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Extended Kalman Filtering Based Parameter Estimation and Drift Compensation for A MEMS Rate 

Integrating Gyroscope 

 

Zhongxu Hu, Barry J Gallacher 

School of Mechanical and System Engineering, Newcastle University, Newcastle upon Tyne, UK 

 

Abstract:   

This paper presents an offline extended Kalman filtering based parameter identification and drift compensation 

for a MEMS ring vibratory gyroscope. Damping and stiffness imperfections are the major error sources in MEMS 

vibratory gyroscopes.  In the rate integrating operation mode, where angle is output instead of angular velocity 

as in the case of the rate gyroscope, parameter identification is an essential prerequisite for any feedback control 

and compensation algorithm to minimize angle drift and other errors. The proposed EKF method provides five 

estimates for the resonator DC loop gain, and another four parameters related to the non-proportional damping 

and aniso-elasticities. The method is based on the slowly varying averaged dynamic model expressed in terms 

of orbital elements. The averaging methodology offers important advantages over similar attempts based 

directly on the dynamic model expressed in terms of fast time varying displacement and velocity of vibration. 

Firstly, the observed measurements are subjected to significantly lower levels of noise as a consequence of the 

narrowband demodulation process employed in the calculation of the orbital elements. Secondly, the EKF 

requires much lower update rate due to the slowly varying nature of the augmented states. These advantages 

result in a more accurate estimation, improved stability performance and the possibility for real time 

implementation of the EKF. Numerical simulation and offline implementation of the EKF using experimental 

gyroscope operation data are provided to validate the proposed method. Moreover, the identified damping 

imperfections have been used in the drift compensation control in a DSP based real time rate integrating 

gyroscope control system. Ultimately, the maximum angular drift has been reduced to 1 degree per second. 

Spectrum analysis shows the angle drift error is dominated by 4th harmonics caused by dynamics not included 

in models of the conventional gyroscope model. 
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1. Introduction 

Gyroscopes are an essential element in inertial measurement units (IMUs) and inertial navigation systems (INS) 

widely used in unmanned aerial vehicles (UAV). They are also a common component in both industrial and 

consumer electronics where they provide localization, orientation and other navigation data. The MEMS 

vibratory gyroscope is attractive because of its small size and ease of integration within a digital system. 

However, there are still major challenges, for example, structural aniso-elasticities and non-proportional 

damping caused by fabrication tolerance limits and material inhomogeneity. These imperfections result in 

undesired coupling between the vibration modes and interfere with the desired Coriolis coupling. This undesired 

coupling manifests primarily as angular drift in rate integrating gyroscopes. Theoretically, the RIG has unlimited 

bandwidth and range, though, this benefit may be compromised by bandwidth of the electronic control loops 

and communication link used to transfer sensor output. While the upper cut-off rate of RIG can be promoted by 

using fast hardware, such as FPGA based control system, the lower threshold rate that the RIG can respond to 

is determined by the precession angle dependent bias error and minimum rate threshold caused by damping 

and stiffness imperfections. Sophisticated control algorithms developed to accommodate the imperfections 

have attracted lots of research interests, such as adaptive control [1, 2], and compensation via state feedback 



control [3, 4, 5]. These control and compensation strategies require accurate modelling and real time parameter 

identification. However, parameter estimation [6-8] for MEMS vibratory gyroscope is challenging because the 

numerical values of the imperfections span at least six orders of magnitude. As reported in [9], the simple least-

squares estimation based on frequency response data often leads to biased errors. An instrumental variable 

method [10] together with perturbation theory may provide correct identification of the mass, stiffness 

matrices, and the non-proportional damping. However, this method is based on a block of input-output data, it 

is slow and not suited to real-time on line adaptive control. A nonlinear observer is proposed in [11, 12] for 

parameter estimation for angular drift compensation in a hemispherical vibratory gyroscope. The design process 

requires choices of two nonlinear functions that determine the asymptotical stability of the observer. However, 

existence of the appropriate nonlinear functions is not guaranteed. 

 

The extended Kalman filter (EKF) is a model based recursive estimation algorithm for nonlinear systems that 

provides estimate of state variables of interests. It can be readily extended to parameter identification by 

treating unknown parameters as extended state variables. It is ideally suited to parameter estimation for the 

vibratory gyroscope since the mathematical model of the gyroscope is sufficiently well known. The process is 

recursive and based only on the current measurements and prediction, making it convenient to form an adaptive 

control to compensate for imperfections in the gyroscope. The EKF uses linearization approximation for the 

nonlinear system dynamics and requires very high estimation update rate so that the errors caused by 

linearization approximation can be ignored. This is particularly challenging for MEMS vibratory gyroscopes 

where typical operation occurs at resonance frequencies in the KHz range.  

 

There are a few published reports of Kalman filtering (UKF) applied to MEMS gyroscope parameter estimation 

[13-15]. In these cases the estimation is based on the fast time varying dynamics expressed in a Cartesian 

coordinate system. The challenges faced with this approach are: Firstly, in practical applications, the observed 

measurements are subjected to severe wideband electronic noise from the preamplifier circuits. Secondly, the 

resonator of the gyroscope usually operate at resonant frequencies in the KHz range. Therefore, the sampling 

rate and update rate of estimation becomes impractically high when considered in conjunction with the heavy 

calculation costs involved in implementing the EKF. For this reason, none of these attempts provided 

experimental test results except digital simulation. 

 

This paper proposes an EKF based on the slowly varying averaged dynamic model that provides parameter 

identification for a rate integrating vibratory gyroscope. This method has advantages over the conventional EKF 

for vibratory gyroscope systems. The measurements available for the estimation process are obtained from a 

narrowband demodulation algorithm with significantly reduced noise. The system states to be estimated are 

slowly time varying thus eliminating the need for high estimation update rate without violating the linearization 

approximation condition.  

 

In order to validate the proposed EKF parameter identification and drift compensation, the EKF is tested using a 

full numerical simulation of the rate integrating gyroscope control system. In addition the EKF is tested offline 

using operational data from an actual real time controlled MEMS rate integrating gyroscope in order to assess 

the robustness of the parameter estimation to practical noisy measurements and model uncertainties in real 

gyroscope devices. Finally, the EKF estimated damping imperfection parameters are used to determine the right 

amount of state feedback in the DSP based real time control system in order to reduce the non-proportional 

damping caused angular drift error. As a result of this compensation a maximum angular drift of less than 1 

degree per second is reported. This represents the best reported performance so far for a MEMS rate integrating 

gyroscope. Furthermore, a spectrum analysis of angle output of an actual RIG shows the second harmonic 

resulting from damping imperfection has been reduced significantly by feedback compensation using the 

estimation results from the offline EKF, while the fourth harmonics remains unchanged. The results shown in 



this paper clearly reveals the existence and influence of higher order imperfections caused by the direct drive, 

gain mismatch etc. that are not covered in the conventional averaged model [19].   

