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Abstract – The family of lapped orthogonal transforms is extended to include basis func-
tions of arbitrary length. Within this new family, the extended lapped transform (ELT) is
introduced, as a generalization of the previously reported modulated lapped transform
(MLT). Design techniques and fast algorithms for the ELT are presented, as well as ex-
amples that demonstrate the good performance of the ELT in signal coding applications.
Therefore, the ELT is a promising substitute for traditional block transforms in transform
coding systems, and also a good substitute for less efficient filter banks in subband coding
systems.
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1 Introduction

Transform coding (TC) and subband coding (SBC) are among the most effective tech-
niques for the representation of signals such as speech and images [1] at medium bit
rates. The two techniques are not fundamentally different, however. We can view a trans-
form operator as a critically-decimated filter bank [2] where the basis functions of the
transform are the impulse responses of the synthesis filters [3]. Similarly, we can view a
filter bank as a transform with memory, in which the transform of a block may depend
not only on that block but also on its neighboring blocks [4].

Both TC and SBC can be used for any given signal coding problem, but each one has
its major drawbacks. In TC, the reduced length of the basis functions correspond to filters
whose impulse response end abruptly, and this causes discontinuities in the reconstructed
signal, the so-called blocking effects [5], [6]. In SBC, the filter impulse responses generally
decay gradually to zero, and thus blocking effects are virtually not present, in spite of
the multirate nature of SBC. However, SBC systems are generally restricted to work with
a reduced number of bands, because of the computational complexity of the quadrature
mirror filter (QMF) banks that are usually employed [1].

With the introduction of the lapped orthogonal transform (LOT), [7], [8], in which the
basis functions have lengths given by L = 2M , where M is the transform size, a new al-
ternative for the transform choice in TC became available. For a given transform length,
the LOT has a higher coding gain than the usual discrete cosine transform (DCT), and the
LOT is also free from blocking effects [3], [6]. The LOT basis functions also correspond
to filters with much better bandpass responses than those of the DCT [3], [9]. Another
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Figure 1: Subband signal processing with M -band critically decimated filter banks.

lapped transform with L = 2M is the modulated lapped transform (MLT) [3], first de-
veloped in [10] with the denomination “oddly-stacked time domain aliasing cancellation
(TDAC) filter bank” (the evenly-stacked TDAC [11] is not a lapped transform). The MLT
is actually a TDAC in which the window is asymptotically optimal for coding highly cor-
related sources [3]. Another good choice for the window was presented in [12]. The MLT
is similar to the LOT, the main differences being that the MLT basis functions are not sym-
metrical, and that the MLT is actually a cosine-modulated filter bank, which has slightly
better bandpass responses than the LOT.

Lapped transforms like the LOT or the original MLT may not be adequate substitutes
for QMF filter banks in applications where a strong subband separation is necessary, as
in transmultiplexing and analog voice scrambling. This is because the basis functions
have length L = 2M , which is much shorter than the usual lengths of QMF filters (which
may go from 4M to 16M ). Thus, it would be of practical value if the lengths of the ba-
sis functions of lapped transforms could be made longer, without much penalty in the
computational complexity.

The purpose of this paper is to present fast algorithms for the extended lapped trans-
form (ELT), which is a generalization of the MLT with arbitrarily long basis functions. In
Section 2 we review the ELT definition, first introduced in [13], and its perfect reconstruc-
tion property. In Section 3 we introduce the fast ELT implementation. Finally, in Section 4
we present some basic results of the application of the ELT to signal coding.

2 Extended Lapped Transforms

A lapped transform (LT) is a multirate filter bank in which the analysis and synthesis
filters have a particular structure. Referring to Fig. 1, the analysis bank is composed of
filters H0(z) . . . HM−1(z), and the synthesis bank is composed of filters F0(z) . . . FM−1(z).
The system is critically decimated, since the down-sampling and up-sampling factors are
equal to the number of subbands, M .

For a lapped transform, the analysis and synthesis filters are FIR, and they are defined
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from the columns of a matrix P, in the form

fk(n) = pnk, k = 0, 1, . . . ,M − 1, n = 0, 1, . . . , NM − 1 (1)

and
hk(n) = fk(NM − 1− n) (2)

where pnk is the element in the n-th row and k-th column of P. Note that the impulse
responses of the analysis filters are just the time-reversed versions of the synthesis re-
sponses.

The matrix P defines a lapped transform if and only if it satisfies the orthogonality
conditions

P′WmP = δ(m) I (3)

where P′ denotes the transpose of P, I is the identity matrix, δ(m) is the unitary impulse
(δ(0) = 1, δ(m) = 0,m 6= 0), and W is the one-block shift matrix, defined by

W ≡
(

0 I
0 0

)
(4)

where the identity matrix above is of order (N − 1)M .
The definition of P above is just an extension of the lapped orthogonal transform

(LOT) in [3], [6]. The LOT is a particular LT, in whichN = 2. We note thatN specifies how
many input blocks are used to compute an output block, in the direct transform. When
N = 1, the LT reduces to a standard block transform, like the discrete cosine transform
(DCT). We see then the reason for the name lapped transform: it is a generalization of
a block transform, in which the input block is longer than the output block. Since the
decimation factor (the block size) is always equal to M , we see that when N > 1 there is
an overlap among the data blocks that are used to compute consecutive transform blocks.
An alternative way of representing a signal processing system using lapped transforms
is shown in Fig. 2. Note that, as usual in block signal processing, increasing indices at the
input of the direct transform operator correspond to more recent samples.

