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Extended Lagrangian Born-Oppenheimer molecular dynamics
with dissipation

Abstract

Stability and dissipation in the propagation of the electronic degrees of freedom in time-reversible
extended Lagrangian Born-Oppenheimer molecular dynamics [Niklasson , Phys. Rev. Lett. 97, 123001
(2006); Phys. Rev. Lett. 100, 123004 (2008)] are analyzed. Because of the time-reversible propagation
the dynamics of the extended electronic degrees of freedom is lossless with no dissipation of numerical
errors. For long simulation times under ``noisy'' conditions, numerical errors may therefore accumulate
to large fluctuations. We solve this problem by including a dissipative external electronic force that
removes noise while keeping the energy stable. The approach corresponds to a Langevin-like dynamics
for the electronic degrees of freedom with internal numerical error fluctuations and external,
approximately energy conserving, dissipative forces. By tuning the dissipation to balance the numerical
fluctuations the external perturbation can be kept to a minimum.
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Stability and dissipation in the propagation of the electronic degrees of freedom in time-reversible

extended Lagrangian Born–Oppenheimer molecular dynamics �Niklasson et al., Phys. Rev. Lett. 97,

123001 �2006�; Phys. Rev. Lett. 100, 123004 �2008�� are analyzed. Because of the time-reversible

propagation the dynamics of the extended electronic degrees of freedom is lossless with no

dissipation of numerical errors. For long simulation times under “noisy” conditions, numerical

errors may therefore accumulate to large fluctuations. We solve this problem by including a

dissipative external electronic force that removes noise while keeping the energy stable. The

approach corresponds to a Langevin-like dynamics for the electronic degrees of freedom with

internal numerical error fluctuations and external, approximately energy conserving, dissipative

forces. By tuning the dissipation to balance the numerical fluctuations the external perturbation can

be kept to a minimum. © 2009 American Institute of Physics. �DOI: 10.1063/1.3148075�

I. INTRODUCTION

The extended Lagrangian framework of time-reversible

Born–Oppenheimer molecular dynamics �TR-BOMD�,1,2

where both the nuclear and the electronic degrees of freedom

are propagated through a time-reversible integration, pro-

vides an efficient and accurate approach to ab initio molecu-

lar dynamics simulations. Thanks to time reversibility the

dynamics is stabilized with respect to a long-term energy

drift and often only a few �1–3� self-consistency cycles are

necessary in each time step. However, because of time re-

versibility the propagation of the electronic degrees of free-

dom is also lossless. Small numerical errors or inaccurate

initial boundary conditions will never disappear but propa-

gate throughout the simulation. Exact time reversibility is

therefore a potential problem for long-time simulations under

“noisy” conditions since numerical errors can accumulate to

large fluctuations. Exact time reversibility in the propagation

of the electronic degrees of freedom may then lead to a sub-

stantial loss of accuracy, and in the worst case, to divergence.

In this paper we show how the problem with fluctuations

due to numerical noise in TR-BOMD can be avoided. The

error accumulation is removed by introducing an external

dissipative force term acting on the electronic degrees of

freedom. The external force is designed to conserve time

reversibility and total energy to a high degree of accuracy

while at the same time optimize the dissipation of numerical

noise. By tuning the dissipation to balance the numerical

error fluctuations, the external force term can be kept to a

minimum without causing any significant drift in the total

energy or modification of the microcanonical nuclear trajec-

tories. The technique can be viewed as a Langevin dynamics

for the electronic degrees of freedom with internal numerical

error fluctuations and external, approximately energy con-

serving, friction forces that provide dissipation of the nu-

merical noise.

In this article, we first review extended Lagrangian

Born–Oppenheimer molecular dynamics �XL-BOMD�,2

which can be viewed as generalization of the original

TR-BOMD approach.
1

In comparison to the original scheme

XL-BOMD has a more rigorous and flexible theoretical

framework. The Lagrangian formulation also allows for

higher-order geometric integration schemes beyond the con-

ventional Verlet algorithm,
2

though higher-order symplectic

schemes will not be applied in the present study. Next we

show how numerical perturbations give rise to errors that do

not disappear in a perfectly lossless time-reversible propaga-

tion. Thereafter, we show how a coupling to a fictitious ex-

ternal “dissipative reservoir” can be used to remove the nu-

merical error fluctuations without introducing any significant

energy drift or modification of the nuclear forces. An alter-

native approach based on a generalized Verlet integration,

which has the same dissipation features as the Langevin-like

dynamics, is also discussed.a�
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II. AB INITIO MOLECULAR DYNAMICS