 

2. Basic algorithm of EKF 

EKF is a discrete Kalman filter adapting to nonlinear system estimation through linearization. The algorithm can 

be briefly described as follows [16]. If the nonlinear dynamics of the system of interest �̇�𝑿 = 𝑓𝑓′(𝑿𝑿, 𝒖𝒖) is well 

modelled, it can be readily discretised using the well-known Euler method. The discrete form state and output 

difference equations are written as: �𝑿𝑿𝑘𝑘 = 𝑿𝑿𝑘𝑘−1 + 𝑓𝑓′(𝑿𝑿𝑘𝑘−1, 𝒖𝒖𝑘𝑘−1, 𝒘𝒘𝑘𝑘−1)∆𝑡𝑡 ≡ 𝑓𝑓(𝑿𝑿𝑘𝑘−1, 𝒖𝒖𝑘𝑘−1, 𝒘𝒘𝑘𝑘−1)𝒛𝒛𝑘𝑘 = ℎ(𝑿𝑿𝑘𝑘 , 𝒖𝒖𝑘𝑘, 𝒗𝒗𝑘𝑘)
                                        (1) 

Where 𝑿𝑿𝑘𝑘, 𝒛𝒛𝑘𝑘  represent the state variables and available output measurements respectively, 𝒖𝒖𝑘𝑘 is the control 

input vector. The terms 𝒘𝒘𝑘𝑘  and 𝒗𝒗𝑘𝑘  are zero mean process and measurement white noise, with covariance matrix 𝑄𝑄𝑘𝑘  and 𝑅𝑅𝑘𝑘 respectively. The Kalman filter generates optimal state estimate 𝑿𝑿�𝑘𝑘 with a minimum variance. It can 

be readily extended to accommodate parameter estimation by treating the parameters as auxiliary states where 𝑿𝑿𝑘𝑘 = 𝑿𝑿𝑘𝑘−1.  

The recursive computation consists of two steps:  

Step 1: prediction 

�𝑿𝑿�𝑘𝑘− = 𝑓𝑓�𝑿𝑿�𝑘𝑘−1, ℎ�𝑿𝑿�𝑘𝑘−1, 𝒖𝒖𝑘𝑘−1�, 𝒖𝒖𝑘𝑘−1, 0�𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘−1𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑊𝑊𝑘𝑘𝑄𝑄𝑘𝑘−1𝑊𝑊𝑘𝑘𝑇𝑇                                                                                  (2) 

Step 2: correction  

�𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑉𝑉𝑘𝑘𝑅𝑅𝑘𝑘𝑉𝑉𝑘𝑘𝑇𝑇)−1𝑿𝑿�𝑘𝑘 = 𝑿𝑿�𝑘𝑘− + 𝐾𝐾𝑘𝑘 �𝒛𝒛𝑘𝑘 − ℎ�𝑿𝑿�𝑘𝑘−, 𝒖𝒖𝑘𝑘 , 0��𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−                                                                                       (3)  

Here 𝑃𝑃𝑘𝑘  is the covariance of the state estimation error, 𝐴𝐴𝑘𝑘 and 𝐻𝐻𝑘𝑘  are the process and measurement Jacobians 

at step 𝑘𝑘 respectively. Matrix 𝐴𝐴 is the Jacobian matrix of the state difference equation 𝑓𝑓(𝑿𝑿𝑘𝑘−1, 𝒖𝒖𝑘𝑘−1, 𝒘𝒘𝑘𝑘−1), 

defined as: 𝐴𝐴[𝑖𝑖,𝑗𝑗] =
𝜕𝜕𝑓𝑓[𝑖𝑖]𝜕𝜕𝑿𝑿[𝑗𝑗]

(𝑿𝑿𝑘𝑘−1, 𝒖𝒖𝑘𝑘−1, 0)                                                                                                     (4) 𝐻𝐻 is the Jacobian matrix of the output function ℎ(𝑿𝑿𝑘𝑘 , 𝒖𝒖𝑘𝑘, 𝒗𝒗𝑘𝑘) with respect to 𝑿𝑿: 

 𝐻𝐻[𝑖𝑖,𝑗𝑗] =
𝜕𝜕ℎ[𝑖𝑖]𝜕𝜕𝑿𝑿[𝑗𝑗]

(𝑿𝑿𝑘𝑘 , 𝒖𝒖𝑘𝑘, 0)                                                                                                             (5) 

Similarly, 𝑊𝑊 is Jacobian matrix of 𝑓𝑓(𝑿𝑿𝑘𝑘−1, 𝒖𝒖𝑘𝑘−1, 𝒘𝒘𝑘𝑘−1) with respect to 𝒘𝒘, and 𝑉𝑉 is Jacobian matrix of partial 

derivatives of ℎ(𝑿𝑿𝑘𝑘 , 𝒖𝒖𝑘𝑘, 𝒗𝒗𝑘𝑘) with respect to  𝒗𝒗. For simplicity, in the implementation of the EKF, 𝑊𝑊, 𝑉𝑉 are seen 

as identity matrices. In order to apply the Kalman filter for parameter estimation the system dynamics must be 

established and some output measurement data must be available.  

 

3. Dynamics of the MEMS vibratory ring gyroscope 

Vibratory gyroscopes exploit Coriolis coupling between a pair of spatially orthogonal vibration modes. In the 

ideal case the two vibration modes have mode shapes related through rotation, identical natural frequencies 

and identical damping parameters. In practical devices structural imperfections always exist. As described in [17] 

if the structural imperfections can be treated as perturbations then the dynamics of the ring gyroscope, when 



centrifugal and angular acceleration terms are neglected, can be described in terms of the idealised in-plane 

flexural modes of the ring of circumferential order n by 

�𝑝𝑝�̈�𝑞�̈ + 2𝜉𝜉0𝜔𝜔0 �1 + 𝛾𝛾1 𝛾𝛾2𝛾𝛾2 1 − 𝛾𝛾1� ��̇�𝑝�̇�𝑞� + 𝜔𝜔02 �1 + 𝜇𝜇1 𝜇𝜇2𝜇𝜇2 1 − 𝜇𝜇1� �𝑝𝑝𝑞𝑞� = �𝐹𝐹𝑝𝑝 𝑚𝑚�𝐹𝐹𝑞𝑞 𝑚𝑚� � + � 2Ωz�̇�𝑞−2Ωz�̇�𝑝�                    (6) 

Here 𝑝𝑝, 𝑞𝑞 are the modal displacements of the pair of nth circumferential modes described in a rectangular 

coordinate system X, Y, Z with the Z axis corresponding to the polar axis of the ring. The X and Y axes correspond 

to the modal coordinates 𝑝𝑝 and 𝑞𝑞, respectively. The orientation of the X and Y axes are defined such that the X 

axis is aligned with respect to an arbitrary drive electrode. Most often the n=2 modes are chosen for gyroscopic 

applications. For the perfect case the natural frequency, modal mass and modal damping ratio are denoted by 𝜔𝜔0, 𝑚𝑚 and 𝜉𝜉0.  Imperfections in damping and stiffness are denoted by 𝛾𝛾1, 𝛾𝛾2 and 𝜇𝜇1, 𝜇𝜇2, respectively. Coriolis 

coupling between the modal coordinates p and q occurs when an angular velocity Ωz is applied about the polar 

axis of the ring. External electrostatic forces are denoted 𝐹𝐹𝑝𝑝, 𝐹𝐹𝑞𝑞 . Note that higher order contributions resulting 

from mass imperfections are not considered.  

 

Figure 1, (a), Schematic of micro-ring vibrating gyroscope. (b), Vibration in elliptic coordinate system. 