A. Perfect Reconstruction

With the enforcement of the orthogonality conditions in (3), and also with the analysis
and synthesis filter banks being defined by P′ and P, respectively, the transform/subband
processing system of Fig. 2 has the perfect reconstruction (PR) property [14]. This means
that the reconstructed signal is a delayed replica of the input signal, i.e. x̂(n) = x(n −
NM + 1), if the subband signals are not modified, that is, if X̂i(m) = Xi(m) in Fig. 2.
Note that the time-domain orthogonality condition in (3) is a simplified form of the more
generic conditions first presented in [4] and generalized in [15] and [16], since we have
constrained the lapped transform to use the same matrix P both for the analysis and for
the synthesis filter banks.

In order to verify the PR property for an LT, it is enough to show that its polyphase
component matrix E(z) is lossless [14]. We can write the impulse response of each analy-
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Figure 2: Structure equivalent of Fig. 1 for a lapped transform P.

sis filter in terms of its polyphase components, in the form

Hk(z) =
NM−1∑
r=0

hk(r)z
−r =

M−1∑
r=0

z−rEkr(z
M) (5)

where the r-th polyphase component of Hk(z) is given by

Ekr(z) =
N−1∑
m=0

p(N−m)M−1−r,k z
−m . (6)

Thus, the polyphase component matrix E(z) is given by

E(z) =
N−1∑
l=0

z−(N−1−l) P′l J (7)

where Pl is the l-th square block of P, defined by P′ ≡ [P′0 P′1 · · · P′N−1], and J is
the counter-identity matrix [3], i.e., [J]nk = 1 if n + k = M − 1, and zero otherwise, for
0 ≤ n, k ≤M − 1.

One of the advantages of the polyphase representation is that the decimators in Fig. 1
or Fig. 2 can be moved to the left of the analysis filter bank, and the interpolators to the
right of the synthesis filter bank, as shown in Fig. 3. Note that, as usual in multirate
DSP, when we increase r in Ekr(z) we increase the delay associated with that polyphase
component, i.e., we move back in time. This is why in the input block in Fig. 3 we have
x(n) coming in from the top. Due to the time-reversal relationship between the analysis
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Figure 3: Structure equivalent of Figs. 1 and 2, with the analysis and synthesis filters being
implemented in terms of their polyphase component matrices.

and synthesis filters in (2), the polyphase component matrix of the synthesis filters are
given by z(N−1)Ẽ(z), as shown in Fig. 3, where Ẽ(z) ≡ E′(z−1) [14].

With E(z) given by (7), we have

E(z)Ẽ(z) =
N−1∑
n=0

N−1∑
m=0

z(n−m)P′nPm = I (8)

where the second equality comes from the fact that the orthogonality conditions in (3) are
equivalent to

N−1−l∑
m=0

P′mPm+l = δ(l) I . (9)

Therefore, (8) shows that the polyphase component matrix E(z) is lossless [14], and thus a
lapped transform has the PR property. Note that since E(z)Ẽ(z) = I implies Ẽ(z)E(z) = I,
(9) can also be written in the form

N−1−l∑
m=0

PmP′m+l = δ(l) I (10)

which is an equivalent necessary and sufficient PR condition.
It is also clear from (8) that losslessness of E(z) implies in the orthogonality condi-

tions in (9). Thus, every filter bank with identical (within time reversal) FIR analysis and
synthesis filters, having the perfect reconstruction property, is a lapped transform.
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B. Structure of Extended Lapped Transforms

The problem of how to design an appropriate matrix P lies not only in satisfying (3) and
(9) or (10), but also in making each Hk(z) a good band-pass filter. The LOT construction
defined in [3], based on the DCT basis functions, is a fast-computable solution, but is valid
only for N = 2. Another alternative with a fast algorithm, for N = 2, is the MLT, which is
a TDAC filterbank with a particular window.

The ELT was originally defined in [13] as a cosine-modulated filterbank, in a general-
ization of the MLT definition in [3]. Its corresponding P matrix is given by

pnk ≡ h(n)

√
2

M
cos

[
ωk

(
n+

M + 1

2

)]
(11)

which is a cosine modulated filter bank with modulating frequencies

ωk ≡
(
k +

1

2

)
π

M
(12)

and the window h(n) must have the symmetry h(L−1−n) = h(n) [3], [13]. It is interesting
to note that filter banks with cosine modulation at precisely the same frequencies ωk as in
(12) were originally suggested in [17, 18], and were also considered in [19, 20]. In all of
these previous works, however, the phases of the modulating cosines were not adequate
for perfect reconstruction, and quasi-PR designs were presented. For the special case
L = 2M , it was noted in [3, 10, 21] that perfect reconstruction could be obtained. In the
following we will see that PR can actually be achieved with filters of any length, as long
as h(n) satisfies a PR condition.