A. Born–Oppenheimer molecular dynamics

Conventional Born–Oppenheimer molecular dynamics

�BOMD� is described by the Lagrangian

L
BO�R,Ṙ� =

1

2
�

k

MkṘk
2 − U�R;D� , �1�

where the potential U�R ;D� is defined at the self-consistent

field �SCF� ground state, D, of the electronic degrees of free-

dom for a given nuclear configuration R= �Ri�. We can as-

sume that U�R ;D� is the total electronic energy �including

ion-ion repulsions� in self-consistent density functional

theory, Hartree–Fock theory, or any of their many exten-

sions, such as configuration interaction, coupled cluster and

perturbation methods
3–7

that are based on an underlying SCF

description. The dynamics is described by the Euler–

Lagrange equations of motion,

MkR̈k = −
�U�R;D�

�Rk

, �2�

where the dots denote the number of time derivatives. The

evolution of the nuclear degrees of freedom is given by the

integration of Eq. �2�, performed with, for example, the time-

reversible Verlet scheme,
8

where the nuclear forces are cal-

culated at the SCF optimized ground state D for each new

configuration. Due to the nonlinear nature of the SCF equa-

tions that determine the electronic ground state, the iterative

SCF process dominates the computational effort. The cost

can be substantially reduced by using an accurate initial

guess for the electronic degrees of freedom in the SCF

optimization.
9–14

An efficient guess is provided by an ex-

trapolation from previous time steps,

D�t + �t� = SCF��
n=0

m

anD�t − n�t�	 . �3�

The process, i.e., an extrapolation followed by the SCF op-

timization, corresponds to an adiabatic propagation of the

electronic degrees of freedom on the self-consistent ground

state potential energy surface. With an exact SCF optimiza-

tion the self-consistent solution D is independent of the ini-

tial guess and there is no “propagation” of the electronic

degrees of freedom. However, in practice the SCF optimiza-

tion is always incomplete and the electronic degrees of free-

dom are therefore propagated with a “memory” from previ-

ous time steps. This leads to a fundamental problem in

BOMD. Since the SCF optimization is a nonlinear irrevers-

ible process, the time-reversal symmetry in the propagation

of the electronic degrees of freedom is broken in Eq. �3�.12

Because of the broken time-reversal symmetry the nuclear

forces in Eq. �2� are not calculated with the correct underly-

ing symmetry of the electronic degrees of freedom. This

gives an unphysical behavior of the nuclear trajectories with

a systematic drift in the total energy and phase space.
12,14

With TR-BOMD this problem can be avoided.
1

B. Extended Lagrangian formulation of time-reversible
Born–Oppenheimer molecular dynamics

TR-BOMD was originally given in terms of a lossless

dual filter integration scheme,
1

but it can be described more

generally by an extension of the BO Lagrangian in Eq. �1�
with auxiliary electronic degrees of freedom P and its time

derivative Ṗ evolving in a harmonic potential centered

around the SCF ground state solution D.
2

Both the extended

auxiliary dynamical variable P and the self-consistent

ground state D are assumed to be orthogonal density matrix

representations of the electronic degrees of freedom. Other

representations of the electronic degrees of freedom besides

the density matrix, such as the single-particle potential, the

electron density, or wave functions, can be used alternatively.

The extended Born–Oppenheimer �XBO� Lagrangian is

given by

L
XBO�R,Ṙ,P, Ṗ� = L

BO +
�

2
Tr�Ṗ2� −

��2

2
Tr��D − P�2� .

�4�

Here � and � are fictitious electronic mass and frequency

parameters. The last two terms on the right hand side are the

fictitious electronic kinetic and potential energy terms. No-

tice, no constraints, such as idempotency, corresponding to

wave function orthogonality, are used, and the BO Lagrang-

ian L
BO is still defined at the self-consistent ground state D.