The state variables 𝑝𝑝, 𝑞𝑞 and excitation forces 𝐹𝐹𝑝𝑝, 𝐹𝐹𝑞𝑞 in equation (6) are only accessed and manipulated via an 

electronic interface circuit. In order to implement any control, the practical dynamic model needs to take into 

account the gains of the interface circuit. The gyroscope in this study has a planar ring structure and uses 

capacitive actuation and sensing. The electrostatic force is calculated using the energy stored in the capacitor 𝑊𝑊 =  
12 𝐶𝐶𝑉𝑉2 =

12 𝐶𝐶0 𝑑𝑑𝑑𝑑+𝑥𝑥′ 𝑉𝑉2                                                                                                                               (7) 

Here 𝑑𝑑 is the nominal gap of the capacitor, 𝑥𝑥′ is the displacement from equilibrium, 𝐶𝐶 =  𝜀𝜀 𝐴𝐴𝑑𝑑+𝑥𝑥′ and 𝐶𝐶0 = 𝜀𝜀 𝐴𝐴𝑑𝑑 are 

dynamic and nominal capacitances. The electrostatic force is  

F = − 𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥′ ≈ − 12 𝐶𝐶0𝑑𝑑 𝑉𝑉2 +
𝐶𝐶0𝑉𝑉2𝑑𝑑2 𝑥𝑥′                                                                         (8) 

The voltage 𝑉𝑉 =  𝑉𝑉𝑑𝑑𝑑𝑑 +  𝑉𝑉𝑎𝑎𝑑𝑑   in equation (8) consists of a DC bias  𝑉𝑉𝑑𝑑𝑑𝑑 and an alternating drive signal 𝑉𝑉𝑎𝑎𝑑𝑑. The 

second term has negative electrostatic spring softening effect, while the first displacement independent term is 

used as an excitation force. Since the alternating excitation voltage 𝑉𝑉𝑎𝑎𝑑𝑑  is kept much smaller than DC bias 𝑉𝑉𝑑𝑑𝑑𝑑, 

the alternative excitation force can be approximated as 𝑓𝑓𝑒𝑒 ≈ 𝜂𝜂𝑑𝑑𝑉𝑉𝑎𝑎𝑑𝑑, where  𝜂𝜂𝑑𝑑 = 𝑉𝑉𝑑𝑑𝑑𝑑 𝐶𝐶0𝑑𝑑  is the electromechanical 

conduction gain. 

The capacitive vibration sensing is described as motional current that is proportional to the velocity of vibration: 



𝑖𝑖 =  
𝜕𝜕𝐶𝐶𝑉𝑉𝜕𝜕𝜕𝜕 = 𝑉𝑉 𝜕𝜕𝐶𝐶𝜕𝜕𝜕𝜕 + 𝐶𝐶 𝜕𝜕𝑉𝑉𝜕𝜕𝜕𝜕 ≈ 𝑉𝑉𝑑𝑑𝑑𝑑 𝜕𝜕𝐶𝐶𝜕𝜕𝜕𝜕 = 𝑉𝑉𝑑𝑑𝑑𝑑 𝜕𝜕𝐶𝐶𝜕𝜕𝑥𝑥′ 𝜕𝜕𝑥𝑥′𝜕𝜕𝜕𝜕 = 𝜂𝜂𝑠𝑠 𝜕𝜕𝑥𝑥′𝜕𝜕𝜕𝜕                                                                  (9) 

An electrical signal can be extracted from this motional current by using an electronic preamplifier circuit.  A 

trans-impedance amplifier converts the motional current into vibration velocity, whilst a charge amplifier 

converts it into displacement. As this study uses a charge amplifier, the feedback capacitance together with 𝜂𝜂𝑠𝑠 

determine the detection gain. The displacement signal is described as 𝑥𝑥 =  
𝜂𝜂𝑠𝑠𝐶𝐶𝐹𝐹 𝑥𝑥′.  

The equation of motion in terms of sensed signals 𝑥𝑥, 𝑦𝑦 corresponding to the transduced displacements and the 

alternating drive voltage signals   𝑓𝑓𝑥𝑥,   𝑓𝑓𝑦𝑦 is described as 

�𝑥𝑥�̈�𝑦�̈ + 2𝜉𝜉0𝜔𝜔0 �1 + 𝛾𝛾1 𝛾𝛾2𝛾𝛾2 1 − 𝛾𝛾1� ��̇�𝑥�̇�𝑦� + 𝜔𝜔02 �1 + 𝜇𝜇1 𝜇𝜇2𝜇𝜇2 1 − 𝜇𝜇1� �𝑥𝑥𝑦𝑦� = 𝑘𝑘𝑑𝑑𝑠𝑠 �𝑓𝑓𝑥𝑥𝑓𝑓𝑦𝑦� + � 2Ωz�̇�𝑥−2Ωz�̇�𝑦�                  (10) 

The gain 𝑘𝑘𝑑𝑑𝑠𝑠 =
𝜂𝜂𝑑𝑑𝜂𝜂𝑠𝑠𝑚𝑚𝐶𝐶𝐹𝐹  is a combination of both the drive and sense electronic interface circuits. In addition to the 

four damping and stiffness imperfection parameters, the estimation algorithm must also include the gain 𝑘𝑘𝑑𝑑𝑠𝑠. 

Kalman filter based parameter estimation applied to gyroscopes are reported in the literature [13-15]. However, 

the methods reported are applied directly to the dynamic equation defined in equation (6). A major 

disadvantage of such approach is that the state variables are directly measured displacement and velocity signals 

which are subjected to severe noise contamination. Furthermore, estimation requires a very high sampling rate 

due to the fast time varying displacement and velocity state variables. In this paper, it is proposed to base the 

estimation on the amplitude and phase model. The amplitude and phase state variables are obtained by a signal 

demodulation process within a very narrow bandwidth thus improving the noise reduction. Furthermore, the 

state variables are now slowly time varying resulting in reduced sampling rate and estimation update rate. 

Consequently it is possible to implement the estimation in real time practically. 

 

4. Averaged slow varying model  

In general, the control of the vibratory rate integrating gyroscope consists of control modules for resonance 

tracking, energy sustain and quad nulling. The design and analysis of control is more conveniently performed by 

expressing the equation of motion in terms of amplitude and phase, instead of rectangular coordinates as in 

equations (6) and (10). Transformation of the equation of motion from rectangular coordinates to time averaged 

elliptic polar coordinates has been described in detail by [18-19].  

The transformation process starts by defining state variables as displacement and velocity of vibration for the 

model defined by equation (10) 

𝑢𝑢 = �𝑥𝑥𝑦𝑦�̇�𝑥�̇�𝑦�                                                    (11) 

For simplicity, the Coriolis coupling is not included in this brief description. Equation (10) can be written in state 

space vector form �̇�𝑢 = � 0 Ι−𝜔𝜔02Ι 0
� 𝑢𝑢 + �𝑓𝑓1𝑓𝑓2�                                                                                                                    (12) 

where  𝑓𝑓1 = 0,   𝑓𝑓2 =  −2𝜉𝜉0𝜔𝜔0 �1 + 𝛾𝛾1 𝛾𝛾2𝛾𝛾2 1 − 𝛾𝛾1� ��̇�𝑥�̇�𝑦� − � 0 −2Ω
2Ω 0

� ��̇�𝑥�̇�𝑦� − 𝜔𝜔02 �𝜇𝜇1 𝜇𝜇2𝜇𝜇2 −𝜇𝜇1� �𝑥𝑥𝑦𝑦� + �𝑓𝑓𝑥𝑥𝑓𝑓𝑦𝑦�                  (13) 

 

The coordinate transformation expresses the system equation in terms of slow time varying orbital elements 

described in figure 1b, which are defined as: 



𝑧𝑧 = �𝑎𝑎𝑏𝑏𝜃𝜃𝜑𝜑�            (14) 

 

Here 𝜑𝜑 denotes the phase shift between the resultant drive 𝐹𝐹𝑎𝑎 and response component 𝑎𝑎(𝑡𝑡) in the major axis. 

