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Abstract

The Benjamin-Bona-Mahony equation has improved short-wavelength behaviour,
as compared to the Korteweg-de Vries equation, and is another uni-directional wave
equation with cnoidal wave solutions. Cnoidal wave solutions can appear in other
applications than surface gravity waves as well, for instance to describe ion acoustic
waves in plasma physics. Using a computerized symbolic computation technique, we
construct the interesting Jacobi doubly periodic wave solutions for these equations
by applying the extended Jacobi elliptic function expansion method.
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1 Introduction

The Benjamin-Bona-Mahony equation (BBME) was first introduced by Benjamin et al.

[1] as an improvement of the Korteweg-de Vries equation (KdV) for modeling long waves

of small amplitude in 1+1 dimensions. They show the stability and uniqueness of solutions

to the BBM equation. This contrasts with the KdV equation, which is unstable in its high

wave number components. The BBM equation describes the uni-directional propagation

of small-amplitude long waves on the surface of water in a channel.

The BBM equation is not only convenient for shallow water waves but also for hydro-

magnetic and acoustic waves, and therefore it has some advantages compared with the

KdV equation [2]. The BBM equation can be writen in the form:

ut + ux + auux + uxxt = 0, where a is constant. (1.1)
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The second equation, we study in this paper, is the modified BBME (MBBME):

ut + ux + au2ux + uxxt = 0, where a is constant. (1.2)

The existence of the solutions of initial value problems for the mBBM equation has been

considered in [3]. Many solutions obtained for MBBME using a several methods such as

the tanh and the sine-cosine methods [4], and the hyperbolic auxiliary function method [5],

the first integral method [6], the homogeneous balance method [7], an algebraic method [8],

the variable-coefficient balancing-act method [9] and the Jacobi elliptic function expansion

method [10].

Nonlinear problems are of interest to engineers, physicists and mathematicians because

most physical systems are inherently nonlinear in nature. Nonlinear partial differential

equations (NPDEs) are difficult to solve and give rise to interesting phenomena such

as chaos. The exact solutions of these NPDEs plays an important role in the study of

nonlinear phenomena. In the past decades, many methods were developed for finding

exact solutions of NPDEs as Hirota’s bilinear method [11], new similarity transformation

method [12], homogeneous balance method [13], extended hyperbolic function method

[14], Exp-function method [15, 16], tanh function methods [17, 19], Jacobi and Weierstrass

elliptic function method [20, 21]. . . etc.

In this paper, we extend the extended JEF method with symbolic computation to such

special equations for constructing their interesting Jacobi doubly periodic wave solutions.

It is shown that soliton solutions and triangular periodic solutions can be established as

the limits of Jacobi doubly periodic wave solutions. In addition the algorithm that we

use here also a computerized method, in which generating an algebraic system. Two key

procedures and laborious to do by hand. But they can be implemented on a computer with

the help of mathematica. The outputs of solving the algebraic system from a computer

comprise a list of constants. In general if any of the parameters is left unspecified. We

only consider the expansion in terms of the Jacobi functions snξ and cnξ. Further studies

show that different Jacobi function expansions may lead to new periodic wave solutions.

2 Extended Jacobi elliptic function method

In this section, we introduce a simple description of the extended JEF method, for a given

partial differential equation

G(u, ux, uy, ut, uxy, ...) = 0. (2.1)

We like to know whether travelling waves (or stationary waves) are solutions of Eq. (2.1).

The first step is to unite the independent variables x, y and t into one particular variable

through the new variable

ζ = x + y + νt, u(x, y, t) = U(ζ),
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where ν is the wave speed, reduce Eq. (2.1) to an ordinary differential equation (ODE)

G(U, U
′
, U

′′
, U

′′′
, ...) = 0. (2.2)

Our main goal is to find exact or at least approximate solutions, if possible, for this ODE.

For this purpose, using the extended Jacobi elliptic function expansion method, U(ζ) can

be expressed as a finite series of JEF, snζ,

u(x, y) = U(ζ) =
N∑

i=0

aisn(ζ)i +
N∑

i=1

a−isn(ζ)−i. (2.3)

The parameter N is determined by balancing the linear term(s) of highest order with the

nonlinear one(s). And

cn2(ζ) = 1 − sn2(ζ), dn2(ζ) = 1 − m2sn2(ζ), (2.4)

d

dζ
snζ = cnζdnζ,

d

dζ
cnζ = −snζdnζ,

d

dζ
dnζ = −m2snζcnζ, (2.5)

where cnζ and dnζ are the Jacobi elliptic cosine function and the JEF of the third kind,

respectively, with the modulus m (0 < m < 1). Since the highest degree of dpU
dζp is taken

as

O(
dpU

dζp
) = N + p, p = 1, 2, 3, · · · , (2.6)

O(U q dpU

dζp
) = (q + 1)N + p, q = 0, 1, 2, · · · , p = 1, 2, 3, · · · . (2.7)

Normally N is a positive integer, so that an analytic solution in closed form may be

obtained. Substituting Eqs. (2.3)-(2.7) into Eq. (2.2) and comparing the coefficients of

each power of snζ in both sides, to get an over-determined system of nonlinear algebraic

equations with respect to ν, ai and a−i, i = 1, · · · , N . Solving the over-determined system

of nonlinear algebraic equations by use of Mathematica. We can get other kinds of Jacobi

doubly periodic wave solutions.