This is in contrast to the popular Car–Parrinello molecular

dynamics approach, which is also based on an extended

Lagrangian formulation.
15–18

The time evolution of the system is described by the

Euler–Lagrange equations of motion,

MkR̈k = −
�U�R;D�

�Rk

+ �Tr��D − P� � D/�Rk� , �5�

�P̈ = ��2�D − P� , �6�

which in the limit �→0, i.e., when L
XBO

→L
BO, are given

by

MkR̈k = −
�U�R;D�

�Rk

, �7�

P̈ = �2�D − P� . �8�

The dynamics of the nuclear degrees of freedom, Eq. �7�, is

determined by the same equations of motion as in regular

BOMD, Eq. �2�, and the BO total energy is a constant of

motion. In this sense the extended variables P and Ṗ are only

auxiliary quantities that do not affect the BO nuclear trajec-

tories. This also differs from the Car–Parrinello molecular

dynamics approach, where the nuclear forces are determined

by the extended electronic degrees of freedom and where the

constant of motion is different from BOMD. It is also

different from the Ehrenfest molecular dynamics approach,
19

which recently has seen some very interesting

developments.
20,21

The major advantage with the XL-BOMD, which will be

explained below, is the efficient and accurate SCF optimiza-
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tion and integration of the equations of motion. This is en-

abled by the coupling between P and D given in Eq. �8�,
which is the key equation in our XL-BOMD.

C. Time-reversible integration

If we apply the time-reversible Verlet scheme
8

to the

integration of the electronic degrees of freedom in Eq. �8� we

get

P�t + �t� = 2P�t� − P�t − �t� + �t2�2�D�t� − P�t�� . �9�

In the first initial steps we set P�t�
D�t�. The stability of

the integration will be determined by the size of the dimen-

sionless factor �=�t2�2. If we choose � as large as possible,

consistent with stability under incomplete SCF

convergence,
2

the curvature of the extended harmonic poten-

tial in Eq. �4�, which is determined by �, is maximized and P

will evolve close to the self-consistent ground state solution

D. It can be shown that the optimal value in the Verlet

scheme above is for �=2. This value gives the largest pos-

sible value of � that is allowed under incomplete SCF con-

vergence for a given time step �t. A more detailed stability

analysis for an approximate SCF optimization is given in

Sec. III. Besides the Verlet integration scheme above, higher-

order geometric integration algorithms can be applied.
2

The

properties of higher-order symplectic integration schemes in

our XL-BOMD will be analyzed in a separate article.
22

Since P�t� evolves in a harmonic potential centered

around the ground state D�t�, the extended electronic degrees

of freedom P�t� will always be close to the self-consistent

solution D�t�. It is therefore natural to use P�t� as an initial

guess to the SCF optimization procedure,

D�t� = SCF�P�t�� . �10�

This choice of initial guess leads to the same reduction of the

computational cost as the extrapolation schemes used in

regular BOMD, Eq. �3�. However, because P�t� is a dynami-

cal variable that can be integrated with a time-reversible

scheme, the SCF optimization in Eq. �10� keeps the time-

reversal symmetry in the underlying electronic propagation.

The unphysical behavior, associated with the broken time-

reversal symmetry of regular BOMD, is therefore avoided.

Figure 1 shows the typical behavior of the total energy fluc-

tuations for regular BOMD using a linear interpolation

from two previous time steps, Eq. �3�, in comparison to a

TR-BOMD based on Eqs. �9� and �10�. TR-BOMD provides

a significant qualitative improvement. The small systematic

drift seen in regular BOMD is avoided in TR-BOMD, even

under incomplete SCF convergence with only one single it-

eration cycle per time step. The accuracy in the simulation of

the two methods can be estimated from the amplitude of the

energy fluctuations. Despite using only a single SCF cycle in

the time-reversible propagation the accuracy is essentially

unaffected. TR-BOMD therefore provides a substantial re-

duction in the computational cost. Moreover, by extending

TR-BOMD to higher-order symplectic integration schemes,

it is often possible to significantly improve the accuracy

without any additional computational effort.
2,22

III. STABILITY AND DISSIPATION

There is a fundamental problem with a time-reversible

propagation—there is no loss of information. Any perturba-

tion or error will propagate without ever disappearing. This

is particularly serious for long simulation times under nu-

merically noisy conditions, for example, occurring from an

approximate sparse matrix algebra in reduced complexity al-

gorithms since numerical errors then may accumulate to

large fluctuations or even divergence. A similar effect occurs

in classical molecular dynamics, but the errors are much

smaller and of minor significance. The main problem in

TR-BOMD is the distance between P�t� and D�t�, i.e., the

extended potential energy, which may slowly increase due to

an accumulation of numerical errors.