The transformation from state vector  𝑢𝑢 in the rectangular coordinate system to state vector 𝑧𝑧 in the elliptic 

polar coordinate system is denoted as 𝑢𝑢 = 𝑔𝑔(𝑡𝑡, 𝑧𝑧), refereeing to figure 1, which is described as  

 𝑥𝑥(𝑡𝑡) = 𝑎𝑎 cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑) − 𝑏𝑏 sin 𝜃𝜃 sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑)      (15) 𝑦𝑦(𝑡𝑡) = 𝑎𝑎 sin 𝜃𝜃 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑) + 𝑏𝑏 cos 𝜃𝜃 sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑) �̇�𝑥(𝑡𝑡) = 𝜔𝜔(−𝑎𝑎 cos 𝜃𝜃 sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑) − 𝑏𝑏 sin 𝜃𝜃 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑)) �̇�𝑦(𝑡𝑡) = 𝜔𝜔(−𝑎𝑎 sin 𝜃𝜃 sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑) + 𝑏𝑏 cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑)) 

 

Equation (10) can be rewritten in terms of the slowly time varying orbital elements using the transformation 

defined by equation (15).  �̇�𝑎 = −𝑎𝑎𝜉𝜉0𝜔𝜔0(1 + 𝛾𝛾1 cos 2𝜃𝜃 + 𝛾𝛾2 sin 2𝜃𝜃) − 12 𝑏𝑏𝜔𝜔0(𝜇𝜇1 sin 2𝜃𝜃 −  𝜇𝜇2 cos 2𝜃𝜃) + 𝑓𝑓𝑎𝑎                               (16) 

�̇�𝑏 = −𝑏𝑏𝜉𝜉0𝜔𝜔0(1 − 𝛾𝛾1 cos 2𝜃𝜃 − 𝛾𝛾2 sin 2𝜃𝜃) +
12 𝑎𝑎𝜔𝜔0(𝜇𝜇1 sin 2𝜃𝜃 −  𝜇𝜇2 cos 2𝜃𝜃) + 𝑓𝑓𝑏𝑏                               (17) 

�̇�𝜃 = −Ω𝑧𝑧 +
a2+b2a2−b2 𝜉𝜉0𝜔𝜔0(𝛾𝛾1 sin 2𝜃𝜃 − 𝛾𝛾2 cos 2𝜃𝜃) − aba2−b2 𝜔𝜔0(𝜇𝜇1 cos 2θ + 𝜇𝜇2 sin 2𝜃𝜃) + 𝑓𝑓𝜃𝜃                  (18) 

�̇�𝜑 =
12 𝜔𝜔0 a2+b2a2−b2 (𝜇𝜇1 cos 2θ +  𝜇𝜇2 sin 2𝜃𝜃) +

𝑎𝑎𝑏𝑏a2−b2 2𝜉𝜉0𝜔𝜔0(−𝛾𝛾1 sin 2𝜃𝜃 + 𝛾𝛾2 cos 2𝜃𝜃) + ω0 − 𝜔𝜔 + 𝑓𝑓𝜙𝜙    (19) 

Where 𝑓𝑓𝑎𝑎, 𝑓𝑓𝑏𝑏 , 𝑓𝑓𝜃𝜃 , 𝑓𝑓𝜙𝜙 are effective forces on the elliptic elements caused by 𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦, they have the form of 

proportional velocity and skew symmetric displacement feedback [20, 21] for energy sustain and quad nulling 

respectively. 

�𝑓𝑓𝑥𝑥𝑓𝑓𝑦𝑦� = 𝛽𝛽 �1 0

0 1
� ��̇�𝑥�̇�𝑦� + 𝛼𝛼 � 0 1−1 0

� �𝑥𝑥𝑦𝑦�                                                                                                 (20) 

The effective forces in the elliptic frame are described as:  𝑓𝑓𝑎𝑎 =  −𝑘𝑘𝑑𝑑𝑠𝑠 �12 𝑎𝑎𝛽𝛽 − 12𝜔𝜔 𝑏𝑏𝛼𝛼� 𝑠𝑠𝑖𝑖𝑠𝑠 𝜑𝜑                                                                                                                     (21) 

𝑓𝑓𝑏𝑏 = −𝑘𝑘𝑑𝑑𝑠𝑠 �12 𝑏𝑏𝛽𝛽 − 12𝜔𝜔 𝑎𝑎𝛼𝛼� sin 𝜑𝜑                                                                                                           (22) 

𝑓𝑓𝜃𝜃 = −𝑘𝑘𝑑𝑑𝑠𝑠 𝛼𝛼2𝜔𝜔 cos 𝜑𝜑                                                                                                                                (23) 

𝑓𝑓𝜙𝜙 = −𝑘𝑘𝑑𝑑𝑠𝑠 �𝛽𝛽2 +
𝑎𝑎𝑏𝑏2𝜔𝜔(a2−b2)

𝛼𝛼� cos 𝜑𝜑                                                                                                        (24) 

Equations (21) - (24) show the equivalent forces on the averaged model are affected by the locked orbital 

phase 𝜑𝜑. A digital PLL is implemented based on a DSP that is able to lock the orbital phase to -90 degrees with 

an error less than 0.05 degrees. When the resonance tracking control has kept the orbital phase 𝜑𝜑 = − 𝜋𝜋2, 𝑓𝑓𝜃𝜃 and 𝑓𝑓𝜙𝜙 become zero. It means the control of form (20) do not interfere neither with the precession angle nor the 

resonance frequency. Both forces 𝑓𝑓𝑎𝑎, 𝑓𝑓𝑏𝑏 reach maximum at resonance.  

In order to implement the feedback controls in the elliptic coordinate system, it is necessary to accurately 

measure the four state variables. The capacitive sensing circuit measures the displacement of the two vibration 

modes 𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡). Each of the vibration signals is decomposed into a pair of in-phase and quadrature 

components via a digital signal orthogonal demodulation process:  



 �𝑥𝑥(𝑡𝑡) = 𝐶𝐶𝑥𝑥 cos(𝜔𝜔𝑡𝑡) + 𝑆𝑆𝑥𝑥 sin(𝜔𝜔𝑡𝑡)𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑦𝑦 cos(𝜔𝜔𝑡𝑡) + 𝑆𝑆𝑦𝑦 sin(𝜔𝜔𝑡𝑡)
                                                                                                                     (25) 

The demodulation results   𝐶𝐶𝑥𝑥, 𝑆𝑆𝑥𝑥 , 𝐶𝐶𝑦𝑦 , 𝑆𝑆𝑦𝑦 are slow time varying comparing with the displacements, and they have 

significantly less noise because of the low pass filtering used in the narrow band demodulation process.    

