encountered when either enriching control or Bézier points have been assessed for a peel test. The method has also

been shown to give excellent results for a plate with a hole, for crack-void interaction and for arbitrary crack propagation in an

L-shaped beam.
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FIGURE 21 Comparison between explicit modelling of the void (first row) and modelling the void using extended isogeometric

analysis (second row).

FIGURE 22 Wedge splitting test: geometry and results.
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FIGURE 23 Geometry and descretisation of the L-shaped beam: (a) exploiting void level set to form the geometry, (b) final

geometry after element removal. The magenta 0 line is added to pinpoint the load location. Black lines have been added to

align the mesh with the void.

FIGURE 24 Results for L-shaped beam: (a) crack propagation profile, (b) mechanical behaviour and (c) enrichment for the

XIGA 0 enforced case. XIGA 0 here denotes quadratic0 − quadratic0 interpolation.

How to cite this article: Fathi F., Chen L., and de Borst R. (2019), Extended isogeometric analysis for cohesive fracture, Int J

Numer Methods Eng., 2019;00:1–28.

APPENDIX

A DERIVATIVES OF BÉZIER EXTRACTION BASED NURBS BASIS FUNCTION

The first derivative of the Bernstein basis function is:

)Bk,p(�)

)�
=

1

2
p
{
Bk−1,p−1(�) + Bk,p−1(�)

}
(A1)

and the second derivative reads:

)2Bk,p(�)

)�2
=

1

4
p(p − 1)

{
Bk−2,p−2(�) − 2Bk−1,p−2(�) + Bk,p−2(�)

}
(A2)
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FIGURE 25 Effect of the order of continuity at element boundaries on the crack propagation direction: (a) 1 continuity along

the crack path for a discrete method with a smoother change than (b) 0 continuity along the crack path of XIGA. A quadratic

interpolation is used for both methods for the sake of comparison.

The bivariate Bernstein basis function can be defined as the tensor product of two univariate basis functions:

B
p,q

k,l
(�, �) = Bk,p(�)⊗Bl,q(�). (A3a)

)B
p,q

k,l
(�, �)

)�
=

1

2
p
{
Bk−1,p−1(�) + Bk,p−1(�)

}
⊗Bl,q(�) (A3b)
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(A3c)
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)�2
=

1

4
p(p − 1)

{
Bk−2,p−2(�) − 2Bk−1,p−2(�) + Bk,p−2(�)
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Next, the derivatives of the weighted function in Equation (30) are taken:

)W b(���)

)�i
= weCe )e(���)

)�i
(A4a)

)2W b(���)

)�i)�j
= weCe )

2e(���)

)�i)�j
(A4b)

where ��� =
{
�1, �2,⋯

}
= {�, �,⋯} and i, j = 1, 2,⋯ , ndim. ndim is the number of dimensions, two for a bivariate NURBS.

Finally, the derivatives of the bivariate Bézier-based NURBS basis function read:
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FIGURE B1 Finding � and � which correspond to the known physical point P(x, y) along the crack.

B POINT PROJECTION NEWTON-RAPHSON ALGORITHM

Herein, we present the point projection algorithm.

(1) Define the curve in terms of natural coordinates C(�, �) =
∑n

i=1
Ri(�, �)Xi where n and X are the number and

location of control points for an element, respectively, and R is the basis function of a NURBS.

(2) Define the residual r(�, �) = C(�, �) − P (x, y), see Fig. B1.

(3) Solve Jj�j = �j

Jj =

[
f,� f,�
g,� g,�

]
=

[ |C,� |2 + r ⋅ C,�� C,� ⋅C,� +r ⋅ C,��
C,� ⋅C,� +r ⋅ C,�� |C,� |2 + r ⋅ C,��

]

�j =

[
Δ�

Δ�

]
=

[
�j+1 − �j
�j+1 − �j

]

�j = −

[
f (�j , �j)

g(�j , �j)

]

where
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)
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)
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)�
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(
n∑
i=1

Ri(�, �)Xi − P (x, y)

)
⋅

n∑
i=1
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|C,� |2 + r ⋅ C,�� = |
n∑
i=1

)Ri(�, �)

)�
Xi|2 +

(
n∑
i=1

Ri(�, �)Xi − P (x, y)

)
⋅

n∑
i=1

)2Ri(�, �)

)�2
Xi

(4) Check the criterion for convergence:

res1 = |(Δ�)C,� (�, �) + Δ�)C,� (�, �)|

res2 = |r(�, �)|

res3 =
|C,� (�, �) ⋅ r(�, �)|
|C,� (�, �)||r(�, �)|

res4 =
|C,� (�, �) ⋅ r(�, �)|
|C,� (�, �)||r(�, �)|

IF res1 ≤ �1 OR res2 ≤ �1 OR res3 ≤ �2 and res4 ≤ �2
∙ �j , �j are accepted as final solution

ELSE

∙ Calculation continues for j + 1 with two new criterion

IF �j < −1

∙ set �j = 1 − (−1 − �j)

ELSEIF �j > 1

∙ set �j = −1 + (�j − 1)

END

IF �j < −1

∙ set �j = 1 − (−1 − �j)

ELSEIF �j > 1

∙ set �j = −1 + (�j − 1)

END

∙ Return to (1)

END
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