Stability under incomplete SCF convergence and dissi-

pation of numerical noise can be analyzed from the roots of

the characteristic equation of the homogeneous �steady state�
part of the integration scheme.

2,10
Assume a linearization of

an approximate SCF optimization, Eq. �10�, around the hy-

pothetical exact solution D�, where

D = SCF�P� � D� + �SCF�P − D�� . �11�

Let � be the largest eigenvalue of the SCF response kernel

�SCF. If �=0 the SCF optimization is exact. In general, we

can expect �� �−1,1�. Inserting Eq. �11� in the Verlet

scheme, Eq. �9�, with �SCF replaced by �, for the homoge-

neous steady state solution for which D�
0, gives

Pn+1 = 2Pn − Pn−1 + ��� − 1�Pn. �12�

Here Pn= P�t0+n�t� and �=�t2�2. The characteristic roots of

this equation are exponentially increasing or decaying solu-

tions of the form �n given by

�n+1 = 2�n − �n−1 + ��� − 1��n. �13�

If the magnitude of the largest root ���max�1 we have expo-

nentially increasing solutions, which will cause numerical

instability. If the largest root ���max	1 we have dissipation

with exponentially decaying solutions. In an exact time-

reversible dynamics the roots are on the unit circle and

���max=1. Figure 2 shows the magnitude of ���max as a func-

tion of the degree of SCF convergence, as measured by �, for

the Verlet integration, Eqs. �9� and �13�, with �=2. In com-

parison we show a conventional linear interpolation scheme,

based on Eq. �3� for m=1,
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FIG. 1. �Color online� The fluctuations in total Born–Oppenheimer energy

�EBO�t�−E0� for conventional BOMD with a linear interpolation of the elec-

tronic degrees of freedom and for a TR-BOMD.
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Pn+1 = 2Dn − Dn−1, �14�

with the characteristic equation

�n+1 = 2��n − ��n−1. �15�

As can be seen in the figure, the time-reversible XL-BOMD

is stable under incomplete SCF convergence in the full

interval of �� �−1,1�, whereas the conventional linear

interpolation scheme in regular BOMD is stable only for

�� �−1 /3,1�. On the other hand, the linear interpolation has

a substantial dissipation, with roots ���max	1, which is not

the case for the time-reversible scheme that has all roots on

the unit circle. Time-reversible XL-BOMD therefore has no

natural dissipation that can suppress an accumulation of

numerical noise.

IV. DISSIPATIVE FORCES IN EXTENDED
LAGRANGIAN BORN–OPPENHEIMER MOLECULAR
DYNAMICS

In this paper we will propose dissipation mechanisms

that can remove the accumulation of numerical errors in

time-reversible XL-BOMD. Thanks to the underlying ex-

actly time-reversible dynamics, this is fairly straightforward

to achieve in a number of different ways.

A. Langevin-like approach

In the case of some unknown internal numerical noise,


�t�, the electronic equations of motion in XL-BOMD,

Eq. �8�, is modified to

P̈�t� = �2�D�t� − P�t�� + 
�t� . �16�

The noise accumulation can be balanced by coupling the

electronic degrees of freedom to a fictitious external system

through a dissipative force term, Fdiss. This modifies the elec-

tronic equations of motion to a Langevin-like equation for

the auxiliary electronic degrees of freedom,

P̈�t� = �2�D�t� − P�t�� + 
�t� + ��−1Fdiss�t� , �17�

where � is some small coupling constant and the inverse

mass parameter �−1 is included to give the correct dimen-

sionality. There are numerous ways to choose Fdiss�t� and

they will all break time-reversal symmetry to some degree.

In a more conventional Langevin approach we would prob-

ably choose Fdiss�t�
 Ṗ�t�. However, this choice would give

rise to a fairly strong perturbation with large deviations from

a time-reversible microcanonical dynamics. The goal here is

to find an efficient dissipation term with no significant effect

on the energy conservation and the dynamics of the nuclear

degrees of freedom. The dissipative force should thus in

principle correspond to a weak coupling of the auxiliary

electronic degrees of freedom to a hypothetical external en-

semble that removes noise without any significant perturba-

tion of the microcanonical nuclear trajectories.