Combining equations (15) and (25), there are five invariables [19] can be calculated using the demodulation 

results  𝐶𝐶𝑥𝑥 , 𝑆𝑆𝑥𝑥, 𝐶𝐶𝑦𝑦 , 𝑆𝑆𝑦𝑦: 

⎩⎪⎪⎨
⎪⎪⎧𝑄𝑄 = 2�𝐶𝐶𝑥𝑥𝑆𝑆𝑦𝑦 − 𝐶𝐶𝑦𝑦𝑆𝑆𝑥𝑥� = 2𝑎𝑎𝑏𝑏𝑆𝑆 = 2�𝐶𝐶𝑥𝑥𝐶𝐶𝑦𝑦 + 𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦� = (𝑎𝑎2 − 𝑏𝑏2) sin 2𝜃𝜃𝑅𝑅 = 𝐶𝐶𝑥𝑥2 + 𝑆𝑆𝑥𝑥2 − 𝐶𝐶𝑦𝑦2 − 𝑆𝑆𝑦𝑦2 = (𝑎𝑎2 − 𝑏𝑏2) cos 2𝜃𝜃𝐿𝐿𝑅𝑅 = 𝐶𝐶𝑥𝑥2 − 𝑆𝑆𝑥𝑥2 + 𝐶𝐶𝑦𝑦2 − 𝑆𝑆𝑦𝑦2 = (𝑎𝑎2 − 𝑏𝑏2) cos 2𝜑𝜑𝐿𝐿𝐼𝐼 = 2�𝐶𝐶𝑥𝑥𝑆𝑆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑆𝑆𝑦𝑦� = (𝑎𝑎2 − 𝑏𝑏2) sin 2𝜑𝜑

                                                                                       (26) 

The “slow” time-varying variables of the vibration, the amplitudes  𝑎𝑎, 𝑏𝑏, phase 𝜑𝜑 and precession angle  𝜃𝜃, are 

readily calculated from the five invariables. Thereafter, they are used in the control of the sensor system and as 

sensor output. Lynch’s method described in [19][5] uses the total energy and angular momentum. In this paper, 

the amplitudes  𝑎𝑎, 𝑏𝑏, phase 𝜑𝜑 are directly chosen as the controlled variables for the amplitude, quad, and 

frequency locking loops respectively. Note that the forces in equations (21) -(24) are equivalent (time averaged) 

forces projected on the elliptic frame from the state feedback control (20), which is implemented in the x-y 

frame by the driving electrodes.  

The actual implementation of state feedback control (20) relies on the reconstruction of system 

states [𝑥𝑥, 𝑦𝑦, �̇�𝑥, �̇�𝑦]. Given the measurement results 𝑎𝑎, 𝑏𝑏, 𝜃𝜃, 𝜑𝜑 and the internal phase reference sin(𝜔𝜔𝑡𝑡) cos(𝜔𝜔𝑡𝑡), , 

the system states are readily reconstructed using equation (15). When the PLL is locked, 

 ⎩⎨
⎧𝑥𝑥(𝑡𝑡) = 𝑎𝑎 cos 𝜃𝜃 sin(𝜔𝜔𝑡𝑡) + 𝑏𝑏 sin 𝜃𝜃 cos(𝜔𝜔𝑡𝑡)𝑦𝑦(𝑡𝑡) = 𝑎𝑎 sin 𝜃𝜃 sin(𝜔𝜔𝑡𝑡) − 𝑏𝑏 cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡)�̇�𝑥(𝑡𝑡) = 𝜔𝜔(𝑎𝑎 cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡) − 𝑏𝑏 sin 𝜃𝜃 sin(𝜔𝜔𝑡𝑡))�̇�𝑦(𝑡𝑡) = 𝜔𝜔(𝑎𝑎 sin 𝜃𝜃 cos(𝜔𝜔𝑡𝑡) + 𝑏𝑏 cos 𝜃𝜃 sin(𝜔𝜔𝑡𝑡))

      (27) 

The feedback control (20) is therefore readily formed as combination of the internal phase reference, 

measurements of the orbiting elements and control gains 𝛽𝛽 and 𝛼𝛼: 

�𝑓𝑓𝑥𝑥 = �−�̂�𝛽𝑏𝑏 + 𝛼𝛼𝑎𝑎� sin 𝜃𝜃 sin(𝜔𝜔𝑡𝑡) + ��̂�𝛽𝑎𝑎 − 𝛼𝛼𝑏𝑏� cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡)𝑓𝑓𝑦𝑦 = −�−�̂�𝛽𝑏𝑏 + 𝛼𝛼𝑎𝑎� cos 𝜃𝜃 sin(𝜔𝜔𝑡𝑡) + ��̂�𝛽𝑎𝑎 − 𝛼𝛼𝑏𝑏� sin 𝜃𝜃 cos(𝜔𝜔𝑡𝑡)
    (28) 

Here �̂�𝛽 = 𝛽𝛽𝜔𝜔, gains 𝛽𝛽, 𝛼𝛼 are respectively the outputs of two conventional PID control loops used to stabilize the 

amplitude of the major axis 𝑎𝑎 to a specified value, and to suppress the minor axis 𝑏𝑏. The same procedure applies 

for the formulations of angular steering and feedback compensation, as detailed in [4].  

The digital control system based on the averaged model (16)-(19), and principle of measurements (25)-(26) is 

described in the block diagram of figure 2. It consists of three control loops for resonance control, vibration 

sustaining and quad nulling. It also features a module for precession angle steering for the purposes of tuning 

and calibration. This RIG control system is implemented on a high performance DSP platform. 



 

Figure 2, Block diagram of the gyroscope control system. 

As shown in equation (18), when amplitude of the minor axis 𝑏𝑏 is minimized by quad nulling, the influence of 

stiffness imperfections 𝜇𝜇1, 𝜇𝜇2 on angular precession is negligible for small frequency split gyros [17]. Angle drift 

is mainly caused by damping imperfections  𝛾𝛾1, 𝛾𝛾2 [5][22]. Setting the right amount of compensation is the key 

to reduce the damping imperfection caused angle drift. In this paper, EKF is only a way to find the unknown 

parameters, so that we can set the correct gain for the velocity feedback to compensate for the damping 

imperfections. The EKF does not replace the PID control loops for the control of the major axis, minor axis and 

resonance tracking. 