Without loss of generality, we will assume thatN = 2K, i.e., the analysis and synthesis
filters have lengths equal to L = 2KM , where K will be referred to as the overlapping
factor. Thus, the original MLT is actually an ELT with K = 1.

Let us define the M ×M matrices Φl and Hl by

[Φl]nk ≡
√

2

M
cos

[
ωk

(
n+ lM +

M + 1

2

)]
(13)

and
Hl ≡ diag {h(lM), h(lM + 1), . . . , h(lM +M − 1)} . (14)

In (13) both the row index n and the column index k vary from 0 to M − 1.
Let us also define the 2KM ×M matrix Φ by Φ′ ≡ [Φ′0Φ

′
1 · · ·Φ′2K−1]

′, and the window
matrix H ≡ diag{H0,H1, . . . ,H2K−1}. Thus, the modulating functions are the columns of
Φ, and (11) can be written in matrix form as

Pi = HiΦi (15)

which is equivalent to P = HΦ.
A fundamental property of the submatrices of the modulating matrix is

ΦiΦ
′
i+2m = (−1)m[I + (−1)iJ]

ΦiΦ
′
i+2m+1 = 0 (16)
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The proof of (16) is somewhat long but it is relatively simple, and thus it will be omitted.
The basic point behind the proof is that each sinusoid in a row of Φi is orthogonal to all
but two of the rows in Φi+2m, and orthogonal to all the rows of Φi+2m+1.

Using (16), we can write, after some algebraic manipulations,
N−1−l∑
m=0

PmP′m+l = cos

(
lπ

2

) 2K−l−1∑
i=0

Hi[I + (−1)iJ]Hi+l . (17)

Since the ELT matrix P in (11), (15) will be a lapped transform only if (10) is satisfied,
applying (10) to (17) leads to

2K−2m−1∑
i=0

Hi Hi+2m = δ(m) I (18)

for m = 0, 1, . . . , K − 1. The scalar form of the above equation is
2K−2m−1∑

i=0

h(n+ iM)h(n+ iM + 2mM) = δ(m) (19)

for n = 0, 1, . . . ,M/2 − 1, which was previously obtained in [13]. Thus, the set of non-
linear equations in (19) represents the necessary and sufficient conditions on the window
h(n) for the generation of an extended lapped transform.

It is important to note that there do exist solutions to (19) in which some of the end
samples of h(n) are zero. Therefore, the analysis and synthesis filters may effectively have
any length, and not just even multiples of M .

C. Properties

A basic property of the ELT is that the frequency responses of the filter banks are approx-
imately shifted versions of the window frequency response, that is

Hk(e
jω) =

1√
2M

[
e−jθkH(ej(ω−ωk)) + ejθkH(ej(ω+ωk))

]
(20)

where θk ≡ ωk(M + 1)/2. Thus, except for k = 0 and k = M − 1, the following approxi-
mation is valid:

|Hk(e
jω)| ' 1√

2M
|H(ej(ω−ωk))| . (21)

Therefore, the basic design criteria for h(n) is that |H(ejω)| should be a good low-pass fil-
ter, with a bandwidth of π/2M , in order to minimize aliasing among the subband signals.

Another interesting property of the ELT basis functions, which is easy to prove, is that
for M even

fM−1−m(2KM − 1− n) = (−1)m+K−M/2+1 (−1)n fm(n) . (22)

Thus, except for a plus or minus sign, half of the filter responses can be obtained from
the other half by time reversal and multiplication by (−1)n. Note that, for M = 2, this is
precisely the property that defines the conjugate quadrature filters (CQF) [22]. Thus, the
ELT can also be viewed as a generalization of the CQF concept for an arbitrary number of
subbands.
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Figure 4: Fast implementation of the direct ELT (analysis filter bank).

3 Fast Algorithms

The ELT structure of (11) has two main advantages over general filter banks. The first,
which was pointed out in the previous section, is that a good design for h(n) automatically
guarantees that all filters will have a good bandpass response. The second is that the
regular structure of the matrix Φ leads to a fast algorithm.

In fact, fast algorithms for the ELT have been presented in [3, 23, 24] for K = 1 (which
corresponds to the MLT) and in [25] for K = 2. In this section we will present a fast ELT
implementation for any K, based on orthogonal butterflies and a type-IV discrete cosine
transform. Structures based on lattice sections and fast transforms were independently
derived, and recently introduced in [26, 27].