When m−→1, the Jacobi functions degenerate to the hyperbolic functions,

snζ −→ tanhζ, cnζ −→ sechζ and dnζ −→ sechζ.

When m −→ 0, the Jacobi functions degenerate to the triangular functions,

snζ −→ sinζ, cnζ −→ cosζ and dn −→ 1.
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3 Benjamin-Bona-Mahony equation

We first consider the BBME in the following form:

ut + ux + auux + uxxt = 0. (3.1)

If we use the transformations

u(x, t) = U(ζ), ζ = x + νt. (3.2)

It carries Eq. (3.1) to the ODE,

νU
′′′

+ aUU
′
+ (ν + 1)U

′
= 0. (3.3)

where by integrating once we obtain, upon setting the constant of integration to zero,

νU
′′

+
a

2
U2 + (ν + 1)U = 0. (3.4)

Balancing the term U
′′

with the term U2 we obtain N = 2 then

U(ζ) =
2∑

i=0

aisn
i(ζ) +

2∑
i=1

a−i(sn(ζ))−i. (3.5)

Substituting Eq. (3.5) into Eq. (3.4) and comparing the coefficients of each power of

sn(ζ) in both sides, getting an over-determined system of nonlinear algebraic equations

with respect to ν, ai; i = 0, 1, −1, 2, −2. Solving the over-determined system of nonlinear

algebraic equations using Mathematica, we obtain three groups of constants:

a)

a−1 = a1 = a2 = 0, a−2 =
12

a(1 ± 4
√

1 − m2 + m4)
, ν =

1

−1 ∓ 4
√

1 − m2 + m4

and a0 =
12m2

a(±(5m2 − 4m4 − 3) + (3 + 4m2)
√

1 − m2 + m4)
,

(3.6)

b)

a−1 = a1 = a−2 = 0, a2 =
12m2

a(1 ± 4
√

1 − m2 + m4)
, ν =

1

−1 ∓ 4
√

1 − m2 + m4

and a0 =
12m2

a(±(5m2 − 4m4 − 3) + (3 + 4m2)
√

1 − m2 + m4)
,

(3.7)
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c)

a−1 = a1 = 0, a2 =
12m2

a(1 + 4
√

1 + 14m2 + m4)
, a−2 =

12

a(1 + 4
√

1 + 14m2 + m4)
,

ν =
1

−1 − 4
√

1 + 14m2 + m4
and a0 =

48m2

a((3 + 4m2)
√

1 + 14m2 + m4 − (3 + 55m2 + 4m4)
.

(3.8)

d)

a−1 = a1 = 0, a2 =
12m2

a(1 − 4
√

1 + 14m2 + m4)
, a−2 =

12

a(1 − 4
√

1 + 14m2 + m4)
,

ν =
1

−1 + 4
√

1 + 14m2 + m4
and a0 =

4((3 + 4m2)
√

1 + 14m2 + m4 − (3 + 55m2 + 4m4)

a(15 + 16m2(14 + m2))
.

(3.9)

We find the following solutions of Eq. (3.4)

a)

U1 =
12m2

a(±(5m2 − 4m4 − 3) + (3 + 4m2)
√

1 − m2 + m4)

+
12

a(1 ± 4
√

1 − m2 + m4)
(snζ)−2,

(3.10)

b)

U2 =
12m2

a(±(5m2 − 4m4 − 3) + (3 + 4m2)
√

1 − m2 + m4)

+
12m2

a(1 ± 4
√

1 − m2 + m4)
(snζ)2,

(3.11)

c)

U3 =
48m2

a((3 + 4m2)
√

1 + 14m2 + m4 − (3 + 55m2 + 4m4)

+
12

a(1 + 4
√

1 + 14m2 + m4)
[m2(snζ)2 + (snζ)−2].

(3.12)

d)

U4 =
4((3 + 4m2)

√
1 + 14m2 + m4 − (3 + 55m2 + 4m4)

a(15 + 16m2(14 + m2))

+
12

a(1 − 4
√

1 + 14m2 + m4)
[m2(snζ)2 + (snζ)−2].