 

5. EKF implementation 

The objective of the EKF is to estimate the augmented states [𝑎𝑎(𝑡𝑡), 𝑏𝑏(𝑡𝑡), 𝛾𝛾1, 𝛾𝛾2, 𝜇𝜇1, 𝜇𝜇2, 𝑘𝑘𝑠𝑠]′ corresponding to the 

major and minor axes of the ellipse, stiffness and damping imperfections, and the gain of the resonator. The EKF 

uses two measurements, [𝑎𝑎, 𝑏𝑏]′, in the estimation process. Note here the precession angle 𝜃𝜃 is seen as a known 

parameter to the EKF, although it is varying due to precession caused by external rate input. The two control 

inputs are the feedback gains for vibration sustaining and quad nulling, 𝛽𝛽 and 𝛼𝛼. By applying the Euler method 

with a sampling rate Δ𝑡𝑡, the discrete model for the estimation system is described as: 

⎩⎪⎪
⎨⎪
⎪⎧𝑎𝑎𝑘𝑘 = f ′𝑎𝑎�𝑎𝑎𝑘𝑘−1, 𝑏𝑏𝑘𝑘−1, 𝛾𝛾1,𝑘𝑘 , 𝛾𝛾2,𝑘𝑘 , 𝜇𝜇1,𝑘𝑘, 𝜇𝜇2,𝑘𝑘 , 𝑘𝑘𝑠𝑠,𝑘𝑘 , Δ𝑡𝑡 � + 𝑤𝑤1𝑏𝑏𝑘𝑘 = f ′𝑏𝑏�𝑎𝑎𝑘𝑘−1, 𝑏𝑏𝑘𝑘−1, 𝛾𝛾1,𝑘𝑘  , 𝛾𝛾2,𝑘𝑘, 𝜇𝜇1,𝑘𝑘, 𝜇𝜇2,𝑘𝑘 , 𝑘𝑘𝑠𝑠,𝑘𝑘, Δ𝑡𝑡 � + 𝑤𝑤2𝛾𝛾1,𝑘𝑘 = 𝛾𝛾1,𝑘𝑘−1 + 𝑤𝑤3𝛾𝛾2,𝑘𝑘 =  𝛾𝛾2,𝑘𝑘−1 + 𝑤𝑤4𝜇𝜇1,𝑘𝑘 = 𝜇𝜇1,𝑘𝑘−1 + 𝑤𝑤5𝜇𝜇2,𝑘𝑘 = 𝜇𝜇2,𝑘𝑘−1 + 𝑤𝑤6𝑘𝑘𝑠𝑠,𝑘𝑘 = 𝑘𝑘𝑠𝑠,𝑘𝑘−1 + 𝑤𝑤7

                                                                                (29) 

Here  

f ′𝑎𝑎�𝑎𝑎𝑘𝑘−1, 𝑏𝑏𝑘𝑘−1, 𝛾𝛾1,𝑘𝑘  , 𝛾𝛾2,𝑘𝑘, 𝜇𝜇1,𝑘𝑘, 𝜇𝜇2,𝑘𝑘 , 𝑘𝑘𝑠𝑠,𝑘𝑘, Δ𝑡𝑡 � = 𝑎𝑎𝑘𝑘−1 + �−𝑎𝑎𝑘𝑘−1𝜉𝜉0𝜔𝜔0�1 + 𝛾𝛾1,𝑘𝑘−1 cos 2𝜃𝜃 + 𝛾𝛾2,𝑘𝑘−1 sin 2𝜃𝜃� −12 𝑏𝑏𝑘𝑘−1𝜔𝜔0�𝜇𝜇1,𝑘𝑘−1 sin 2𝜃𝜃 −  𝜇𝜇2,𝑘𝑘−1 cos 2𝜃𝜃� +  𝑘𝑘𝑑𝑑𝑠𝑠,𝑘𝑘−1 �12 𝑎𝑎𝑘𝑘−1𝛽𝛽 − 12𝜔𝜔 𝑏𝑏𝑘𝑘−1𝛼𝛼��Δ𝑡𝑡 + 𝑤𝑤1                                 

f ′𝑏𝑏�𝑎𝑎𝑘𝑘−1, 𝑏𝑏𝑘𝑘−1, 𝛾𝛾1,𝑘𝑘 , 𝛾𝛾2,𝑘𝑘, 𝜇𝜇1,𝑘𝑘, 𝜇𝜇2,𝑘𝑘 , 𝑘𝑘𝑠𝑠,𝑘𝑘 , Δ𝑡𝑡 � = 𝑏𝑏𝑘𝑘−1 + �−𝑏𝑏𝑘𝑘−1𝜉𝜉0𝜔𝜔0�1 − 𝛾𝛾1,k−1 cos 2𝜃𝜃 − 𝛾𝛾2,k−1 sin 2𝜃𝜃� +12 𝑎𝑎𝑘𝑘−1𝜔𝜔0�𝜇𝜇1,𝑘𝑘−1 sin 2𝜃𝜃 −  𝜇𝜇2,𝑘𝑘−1 cos 2𝜃𝜃� +  𝑘𝑘𝑑𝑑𝑠𝑠,𝑘𝑘−1 �12 𝑏𝑏𝑘𝑘−1𝛽𝛽 −  
12𝜔𝜔 𝑎𝑎𝑘𝑘−1𝛼𝛼�� Δ𝑡𝑡 + 𝑤𝑤2    

The Jacobian matrix A is given by: 
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Energy
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φ
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PACW

SCW
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PLL
tωsin

tωcos

Artificial

rate

Control

synthesis

&

modulation

xF

yF A/D

tωsin

Demo

tωcos

xy-ab

Trans

xI

yQ

xQ

yI

COMP

xF

yF

β

2121
ˆ,ˆ,ˆ,ˆ µµγγ

Ω

α

tωcostωsin
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⎣⎢⎢
⎢⎢⎢
⎢⎢⎡𝐴𝐴11 𝐴𝐴12 −𝑎𝑎𝑘𝑘−1𝜉𝜉0𝜔𝜔0Δ𝑡𝑡 cos 2𝜃𝜃 −𝑎𝑎𝑘𝑘−1𝜉𝜉0𝜔𝜔0Δ𝑡𝑡 sin 2𝜃𝜃 − 1