A. Structure of the Fast Algorithm

The basic idea behind a fast ELT algorithm is to implement the polyphase component
matrix E(z) in Fig. 3 as a cascade of two kinds of matrices: zero-delay orthogonal factors
and pure delays. This idea was originally used in the canonical implementations for
lossless filter banks in [28]. However, due to the special cosine modulation structure of
the ELT, a particular form of the more general structures in [28] leads to a more efficient
implementation for the ELT, as we will see in the following.

The structures for the fast direct ELT and inverse ELT are shown in Figs. 4 and 5,
respectively. The basic factors of the fast ELT structures are the symmetrical butterfly
matrices Dk, which are defined by

Dk ≡
(
−Ck SkJ
JSk JCkJ

)
(23)
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Figure 5: Fast implementation of the inverse ELT (synthesis filter bank).

where

Ck ≡ diag{cos θ0k, cos θ1k, . . . , cos θM/2−1,k}
Sk ≡ diag{sin θ0k, sin θ1k, . . . , sin θM/2−1,k} . (24)

After the butterfly matrices and the delays, the last factor of the ELT structure is a type-IV
DCT operator [29, 30], which has a fast algorithm.

As we can see in Figs. 4 and 5, there are K butterfly matrices in the fast ELT. Thus,
there are KM/2 butterfly angles θrk, with 0 ≤ r ≤ M/2 − 1 and 0 ≤ k ≤ K − 1. Note
that KM/2 is precisely the number of degrees of freedom in choosing the window h(n),
because there are KM distinct values in h(n) and KM/2 distinct PR restrictions in (19).

In Appendix A we present the proof of the validity of the fast ELT structures in Figs. 4
and 5, in the sense that for any PR window h(n) there is a set of angles θrk and vice-versa.

B. Computational Complexity

It is clear that the direct and inverse ELT have the same complexity. Assuming that the
DCT-IV is computed using the DCT–to–DCT-IV mapping in [30] (which requires a total of
M+(M/2) log2M multiplications andM+(3M/2) log2M additions), and that each butter-
fly is computed with three multiplications and three additions [30], the total complexity of
the fast ELT would be (M/2)(3K+log2M+2) multiplications and (M/2)(3K+3 log2M+2)
additions. However, the complexity can be reduced by using the DCT-IV algorithm pre-
sented in [31], which saves M additions over the algorithm in [30].

An important property of the butterfly matrices in Figs. 4 and 5 that can be used to
reduce the computational complexity is that the cascade of the matrices Dk leads to a
cascade connection of butterflies and delays. Therefore, we could scale all the coefficients
in butterflies D1 to DK−1 such that all the diagonal entries would be equal to 1 or −1, and
the necessary inverse scaling would be applied to D0. Thus, instead of using the butterfly
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M K=1 K=2 K=3 K=4 K=5
MUL ADD MUL ADD MUL ADD MUL ADD MUL ADD

2 5 5 7 7 9 9 11 11 13 13
4 14 18 18 22 22 26 26 30 30 34
8 32 48 40 56 48 64 56 72 64 80

16 72 120 88 136 104 152 120 168 136 184
32 160 288 192 320 224 352 256 384 288 416
64 352 672 416 736 480 800 544 864 608 928

128 768 1536 896 1664 1024 1792 1152 1920 1280 2048
256 1664 3456 1920 3712 2176 3968 2432 4224 2688 4480
512 3584 7680 4096 8192 4608 8704 5120 9216 5632 9728

1024 7680 16896 8704 17920 9728 18944 10752 19968 11776 20992

Table 1: Computational complexity of the fast ELT algorithm.

matrices Dk we could use the matrices Dk, defined by

Dk ≡ diag{C−1
k , JC−1

k J}Dk, k = 1, . . . , K − 1

D0 ≡ diag{
K−1∏
k=1

Ck, J
K−1∏
k=1

C−1
k J}D0 . (25)

In this way, D0 would require three multiplications and three additions per butterfly, but
in Dk only two multiplications and two additions per butterfly would be necessary. The
final computational complexity of the fast ELT would be

M

2
(2K + log2M + 3) multiplications and

M

2
(2K + 3 log2M + 1) additions. (26)

For the two-band case, i.e. M = 2, the scaling factors in (25) can be absorbed in the single
butterfly that implements the DCT-IV, and thus we would save one extra multiplication
and one extra addition. In Table 1 we have a summary of the fast ELT complexity.

We see that the computational complexity of the ELT is close to that of block trans-
forms, and thus much lower than those of other filter banks such as the QMF bank [2] or
the PR structures based on canonical factorizations [28]. For example, for M = 32 and
K = 2, the number of operations (multiplications and additions) per input sample is 16,
for the ELT. As a comparison, the DCT requires 9.1 operations per sample, and the PR
structures of [28] needs 104 operations per sample. The recently introduced lattice struc-
tures for the ELT in [26, 27] lead virtually to the same computational complexity as our
butterfly structure.