B. Dissipative force term

Here we will choose Fdiss�t� such that the time-reversal

symmetry is broken only to a very small degree in the propa-

gation of the auxiliary variable P. Our construction of Fdiss is

very similar to a standard derivation of the classical Verlet

scheme by extrapolation �see Eqs. �25� and �26� below�. Let

Pn−k be expanded in a Taylor series around Pn, i.e.,

Pn−k = �
m=0

M
�− k�t�m

m!
Pn

�m� + O��tM+1�, k = 0,1, . . . ,K ,

�18�

where P
n

�m�
=dmP�t� /dtm at t= t0+n�t. By choosing some lin-

ear combination of this set of K+1 equations it is possible to

remove all �tm terms that are odd up to some order in �t2m+1

as well as the zeroth order term. As a comparison, in the

derivation of the classical Verlet scheme we remove all odd

orders in �t using k= �1. A similar idea of removing odd-

order terms in �t was recently used by Kolafa in the con-

struction of a set of predictor-corrector schemes in the al-

ways stable predictor-corrector method.
23

From the linear

combination of the Taylor expansions of Pn−k in Eq. �18� we

can express the second order time derivative of P as

�t2P̈n =
1

dK
�
k=0

K

ckPn−k + Oeven��t4� + Oodd��t�2K−3�� . �19�

Here Oeven��t4� and Oodd��t�2K−3�� are the leading even and

odd order of the error in the expansion, respectively. Only

the leading odd-order term is of interest since it determines

the order of the broken time-reversal symmetry. The constant

dK and the expansion coefficients ck are given from the ex-

trapolation, i.e., the particular linear combination of the

Taylor expanded Pn−k in Eq. �18� that removes the odd-order

terms of �t. We now define our dissipative force term as

Fn
diss = �P̈n

diss =
�

dK�t2�
k=0

K

ckPn−k. �20�

This force term is time reversible up to some higher order in

�t and should thus only have a minor effect on the energy

conservation for sufficiently small values of �t. In compari-

son, the more conventional velocity-dependent friction term

in Langevin dynamics, Fn
diss
 Ṗn, breaks the time-reversal

symmetry already in the first order of �t.
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FIG. 2. �Color online� The largest roots of the characteristic equation, ���max,

as a function of the degree of SCF convergence measured by �� �−1,1�. If

the value of � would be increased above 2, the largest root ���max would be

larger than 1 for some intervals of �� �−1,1� and XL-BOMD would no

longer be stable under incomplete SCF convergence.
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A simple and fairly efficient alternative dissipative force

term is given by the electronic force from the previous time

step,

Fn
diss = �P̈n−1 = ��2�Dn−1 − Pn−1� . �21�

Because of the time shift in the force term, the time-reversal

symmetry is broken. The amount of dissipation and energy

drift depends on the choice of the coupling constant � in Eq.

�17�. Generalizations of Eq. �21� to higher-order polynomial

extrapolations of previous force terms are also possible.

C. Integration

The Verlet integration for the electronic degrees of free-

dom in Eq. �17�, with the dissipative force in Eq. �20� and

with the noise term 
�t� included implicitly by assumed nu-

merical errors, has the following form:

Pn+1 = 2Pn − Pn−1 + ��Dn − Pn� + ��
k=0

K

ckPn−k. �22�

We have rescaled the coupling parameter, � /dK→�, for sim-

plicity. In the initial steps we set Pn
Dn. The problem is

now to choose K and M in Eq. �18� and find a set of expan-

sion coefficients ck in Eq. �19�, and thereafter to choose �

and � for which the dissipation is as large as possible under

the condition of stability for incomplete SCF convergence.

Of many possible choices we have found the set of coeffi-

cients in Table I to be particularly efficient for the Verlet

scheme in Eq. �22�. The c-coefficients have been calculated

from an overdetermined extrapolation in Eq. �18�. The � and

� values have thereafter been “optimized” with respect to

damping under the condition of stability under incomplete

SCF convergence. The “optimization” is a somewhat subjec-

tive procedure. Figure 3 illustrates our approach. The first

graph is not stable under incomplete SCF convergence for

�� �−1,1�. The second graph is stable, but has a damping

that can be further improved to what we decide to be the

“optimal” since it has the largest damping at �=0 �one of

many possible choices�, which is given by the last curve.