2
𝑏𝑏𝑘𝑘−1𝜔𝜔0Δ𝑡𝑡 sin 2𝜃𝜃 1

2
𝑏𝑏𝑘𝑘−1𝜔𝜔0Δ𝑡𝑡 cos 2𝜃𝜃 Δ𝑡𝑡 �1

2
𝑎𝑎𝑘𝑘−1𝛽𝛽 − 1

2𝜔𝜔 𝑏𝑏𝑘𝑘−1𝛼𝛼�𝐴𝐴21 𝐴𝐴22 𝑏𝑏𝑘𝑘−1𝜉𝜉0𝜔𝜔0Δ𝑡𝑡 cos 2𝜃𝜃 𝑏𝑏𝑘𝑘−1𝜉𝜉0𝜔𝜔0Δ𝑡𝑡 sin 2𝜃𝜃 1

2
𝑎𝑎𝑘𝑘−1𝜔𝜔0Δ𝑡𝑡 sin 2𝜃𝜃 − 1

2
𝑎𝑎𝑘𝑘−1𝜔𝜔0Δ𝑡𝑡 cos 2𝜃𝜃 Δ𝑡𝑡 �1

2
𝑏𝑏𝑘𝑘−1𝛽𝛽 −  

1

2𝜔𝜔 𝑎𝑎𝑘𝑘−1𝛼𝛼�
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 

where,  𝐴𝐴11 = 1 + �−𝜉𝜉0𝜔𝜔0�1 + 𝛾𝛾1,𝑘𝑘−1 cos 2𝜃𝜃 + 𝛾𝛾2,𝑘𝑘−1 sin 2𝜃𝜃� +
12 𝑘𝑘𝑑𝑑𝑠𝑠,𝑘𝑘−1𝛽𝛽� Δ𝑡𝑡                                    (30) 𝐴𝐴12 = �− 12 𝜔𝜔0�𝜇𝜇1,𝑘𝑘−1 sin 2𝜃𝜃 −  𝜇𝜇2,𝑘𝑘−1 cos 2𝜃𝜃�− 12𝜔𝜔 𝑘𝑘𝑑𝑑𝑠𝑠,𝑘𝑘−1𝛼𝛼� Δ𝑡𝑡                                                           (31) 𝐴𝐴21 = �12 𝜔𝜔0�𝜇𝜇1,𝑘𝑘−1 sin 2𝜃𝜃 −  𝜇𝜇2,𝑘𝑘−1 cos 2𝜃𝜃� − 12𝜔𝜔 𝑘𝑘𝑑𝑑𝑠𝑠,𝑘𝑘−1𝛼𝛼� Δ𝑡𝑡                                                              (32) 𝐴𝐴22 = 1 + �−𝜉𝜉0𝜔𝜔0�1 − 𝛾𝛾1,k−1 cos 2𝜃𝜃 − 𝛾𝛾2,k−1 sin 2𝜃𝜃� +
12 𝑘𝑘𝑑𝑑𝑠𝑠,𝑘𝑘−1𝛽𝛽� Δ𝑡𝑡                                              (33) 

Two of the orbiting elements, 𝑎𝑎, 𝑏𝑏 are chosen as measurement outputs to implement the EKF. The measurement 

Jacobian matrix is: 𝐻𝐻 = �1 0 0 0 0 0 0

0 1 0 0 0 0 0
� 

 𝑤𝑤1 ~ 𝑤𝑤7 in equation (29) are the noise covariance for each state, together with the noise covariance 𝑣𝑣1~𝑣𝑣2 for 

the two available measurements will be used as tuning parameters of the EKF.  

 

6. Simulation results 

The proposed EKF based parameter identification is validated through a full numerical simulation of the RIG 

system. It incorporates the dynamics of the gyroscope, phase-locked loop for resonance tracking, velocity 

feedback for energy sustaining, displacement feedback for quad nulling.  The EKF parameter identification is fed 

with closed-loop control gains and state values of the controlled RIG. The Simulink block diagram is shown in 

figure 3. The control and detection subsystems are described in the control system block diagram in figure 2. 

The EKF subsystem is implemented in Matlab script as a recursive loop, described in section 5. The dynamic 

parameters were set close to that of a practical MEMS gyroscope. A resonant frequency of 14 kHz, quality factor 

of 22000, non-proportional damping 𝛾𝛾1, 𝛾𝛾2 of 0.02 and 0.03 respectively, and stiffness imperfections 𝜇𝜇1, 𝜇𝜇2 of -

30e-6 and -40e-6 respectively have been used in the simulation. The frequency split between the two modes is 

0.5 Hz. The resonator DC gain is set to 1.1e5.  

Tuning of the EKF parameters e.g, the dynamic model (process) noise covariance matrix 𝑄𝑄𝑘𝑘 , and zero mean 

measurement noise covariance matrix 𝑅𝑅𝑘𝑘 need to be tuned to ensure fast convergence of the estimates and 

with sufficient accuracy. This is a critical task in ensuring a successful implementation for this application where 

the values of the estimates range from e-5 to e5. Orthogonal demodulation using a digital FIR filter to obtain the 

measurements is advantageous as it removes most of the ripple and noise. As a result, the observations are 

subjected to low noise influences and the measurement noise covariance matrix 𝑅𝑅𝑘𝑘 can be set to a relatively 

low value of [0.0001, 0.0001]. The process noise covariance matrix  𝑄𝑄𝑘𝑘  corresponding to  𝑤𝑤1 ~ 𝑤𝑤7 in equation 

(29) is set to [0.0001 0.0001 0.0001 1 1 0.01 0.01 𝑒𝑒7] which reflects the range of uncertainties of 

the five parameters to be estimated. During the estimation process, a high rate input causing fast angular 

precession speeds up the transient process of the EKF. The convergence results for the selected EKF parameter 

settings are shown in figure 4 and figure 5. 

In the numerical simulation, no un-modelled dynamics of the gyroscope can affect the EKF. The sampling rate is 

high so the linearization error is small. The EKF gives a very accurate estimation of the gyroscope parameters.  



As shown in figure 4 and figure 5, the EKF estimates the damping imperfections 𝛾𝛾1, 𝛾𝛾2 to be 0.02 and 0.03 

respectively, and stiffness imperfections 𝜇𝜇1, 𝜇𝜇2 to be -30e-6 and -40e-6 respectively. They are exactly the set 

values.  

 

Figure 3, Block diagram of the EKF embedded in the RIG control system 

 

 

Figure 4, Estimates of damping imperfections 𝛾𝛾1, 𝛾𝛾2 and resonator gain 𝑘𝑘𝑠𝑠  



 

Figure 5, Estimates of stiffness imperfections 𝜇𝜇1, 𝜇𝜇2, (b) reveals the accuracy of the estimates 

 

7. Experimental EKF and compensation tests 

The numerical simulation has shown that in the ideal case the EKF is accurate enough to provide parameter 

estimation stretching from a few micro to half a million given accurate system model and clean measurement 

observation. However, in practical applications, there exists higher level of noise in the observation, and un-

modelled dynamics exist. These can affect the performance of the EKF applied to practical EMS gyroscope 

control systems. This section provides test results of the offline implemented EKF fed by operation data from a 

practical gyroscope.  

The proposed EKF has been experimentally tested with a practical high performance MEMS gyroscope. The 

electrode configuration of the planar ring type capacitive gyroscope is shown in figure 1. It uses electrostatic 

drive and charge amplifier sensing interface circuit, and has a DC bias of 25 V. The resonant frequencies of the 

two modes have a nominal value of 14.195 kHz when the frequency split has been electrostatically reduced from 

1.5Hz to less than 10 mHz [21] as shown in figure 6. It is critical to minimize the frequency split so that angle 

precession in the presence of the remaining imperfections occurs at a relative low rate input. The frequency split 

between the modes serves as the threshold level for the requested minimum rate input. From the frequency 

response test shown in figure 6, the quality factor is measured to be 22000 and the total damping imperfection 

is measured to be about 0.03 of the average [21]. The resonator DC gain is determined from the frequency 

response by the relation 𝑘𝑘𝑠𝑠 =
𝜔𝜔2𝑄𝑄 𝑘𝑘𝑖𝑖𝑖𝑖/𝑜𝑜𝑜𝑜𝜕𝜕                                                                                                                                            (34) 

 and has a value of 2000000.  𝑘𝑘𝑖𝑖𝑖𝑖/𝑜𝑜𝑜𝑜𝜕𝜕 denotes the input output voltage gain at resonance.  



 

Figure 6, Frequency response before and after electrostatic mode tuning. 

Operational data from a practical gyroscope to be applied to the offline EKF is collected when the RIG is under 

continuous angular precession. It is preferable to apply a rate as low as possible, which ensures the linearization 

approximation error won’t become excessive and affect the stability of the EKF. On the other hand, before the 

correct damping parameters are predicted by the proposed offline EKF, and proper compensation gains are set 

in the real time control, a lower rate will result in the RIG fail to precess continuously due to large angular drift 

error. As shown in figure 8, the peak-to-peak angular drift of the uncompensated RIG is about 9 degrees per 

second. It is a precession angle dependent bias error appearing as second harmonics. Another important concept 

for RIG is the rate threshold, at which the measured angle will not track the true rotation angle. A simple 

analytical expression for rate threshold caused by anisodamping is given in theoretical work by Prikhodko, Igor 

P., et al [22]. Rate threshold caused by frequency mistuning is addressed in [17], though the effect is negligible 

when quadrature control is used in the RIG control system [5] and frequency mistuning is extremely small. 