Only parallel structures were compared in the previous discussion. If M is a power
of two, binary tree structures should also be included in the comparison. In particular, a
tree based on the two-band lattice structures in [32] would have approximately the same
complexity of the fast ELT. However, a very good low-pass filter may lose most of its stop-
band attenuation after going through many levels of decimation/interpolation. In fact, in
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order to use a tree with many levels, the original filters should be constrained to satisfy a
regularity condition from the wavelet transform theory [33], [34]. If we implement a filter
bank as a tree of any of the aforementioned filters designed forM = 2 (including the ELT),
the equivalent filters at the final resolution may contain small fractal components [33] in
their frequency responses, due to lack of regularity. This discussion just touches the point
that a tree-structured PR filter bank should be approached from the wavelet theory, but
this is a topic that goes beyond the scope of this paper.

C. Choice of the Butterfly Angles

With the fast ELT structures in Figs. 4 and 5, we have KM/2 angles that can be freely
chosen, and each choice leads to a different window h(n). As we have discussed in the
previous section, the frequency responses of the filters in the analysis and synthesis banks
will be translated versions of H(ejω). Therefore, we should try to pick up the butterfly
angles such that H(ejω) is a good low-pass filter, with bandwidth close to π/2M , in order
to achieve good subband separation. There are many possible measures of how good the
prototype filter is, and a simple but efficient one is the stopband energy

ξ =
1

π

∫ π

ωs

|H(ejω)|2 dω (27)

where ωs defines the beginning of the stopband, and it should be greater than π/2M . For
ωs = π/M , for example, a small value of ξ implies that there will be virtually no aliasing
among subbands that are not adjacent to each other. This error measure is commonly
used in filter design, including PR filter banks [28].

Given a set of angles θrk, it is possible to compute the corresponding window h(n)
from the results in Appendix A, and then the stopband error can be evaluated from (27).
Note that the integral in (27) can be easily written as a positive semidefinite Toeplitz form
on the vector formed by the coefficients of h(n) [35] (we recall that Toeplitz forms can
be efficiently evaluated through the FFT), so that no numerical integration procedure is
required. Then, a standard non-linear optimization procedure can be used to iteratively
refine the angles until a minimum in ξ is achieved.

We have written our own optimization routine, in the C language, based on the Broyden-
Fletcher-Goldfarb-Shanno method of iteratively updating an estimate of the inverse Hes-
sian matrix of the objective function [36]. The eigenvalue spread of the Hessian matrix
can be worse than five orders of magnitude, and this means that double-precision cal-
culations are required and, more importantly, that convergence will be quite slow. For
K = 4 and M > 16, for example, it took more than 200 iterations for convergence. This
ill-conditioning of the optimization problem is intrinsic to the choice of the objective func-
tion, and cannot be avoided (the design technique for PR filterbanks in [28] also suffers
from this problem).

The main problem in the optimization procedure is not in the slow convergence, but
in the initial choice for the angles. Because of the highly non-linear nature of the error
function, the optimization algorithm can easily be trapped in a local minimum that is
much worse than the true global minimum. The method we have chosen to initialize the
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Figure 6: The first two basis functions of the ELT for M = 8, for four choices of the
overlapping factor K.

angles is based on an auxiliary window u(n), defined by

u(n) ≡
K−1∑
i=0

ai cos

[
fi

(
n−KM +

1

2

)]
n = 0, 1, . . . , 2KM − 1. (28)

For any choice of the amplitudes ai and frequencies fi in (28), the window u(n) will have
the required even symmetry, but it may not satisfy the PR property. Thus, we perform first
an optimization of the ai and fi parameters so that the PR error, as measured by (19), is
minimized. WithK sinusoids, as suggested in (28), we can get quite close to a PR window
(for K = 1 and K = 2 we can get exactly a PR window [3, 25]). Then, the relationships in
Appendix A are used to obtain an initial set of angles from u(n). With these initial angles,
the optimization of ξ is then performed. In practice, we always got good filters h(n) from
this procedure, although global optimality is not guaranteed.

In spite of all the difficulties with the optimization, we recall that the number of free
angles in the ELT is much smaller than in the canonical PR structures in [28]. For example,
forM = 32 andK = 2 we have to optimize 32 angles, whereas the approach in [28] would
require the optimization of 465 angles, a much more difficult task.

As an example, we have in Fig. 6 the first two basis functions of the MLT for M = 8,
with K varying from one to four. In all cases we have used ωs = 1.2π/M . In Fig. 7 we
have their corresponding magnitude responses. As expected, the frequency resolution
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Figure 7: Magnitude frequency responses (in dB) of the filters in Fig. 6.

improves for larger values of the overlapping factor K. In Appendix B we have a table of
the butterfly angles for the ELT, with ωs = 1.2π/M , for some vales of M and K.