Figure 4 illustrates the dissipation of the damped Verlet

integration in Eq. �22� as a function of SCF convergence for

K=4, 5, and 6 as measured by the largest root ���max to the

characteristic equation,

�n+1 = 2�n − �n−1 + ��� − 1��n + ��
k=0

K

ck�
n−k. �23�

If we break time-reversal symmetry at a lower order the dis-

sipation is increased and if the coupling constant � is re-

duced to 0 the dissipation vanishes and the integration is

exactly time reversible. This gives us the flexibility to bal-

ance the numerical noise with a minimum of dissipation. In

this way it is possible to keep the time-reversal symmetry

and the total energy to the highest possible degree of accu-

racy without any significant modifications of the nuclear

trajectories.

If we use the alternative force term in Eq. �21� in the

Verlet integration scheme with optimized values of � we get

Pn+1 = 2Pn − Pn−1 + �2 − ���Dn − Pn� − ��Dn−1 − Pn−1� ,

�24�

which is stable for all coupling constants �� �0,1�. In the

limit �→0 the dissipation disappears and the integration is

exactly time reversible.
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FIG. 3. �Color online� The largest roots of the characteristic equation, ���max,

in Eq. �23�, as a function of the degree of SCF convergence measured by

�� �−1,1� for various values of � and �. For the optimal values of � and �
the damping is optimized under the condition of stability for �� �−1,1�.

TABLE I. The optimized � and � values and the ck coefficient for the dissipative electronic force term in Eq. �22�.

K � �
10−3 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

3 1.69 150 �2 3 0 �1

4 1.75 57 �3 6 �2 �2 1

5 1.82 18 �6 14 �8 �3 4 �1

6 1.84 5.5 �14 36 �27 �2 12 �6 1

7 1.86 1.6 �36 99 �88 11 32 �25 8 �1

8 1.88 0.44 �99 286 �286 78 78 �90 42 �10 1

9 1.89 0.12 �286 858 �936 364 168 �300 184 �63 12 �1
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FIG. 4. �Color online� The dissipation measured by the largest roots of the

characteristic equation, ���max, as a function of the degree of SCF conver-

gence measured by �� �−1,1� for three different dissipation schemes, Eq.

�22� with coefficients in Table I.
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D. Generalized Verlet integration

As an equivalent alternative to the dissipative force term

introduced in the Langevin-like dynamics above, it is pos-

sible to integrate the equation of motion, Eq. �16�, with a

generalized Verlet algorithm. By performing the extrapola-

tion in Eq. �18� for k=−1,1 ,2 ,3 , . . . ,K and remove odd-

order terms in �tm up to some order �t2m+1, it is possible to

construct an efficient dissipative Verlet-like schemes. For

k= �1 we can remove all odd orders, as in the standard

derivation of the Verlet algorithm, i.e.,

Pn+1 = Pn + �tṖ +
1

2
�t2P̈n +

1

3!
�t3Pn

�3� + ¯ ,

�25�

Pn−1 = Pn − �tṖ +
1

2
�t2P̈n −

1

3!
�t3Pn

�3� + ¯ ,

which after addition gives

Pn+1 + Pn−1 = 2Pn + �t2P̈n + O��t4� ,

Pn+1 = 2Pn − Pn−1 + �t2P̈n + O��t4� , �26�

Pn+1 = 2Pn − Pn−1 + �t2�2�Dn − Pn� + O��t4� .