 In this test, an artificial rate of 12 degrees per second is used that allows continuous angle precession. When 

the gyroscope is under rotation, system input output data is widespread which leads to fast convergence of the 

recursive process of the EKF. The offline EKF is fed with operation data of 6 full rotations for the recursive process 

to converge. This amount of data takes about 5 minutes to collect. 

The EKF is primarily tested offline by a MATLAB program using experimentally observed measurements  𝑎𝑎, 𝑏𝑏 and 

control data 𝛽𝛽, 𝛼𝛼 collected from the DSP based control system. The sampling time is set to 0.1 s. The EKF fed 

with operation data of 6 full rotations takes two minutes to converge. The estimation results are shown in figure 

7. The stiffness imperfections are shown to be very close to zero which reflects the fine-tuned gyro frequency 

split of less than 10mHz. However, estimation for the stiffness imperfections is not yet able to resolve mistuning 

in the sub-micro range. DC loop gain of the resonators is 2.19e6, and the damping imperfections 𝛾𝛾1 and 𝛾𝛾2 are 

estimated to be 0.035 and -0.006, respectively. 

Though the EKF is implemented offline, it can be used as a powerful tool in the calibration stage to identify 

important parameters of actual gyroscopes. The offline EKF gives accurate estimation of damping imperfections, 

which allows the feedback control in the form (35) to set the right amount of compensation to suppress angular 

drift. Estimated stiffness values  𝜇𝜇1, 𝜇𝜇2 can be used for frequency tuning by electrostatic tuning. As for this 

device, the mode mistuning is already very small (10 mHz), the EKF wasn't able to identify such small values, as 

shown in figure 7.  

 

 



 

Figure 7, EKF estimation on experimental gyro data. 

Angle drift is the major error in rate integrating gyroscope, which is mainly caused by the damping imperfections. 

With the estimation results, the damping imperfections induced angle drift can be readily compensated by a 

velocity feedback control added to the existing controls described in (20). �𝑓𝑓𝑑𝑑_𝑥𝑥𝑓𝑓𝑑𝑑_𝑦𝑦� = 𝛽𝛽 �−𝛾𝛾1 −𝛾𝛾2−𝛾𝛾2 𝛾𝛾1 � ��̇�𝑥�̇�𝑦�                                                                                                                             (35) 

The results from the EKF based parameter identification have been successfully used in the feedback control to 

minimize angle drift error. When the quad nulling control is in place to minimize the amplitude of the minor axis, 

and the mode mistuning is electrostatically tuned to a small value, it is clear from equation (18) that the angle 

drift caused by the stiffness imperfections are very small relative to the damping imperfections. The effect of 

the stiffness imperfections on the angle drift is negligible. The estimated damping imperfections 𝛾𝛾1, 𝛾𝛾2 and DC 

gain 𝑘𝑘𝑠𝑠 are used to calculate the optimal amount of state feedback to minimize the rate fluctuation. When the 

gyroscope is under constant rate input, the fluctuation magnitude of sensed rate indicates the maximum angle 

drift. Figures 8 to 10 show the experimental results after minimising the damping imperfections and 

demonstrate the effectiveness of the EKF as a powerful tool in the process of reducing angular drift error caused 

by damping imperfections. In figures 8 to 10 the rate input was maintained constant. Four different levels of 

damping compensation are shown. Case 1 is before any feedback compensation is applied and it shows the 

highest angular rate fluctuation of 9 o/s. The required energy sustain control has the highest swing along the 

precession cycle, and the EKF estimate shows 𝛾𝛾1, 𝛾𝛾2 to be 0.035 and -0.006, respectively. Simulated angle drift 

using estimated parameters in case #1 is shown to fit the test data closely. Case 2 shows an over-compensated 

damping 𝛾𝛾1 of -0.016. The angular drift is reduced to 8 o/s. In case 3, 𝛾𝛾1, 𝛾𝛾2 are shown to be reduced to near zero 

and 0.006, respectively. The maximum angle drift is now about 1.5 o/s. Finally, in case 4 both damping terms are 

compensated very close to zero. The angle drift is reduced to less than 1 o/s.  

 

 



 

Figure 8, At constant input rate, precession rate fluctuates periodically along precession angle due to 

gyroscope imperfections. A simulation plot is also included.   

 

Figure 9, Control gain for energy sustain fluctuates because damping varies along the precession angle. 

 

Figure 10, Damping imperfections are correctly estimated by the EKF for each scenario. 

 



FFT of measured angular rate is shown in figure 11, which displays the second and fourth harmonics at the angle 

output. As shown in the approximate time averaged model (16)-(19), damping imperfections only result in 

second harmonics. This is confirmed in the figure that the fourth harmonic remains constant for all the 4 cases. 

The second harmonics dominates angle drift before damping compensation. However, it can be reduced by 

feedback control to a negligible level thereafter the fourth harmonic dominates. This shows the effectiveness of 

EKF based parameter estimation and feedback compensation of anisodamping using estimation results of the 

offline EKF. Rate threshold introduced using stiffness and damping imperfections [17][22] don’t apply anymore 

when angle drift is dominated by 4th harmonics caused by unmodelled dynamics. 

Unlimited bandwidth, stable scale factor of RIGs are the fundamental advantages over rate gyroscopes. The EKF 

based anisodamping compensation is able to reduce the peak-to-peak angle drift to less than 1 degree per 

second. The upper cut-off rate for the RIG is determined by the DSP based electronic control loops, such as PID 

gains and sampling rate. As update rate for all the control loops is set at 1ms, it is reasonably expected the 

bandwidth of this RIG to be between 1/360 Hz to 100 Hz. 

 

Figure 11, Harmonic analysis of angle output showing 2th and 4th harmonics. 

 

8. Conclusions 

Parameter identification of a MEMS vibratory gyroscope is an essential prerequisite for any adaptive control and 

state feedback compensation to minimize output errors. This paper described an offline EKF approach to this 

problem based on the slow varying averaged dynamic model. Because the system states and measurements are 

slow time varying, it is possible for the EKF to use a low update rate without causing excessive error in the 

linearization approximation of the system dynamics and affecting the instability of the EKF. Moreover, the 

observed measurements used in the estimation have significantly less noise thanks to the narrowband 

demodulation process. These advantages lead to an EKF for MEMS gyroscope with improved accuracy, stability 

and suitable for real time implementation. Numeric simulation validates the proposed algorithms with fast 

convergence and great accuracy. Offline application of the EKF with experimental gyroscope operation data also 

shows consistent results. Estimated damping parameters from the EKF are effectively used for a DSP based real 

time RIG control system to set the correct amount of feedback to compensate the non-proportional damping 

presents in the gyroscope. The angular drift has been reduced from 10 o/s to 1 degree per second, where the 

non-proportional damping caused 2th harmonic error has been reduced to a negligible level, and the 4th 

harmonics dominates. 
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