4 Applications

With its fast algorithm, good frequency resolution, and absence of blocking effects, the
ELT can replace traditional block transforms in TC systems, with a little penalty in com-
putational complexity. The ELT can also replace QMF or other non-PR filter banks, and
it allows efficient implementation of SBC systems with a large number of bands. There-
fore, we believe that the main area of application of the ELT is in signal coding. However,
anywhere a block transform or a filter bank can be used, the ELT can also be used, with
the potential for a better performance/complexity tradeoff. A good example is adaptive
filtering, where block transforms and filter banks have already been employed with good
results [37, 38]. In this paper we focus only on the use of the ELT in signal coding, whereas
in [31] we will discuss in detail applications of the ELT in signal filtering and spectrum
estimation.

Instead of implementing an specific coder with the ELT, let us consider some perfor-
mance bounds. Whatever adaptive quantization scheme is employed (vector or scalar,
AQF or AQB [1]), the coder performance cannot be better than the maximum coding gain
of the transform, which is given by the ratio of the arithmetic to the geometric means of
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Figure 8: Power spectra, in dB, for two speech signal sampled at 8 kHz. Top: male
speaker; bottom: female speaker.

the transform coefficient variances [1, 3, 6]. We have used for our analyses three signal
spectra: a first order Markov process with an intersample correlation coefficient ρ = 0.95
(which is a good model for images [1]), and the two speech spectra shown in Fig. 8. The
speech signals were sampled at 8 kHz, and the spectra were estimated from the average
of the power spectra of three 1024-sample segments. For the male speech, most of the ut-
terance contained a vowel and a fricative, whereas the female speech contained a mixture
of voiced and unvoiced phonemes.

In Tables 2 to 4 we have the coding gains of the ELT, for several choices for the number
of subbands M . As a standard for the comparison, we have included in the tables the
coding gains that would be obtained with ideal filter banks (the column labeled M = ∞
corresponds to the maximum coding gain that can be achieved for the signal source), and
those of the DCT. It is interesting to note that the coding gain generally jumps when we
go from the DCT to the ELT with K = 1, and then it increases slowly with K. When
K = 4 we get so close to the maximum coding gain of the ideal filter bank, for any given
number of subbands, that for coding applications it would not be necessary to work with
overlapping factors greater than four.

Comparing the performances of the DCT for M = 64 and the ELT with M = 16 and
K = 2, we see that the coding gains are similar, and in both cases the analysis and syn-
thesis filters would have lengths equal to 64. The processing delay would also be the
same in both cases, but the total computational complexity of the analysis and synthesis
filter banks would be 1,412 operations for the DCT and 448 operations for the ELT. Fur-
thermore, quantizing 16 ELT coefficients would take fewer computations than quantizing
64 DCT coefficients, whatever adaptive quantization scheme is employed. This gain in
computational complexity comes with another gain: the absence of blocking effects.
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BANK NUMBER OF BANDS, M
2 4 8 16 32 64 128 ∞

DCT 5.05 7.57 8.83 9.46 9.77 9.94 10.02
ELT, K=1 5.50 8.11 9.32 9.83 10.02 10.08 10.10
ELT, K=2 5.76 8.39 9.48 9.90 10.04 10.09 10.10
ELT, K=3 5.86 8.48 9.55 9.93 10.05 10.09
ELT, K=4 5.87 8.50 9.56 9.94 10.05 10.10
IDEAL 5.94 8.56 9.59 9.94 10.05 10.10 10.10 10.11

TABLE 2: CODING GAIN (DB) FOR AN AR(1) SIGNAL WITH ρ = 0.95.

BANK NUMBER OF BANDS, M
2 4 8 16 32 64 128 ∞

DCT 3.46 5.31 7.37 9.18 10.41 11.29 11.86
ELT, K=1 3.75 6.66 9.14 10.97 11.83 12.32 12.67
ELT, K=2 3.80 7.68 9.87 11.16 11.87 12.40 12.78
ELT, K=3 3.84 8.09 10.36 11.46 12.07 12.53
ELT, K=4 3.86 8.16 10.45 11.53 12.10 12.56
IDEAL 3.88 8.42 10.81 11.87 12.32 12.64 12.93 13.10

TABLE 3: CODING GAIN (DB) FOR A MALE SPEECH SIGNAL.

The coding gains of the ELT are in fact what one could expect, given their filtering
performance. Other filter banks such as the pseudo-QMF bank [19] would lead to similar
coding gains. The advantages of the ELT are in its PR property and fast implementation.
Finally, one important property of the ELT that is not shown in Table 2 is that the coding
gain of the ELT is independent of the sign of the correlation coefficient for an AR(1) source.
This is a major advantage over the DCT, whose performance degrades significantly for
sources having a negative correlation coefficient [39].