(3.13)
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Then the solutions of the BBME (3.1) are:

u1 =
12m2

a(±(5m2 − 4m4 − 3) + (3 + 4m2)
√

1 − m2 + m4)

+
12

a(1 ± 4
√

1 − m2 + m4)
(sn(x +

1

−1 ∓ 4
√

1 − m2 + m4
t))−2,

(3.14)

u2 =
12m2

a(±(5m2 − 4m4 − 3) + (3 + 4m2)
√

1 − m2 + m4)

+
12m2

a(1 ± 4
√

1 − m2 + m4)
(sn(x +

1

−1 ∓ 4
√

1 − m2 + m4
t))2,

(3.15)

u3 =
48m2

a((3 + 4m2)
√

1 + 14m2 + m4 − (3 + 55m2 + 4m4)
+

12

a(1 + 4
√

1 + 14m2 + m4)

× [m2(sn(x +
1

−1 − 4
√

1 + 14m2 + m4
t))2 + (snx +

1

−1 − 4
√

1 + 14m2 + m4
t)−2].

(3.16)

u4 =
4((3 + 4m2)

√
1 + 14m2 + m4 − (3 + 55m2 + 4m4)

a(15 + 16m2(14 + m2))
+

12

a(1 − 4
√

1 + 14m2 + m4)

× [m2(sn(x +
1

−1 + 4
√

1 + 14m2 + m4
t))2 + (sn(x +

1

−1 + 4
√

1 + 14m2 + m4
t))−2].

(3.17)

The modulus of solitary wave solution u1 (Eq. 3.14) and u2 (Eq. 3.15) are displayed

in figures 1 and 2 respectively, with values of parameters listed in their captions.

4 Modified Benjamin-Bona-Mahony equation

We first consider the MBBME in the following form:

ut + ux + au2ux + uxxt = 0. (4.1)

If we use the transformations

u(x, t) = U(ζ), ζ = x + νt. (4.2)

It carries Eq. (4.1) to the ODE,

νU
′′′

+ aU2U
′
+ (ν + 1)U

′
= 0. (4.3)
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Where by integrating once we obtain, upon setting the constant of integration to zero,

νU
′′

+
a

3
U3 + (ν + 1)U = 0. (4.4)

Balancing the term U
′′

with the term U3 we obtain N = 1 then

U(ζ) =
1∑

i=0

aisn
i(ζ) +

1∑
i=1

a−i(sn(ζ))−i. (4.5)

Proceeding as in the previous case we obtain

a)

a−1 = a0 = 0, a1 = ±i

√
6

a
and ν =

1

m2
, (4.6)

b)

a0 = 0, a1 = ±m

√
6

a(6 − m)m
, a−1 = ∓

√
6

a(m − 6)m
and ν =

1

a(6 − m)m

(4.7)

c)

a0 = 0, a1 = ±mi

√
6

a(6 + m)m
, a−1 = ±i

√
6

a(m + 6)m
and ν =

1

a(6 + m)m

(4.8)

We find the following solutions of Eq. (4.1)

a)

U1 = ±i

√
6

a
snζ, (4.9)

b)

U2 = ∓
√

6

a(m − 6)m
[msnζ − snζ ], (4.10)

c)

U3 = ∓i

√
6

a(m + 6)m
[msnζ + snζ ]. (4.11)
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Then the solutions of the BBME (4.1) are:

u1 = ±i

√
6

a
sn(x +

1

m2
t), (4.12)

u2 = ∓
√

6

a(m − 6)m
[msn(x +

1

a(6 − m)m
t) − sn(x +

1

a(6 − m)m
t)], (4.13)

u3 = ∓i

√
6

a(m + 6)m
[msn(x +

1

a(6 + m)m
t) + sn(x +

1

a(6 + m)m
t)]. (4.14)

5 Conclusion

We extend the extended JEF method with symbolic computation to two nonlinear equa-

tions for constructing their interesting Jacobi doubly periodic wave solutions. It is shown

that soliton solutions and triangular periodic solutions can be established as the limits of

Jacobi doubly periodic wave solutions. When m−→1, the Jacobi functions degenerate to

the hyperbolic functions and given the solutions by the extended the hyperbolic functions

methods. When m −→ 0, the Jacobi functions degenerate to the triangular functions

and given the solutions by extended triangular functions methods. Moreover we can find

a several solutions by By replacing sn ξ in the expansion (2.3) by other kinds of Jacobi

functions and repeating the same process as before.
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Fig. 1 The modulus of solitary wave solution u1 (Eq. 3.14) where m = a = 0.5
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Fig. 2 The modulus of solitary wave solution u2 (Eq. 3.15) where m = a = 0.5