We can find additional extrapolations of, for example,

Pn+1 = Pn + �tṖ +
1

2
�t2P̈n +

1

3!
�t3Pn

�3� + ¯ ,

Pn−1 = Pn − �tṖ +
1

2
�t2P̈n −

1

3!
�t3Pn

�3� + ¯ ,

Pn−2 = Pn − 2�tṖ +
22

2
�t2P̈n −

23

3!
�t3Pn

�3� + ¯ , �27�

Pn−3 = Pn − 3�tṖ +
32

2
�t2P̈n −

33

3!
�t3Pn

�3� + ¯ ,

Pn−4 = Pn − 4�tṖ +
42

2
�t2P̈n −

43

3!
�t3Pn

�3� + ¯

that remove only the �t and �t3 terms. The integration

scheme is then given by inserting the Euler-Lagrange equa-

tion for P̈ in XL-BOMD, Eq. �8�. The value of �=�t2�2 is

thereafter optimized to guarantee stability under incomplete

SCF convergence, which is given by the roots of the charac-

teristic equation. For example

Pn+1 = �1/0.3016��0.5513Pn − 0.1984Pn−1 − 0.033Pn−2

− 0.036Pn−3 + 0.0177Pn−4� + 1.75�Dn − Pn� , �28�

is one possible generalized dissipative Verlet integration of

TR-BOMD, which is approximately time-reversible and

stable under incomplete SCF convergence. This approach,

which avoids the Langevin-like formulation, provides the

same performance and �similar� coefficients to the Langevin

approach in Eq. �22�. However, the generalized Verlet

scheme is physically less transparent, the damping is not

naturally tuned by a coupling constant, and it is not straight-

forward to extend to higher-order symplectic integration

schemes
2,24

or to alternative ensembles. Nevertheless, the

generalized Verlet technique presented above illustrates the

possibility for a large number of integration schemes with

dissipation that can be derived thanks to the underlying ex-

actly time-reversible dynamics, which is provided by the ex-

tended Lagrangian formulation of BOMD.

E. Examples

Figure 5 illustrates the behavior of XL-BOMD, with and

without dissipation, for a perturbation at t=25 fs. The per-

turbation was performed by switching places of two succes-

sive auxiliary density matrices in a simulation of a water

molecule using the FreeON suite of ab initio linear scaling

electronic structure programs.
25

Without damping the nu-

merical noise does not disappear although the simulation re-

mains stable without any growth of the error. The dissipative

force terms, Eq. �20�, in the Verlet integration, Eq. �22�, re-

moves the effect of the perturbation without causing any sig-

nificant drift in the energy. The lower-order dissipation force

terms give a faster decay of the perturbation in agreement

with the behavior of the characteristic roots shown in Fig. 4.

Often we have found that we achieve a more efficient dissi-

pation at a given energy drift using a higher-order extrapola-

tion expression for the dissipation force than by reducing the

coupling constant � for a lower-order expansion, with the

corresponding reoptimization of �.

V. DISCUSSION AND SUMMARY

BOMD is the gold standard for a majority of atomistic

simulations of dynamical, structural, chemical, and thermo-

dynamics properties of materials. BOMD based on a self-

consistent optimization of the electronic structure for

each new configuration at each time step has been used in

quantum chemistry and materials science for over 30

years.
9,19,26–30

The direct or indirect applications of BOMD

range from the problem of high-temperature stabilization of

basic elements to the folding structures of protein molecules

in human cells. BOMD, based on self-consistent density

functional theory, Hartree–Fock theory, or their extensions, is

thus one of the most important theoretical frameworks of

computational materials science, chemistry and biology. De-
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FIG. 5. �Color online� The response in the total energy in XL-BOMD to a

perturbation at t=25 fs, with and without dissipation �diss�, for a water

molecule �HF/6-31G� with �t=0.5 fs and 1 SCF/step. The integration in Eq.

�22� with coefficients from Table I was used.
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spite its status, regular BOMD has two serious shortcomings

that have been given very little attention: �a� the computa-

tional cost is very high because of the required SCF

optimization, and �b� the time-reversal symmetry in the

underlying evolution of the electronic degrees of freedom

is broken, which leads to an unphysical behavior of the

dynamics. These two fundamental and interconnected prob-

lems are addressed by TR-BOMD,
1

whose extended

Lagrangian generalization
2

provides an efficient theoretical

framework for high-performance ab initio molecular dynam-

ics simulations.

In this paper we have used a �time-reversible� BOMD

given through the extended Lagrangian in Eq. �4�, its Euler–

Lagrange equations of motion, Eqs. �7� and �8�, and the SCF

initialization, Eq. �10�, in a Langevin-like framework, Eq.

�17�, with various possible forms of the integration of the

electronic degrees of freedom, e.g., Eq. �22�. The focus in

this paper has been on this integration and its sensitivity to

numerical noise. A strictly TR-BOMD is perfectly lossless

with no natural dissipation of numerical errors. For long

simulation times under noisy conditions, numerical errors

may therefore accumulate to large fluctuations. We solved

this problem by including a dissipative external force that

removes noise while keeping the energy stable. The external

force is constructed to keep the time-reversal symmetry al-

most exact. By choosing the dissipation to balance the nu-

merical fluctuations the external force can be kept to a mini-

mum. The approach corresponds to a Langevin-like

dynamics for the electronic degrees of freedom with internal

numerical error fluctuations and external, approximately en-

ergy conserving, dissipative forces.
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