BANK NUMBER OF BANDS, M
2 4 8 16 32 64 128 ∞

DCT 1.77 3.07 4.20 5.24 6.06 6.58 7.18
ELT, K=1 2.30 4.11 5.45 6.16 6.79 7.50 8.13
ELT, K=2 2.86 4.42 5.75 6.22 7.01 7.76 8.29
ELT, K=3 3.16 4.57 5.92 6.33 7.13 7.87
ELT, K=4 3.18 4.59 5.95 6.35 7.16 7.90
IDEAL 3.27 4.60 5.99 6.42 7.26 8.09 8.46 9.07

TABLE 4: CODING GAIN (DB) FOR A FEMALE SPEECH SIGNAL.
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5 Conclusion

We have presented a more general definition of lapped transforms (LTs), and obtained
the perfect reconstruction (PR) conditions for arbitrarily long basis functions. The LTs are
actually a subclass of all PR FIR filter banks, in which the synthesis filters are identical,
within time reversal, to the analysis filters, i.e., the simple orthogonality conditions in (3)
are satisfied. We have also shown that the cosine modulated PR filter banks presented
in [13] do satisfy those orthogonality conditions, and thus they do belong to the class of
lapped transforms. Because these filter banks are an extension of the modulated lapped
transform (MLT), for filter lengths that can be greater than twice the number of subbands,
we refer to this new family as the extended lapped transform (ELT).

We have presented fast algorithms for the ELT with filter lengths equal to L = 2KM ,
where M is the number of subbands and K is the overlapping factor. The values of the
rotation angles in the fast ELT structure are obtained by means of a nonlinear optimization
procedure, which has its difficulties, but it needs to be performed only once.

Finally, we have demonstrated the efficiency of the ELT in signal coding applications,
where we have shown that the ELT can replace the DCT in transform coding systems,
with higher coding gains and absence of blocking effects. In subband coding (SBC), the
ELT can replace other filter banks, since the ELT is the PR filter bank with the lowest
computational complexity reported to date. In fact, SBC systems with a large number of
subbands can be easily implemented in inexpensive DSP chips for many applications.
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Appendix A
Proof of the Fast ELT Implementation

In this Appendix we show that any ELT can be implemented with the fast computational
structures of Figs. 4 and 5, that is, for every PR window h(n) there exists a set of angles
θrk, and vice-versa.

We will approach the proof by induction. Assuming that the structure generates an
ELT for some overlapping factorK, we will show that it will also generate an ELT forK+
1. Let us call the polyphase component matrix E(z) for some K as EK(z). Then, it is clear
from the regularity of Fig. 5 that

z−[2(K+1)−1] JẼK+1(z) = DK

(
I 0
0 z−2I

)
z−(2K−1) JẼK(z) (A.1)

Using (23), we can rewrite (A.1) as

JẼK+1(z) =

(
−Ck SkJ
JSk JCkJ

) (
z2 I 0
0 I

)
JẼK(z) . (A.2)

In order to put (A.2) in terms of the window coefficients, we need a few intermediate
results. First, it is easy to show, from (13) that

Φ2i = (−1)i Φ0

Φ2i+1 = (−1)i Φ1 (A.3)

and that

Φ0 =

(
I
−J

)
Λ0 Φ1 =

(
I
J

)
Λ1 (A.4)

where Λ0 and Λ1 can be easily computed from (15), and are M/2 ×M matrices. Second,
we can write the window diagonal submatrices, without loss of generality, as

Hi =

(
Ui 0
0 (−1)i JViJ

)
(A.5)
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where Ui and Vi are also diagonal matrices.
Substituting (A.3–A.5) and (15) into (7), we can relate the polyphase component matrix

directly to the window factors, in the form

JẼK(z) =
K−1∑
r=0

z2(K−1−r) (−1)r
[(

U2r

−JV2r

)
Λ0 + z−1

(
U2r+1

−JV2r+1

)
Λ1

]
. (A.6)

When we use (A.6) into (A.2), it is easy to see that ẼK+1(z) can also be put in the form
of (A.6) (and thus, proving by induction that the recursion in (A.1) generates an ELT),
with the window components of ẼK+1(z) being given by

UK+1
i = −CKUK

i + SKVK
i−2

VK+1
i = −SKUK

i −CKVK
i−2 (A.7)

where the superscripts in the Ui and Vi matrices denote the overlapping factor to which
they correspond. In order to finish the proof, we need to show that the structure in Figs. 4
and 5 does indeed generate an ELT for some K. Since this has been done in [3, 25] for
K = 1 and K = 2, the proof is complete.

Using the initial conditions

U0
0 ≡ −I, V0

−2 ≡ 0 (A.8)

we can use (A.7) recursively to generate the window h(n) from the set of butterfly angles
(remember that the angles define the matrices Ck and Sk). The recursions in (A.7) can
be easily inverted, in order to generate equations that allow us the computation of the
butterfly angles from a PR window h(n). For details, see [31].

In the following, we have the listing of a simple MATLAB program that will generate
the window h(n) from a set of butterfly angles.

function h = wingen(ang)
%
% WINGEN.M - Generation of ELT window, given an array with
% the butterfly angles
%
% Syntax: h = wingen(ang)
%
% Argument:
%
% ang - matrix containing the butterfly angles. It should have
% m/2 rows and k columns. The angles must be expressed as
% fractions of pi. The first column corresponds to D_0 in
% the paper, the second to D_1, etc. Recall that m is the
% number of subbands, and k is the overlapping factor.
%
% Output:
%
% h - vector of length 2*k*m, with the h(n) coefficients
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%-------------------------------------------
% Define m, k, and reserve space for window
%
ss = size(ang);
m2 = ss(1);
k = ss(2);
m = 2 * m2;
h = zeros(2*k*m, 1);
%-------------------------------------------
% Initialize h for k=1
%
c0 = cos(pi*ang(:,1));
s0 = sin(pi*ang(:,1));
h(1:m2) = -c0;
h(m2+1:m) = -s0;
%----------------------------------------
% Main recursion to generate window
%
if k > 1
for kk = 2:k
c = cos(pi*ang(:,kk));
s = sin(pi*ang(:,kk));
%---------------------------------------------------------------
% Note that the recursion is performed backwards, i = kk-1:1:0,
% because this allows for in-place generation of the window h.
% Note that only half of the window needs to be generated at each
% step, because of the even symmetry of h(n). For that to work
% when i = kk-1, we use the relationship
%
% kk-1 kk kk-1
% U = (-1) V
% kk-1 kk-2
%
for i = kk-1:-1:0
u = zeros(m2,1);
v = u;
if i == (kk-1)
sg = (-1)ˆkk;
mi = m * (kk-2);
u = u - sg * c .* h(mi+m2+1:mi+m);
v = v - sg * s .* h(mi+m2+1:mi+m);
end;
if i < (kk-1)
mi = m * i;
u = u - c .* h(mi+1:mi+m2);
v = v - s .* h(mi+1:mi+m2);
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end;
i2 = i - 2;
if (i2 >= 0)
mi = m * i2 + m2;
u = u + s .* h(mi+1:mi+m2);
v = v - c .* h(mi+1:mi+m2);
end;
mi = m * i;
h(mi+1:mi+m2) = u;
h(mi+m2+1:mi+m) = v;
end; % i
end; % kk
end; % if k
%-------------------------------------------
% Make V_i = ((-1)ˆi)*J*V_i*J
%
sg = 1;
for i = 1:k,
j = m * (i-1);
h(j+m2+1:j+m) = sg * h(j+m:-1:j+m2+1);
sg = -sg;
end;
%-------------------------------------------------------------
% Force symmetry, since only half of the window was generated
%
h(k*m+1:2*k*m) = h(k*m:-1:1);
%----------------
% Fim. All done.
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Appendix B
Examples of Butterfly Angles

In this Appendix we present a table of butterfly angles for the structures in Figs. 4 and 5,
for some values of M and K. The angles were obtained with the optimization proce-
dure described in Section 3, with the stopband start frequency ωs = 1.2π/M , in all cases.
The angles are given in Table 5 as fractions of π, in the correct format for input to the
wingen.m program described in Appendix A. Tables for other values of M , K, and ωs
can be found in [31].

M K=1 K=2 K=3 K=4
2 0.3187 0.5259 0.6546 0.4044 0.4501 0.4209 0.4951 0.5923 0.5568 0.5845
4 0.4144 0.5485 0.6138 0.4382 0.4328 0.4300 0.5214 0.5933 0.5519 0.5421

0.3119 0.5117 0.7015 0.3845 0.4784 0.4070 0.4811 0.5805 0.5421 0.6304
8 0.4352 0.5619 0.5948 0.4463 0.4210 0.4412 0.5273 0.5837 0.5589 0.5336

0.3935 0.5368 0.6340 0.4352 0.4481 0.4170 0.5164 0.6019 0.5424 0.5503
0.3417 0.5187 0.6780 0.4173 0.4705 0.3957 0.4980 0.5972 0.5361 0.5932
0.2817 0.5056 0.7256 0.3497 0.4884 0.4216 0.4674 0.5651 0.5443 0.6656

16 0.4443 0.5693 0.5858 0.4496 0.4143 0.4470 0.5382 0.5888 0.5529 0.5168
0.4260 0.5549 0.6041 0.4444 0.4291 0.4354 0.5346 0.6054 0.5420 0.5170
0.4052 0.5424 0.6237 0.4393 0.4425 0.4228 0.5291 0.6194 0.5340 0.5208
0.3817 0.5317 0.6446 0.4337 0.4548 0.4096 0.5223 0.6288 0.5282 0.5301
0.3558 0.5226 0.6666 0.4260 0.4659 0.3975 0.5142 0.6301 0.5243 0.5483
0.3275 0.5150 0.6897 0.4128 0.4760 0.3903 0.5042 0.6183 0.5228 0.5803
0.2973 0.5085 0.7134 0.3839 0.4849 0.3982 0.4896 0.5872 0.5265 0.6320
0.2659 0.5028 0.7378 0.3116 0.4925 0.4491 0.4489 0.5368 0.5565 0.7039

Table 5: Butterfly angles (fractions of π) for the fast ELT structure.
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