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Abstract

Solving the 4-d Einstein equations as evolution in time requires solving equations of two types:

the four elliptic initial data (constraint) equations, followed by the six second order evolution

equations. Analytically the constraint equations remain solved under the action of the evolution,

and one approach is to simply monitor them (unconstrained evolution).

The problem of the 3-d computational simulation of even a single isolated vacuum black hole

has proven to be remarkably difficult. Recently, we have become aware of two publications that

describe very long term evolution, at least for single isolated black holes. An essential feature in

each of these results is constraint subtraction. Additionally, each of these approaches is based on

what we call “modern,” hyperbolic formulations of the Einstein equations. It is generally assumed,

based on computational experience, that the use of such modern formulations is essential for long-

term black hole stability. We report here on comparable lifetime results based on the much simpler

(“traditional”) ġ - K̇ formulation.

With specific subtraction of constraints, with a simple analytic gauge, with very simple boundary

conditions, and for moderately large domains with moderately fine resolution, we find computa-

tional evolutions of isolated nonspinning black holes for times exceeding 1000GM/c2.

We have also carried out a series of constrained 3-d evolutions of single isolated black holes. We

find that constraint solution can produce substantially stabilized long-term single hole evolutions.

However, we have found that for large domains, neither constraint-subtracted nor constrained ġ

- K̇ evolutions carried out in Cartesian coordinates admit arbitrarily long-lived simulations. The

failure appears to arise from features at the inner excision boundary; the behavior does generally

improve with resolution.

PACS numbers:
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I. INTRODUCTION

Binary black hole systems are expected to be the strongest possible astrophysical gravi-

tational wave sources. In the final moments of stellar mass black hole inspiral, the radiation

will be detectable in the current (LIGO-class) detectors. If the total binary mass is of the

order of 10M⊙, the moment of final plunge to coalescence will emit a signal detectable by

the current generation of detectors from very distant (Gpc) sources. The merger of super-

massive black holes in the center of galaxies will be the dominant signal in the spaceborne

LISA detector, and detectable out to large redshift.

Simulation of these mergers will play an important part in the prediction, detection, and

the analysis of their gravitational signals in gravitational wave detectors. To do so requires

a correct formalism which does not generate spurious singularities during the attempted

simulation. Recent important work[1][2] has been done in extending the computational life-

time of single isolated black hole simulations. We report here on such an extension which

demonstrates that constraint subtraction by itself is adequate to produce very long-lived

simulations. We demonstrate this even for a very simple (“traditional”) ġ - K̇ formulation,

with specific subtraction of constraints (which are analytically zero) for single isolated non-

spinning black holes, with a simple analytic gauge (lapse and shift not “densitized”; see

IVA below), with very simple boundary conditions, and for moderately large domains with

moderately fine resolution.

We have also found that constrained 3-d evolution with densitized lapse can produce

substantially stabilized long-term single holes, even for subtractions that differ from the

values that we have found to be optimal in the unconstrained case, and we give some

preliminary constrained evolution results.

However, in all cases we have attempted, by any of the methods reported here, simulations

on very large domains (±20M , or larger) are unstable. These instabilities exhibit themselves

as disruption (crash) of the code at moderate to long times.

II. 3 + 1 FORMULATION OF EINSTEIN EQUATIONS

We take a Cauchy formulation (3+1) of the ADM type, after Arnowitt, Deser, and

Misner [3]. In such a method the 3-metric gij and its momentum Kij are specified at one
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initial time on a spacelike hypersurface, and evolved into the future. The ADM metric is

ds2 = −(α2 − βiβ
i) dt2 + 2βi dt dxi + gij dxi dxj (1)

where α is the lapse function and βi is the shift 3-vector; these gauge functions encode the

coordinatization.†
The Einstein field equations contain both hyperbolic evolution equations and elliptic

constraint equations. The constraint equations for vacuum in the ADM decomposition are:

H =
1

2
[R − KijK

ij + K2] = 0, (2)

H i = ∇j

(

Kij − gijK
)

= 0. (3)

Here R is the 3-d Ricci scalar constructed from the 3-metric, and ∇j is the 3-d covariant

derivative compatible with gij. Initial data must satisfy these constraint equations; one may

not freely specify all components of gij and Kij.

In this paper we are concerned only with single isolated black holes. From this point

of view the problem is not solving the initial value equations, since the data are known

analytically. Instead, the question is one of the stability of the solution as these data are

evolved computationally. The evolution equations from the Einstein system are

ġij = −2αKij + ∇jβi + ∇iβj (4)

and

K̇ij = −∇i∇jα + α(Rij − 2KikK
k
j + KKij) + βk∇kKij + Kik∇jβ

k + Kjk∇iβ
k (5)

where a dot ( ˙ ) denotes the partial derivative with respect to time, and Rij is the 3-d Ricci

tensor.

We call this form of the Einstein equations of ADM type, referring to the fundamental

development [3]; this specific form is called the ġ - K̇ form. Here, Eq. (2)–Eq. (3), the

constraint equations, are the vacuum Einstein equations 4G00 = 0 and 4G0i = 0 respectively.

[†] Latin indices run 1, 2, 3 and are lowered and raised by gij and its 3-d inverse gij .
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Eq. (4)–Eq. (5), the evolution equations, are a first order form of the vacuum Einstein

equations 4Rij = 0.

The true ADM form writes the evolution equations as 4Gij = 0, the space components

of the 4-d Einstein tensor, rather than the Ricci tensor. Frittelli and Reula [4] have shown

that with certain (rather strong) assumptions, there is stable maintenance of the constraints

under unconstrained evolution for Eq. (4)–Eq. (5), but only neutral stability for 4Gij = 0.

III. DATA FORM

In this paper we consider only single isolated black holes, so the data setting problem

is already solved; we use Kerr-Schild data, which describes a single isolated spinning or

nonspinning black hole hole.

The Kerr-Schild [5] form of a black hole solution describes the spacetime of a single black

hole with mass, m, and specific angular momentum, a = j/m, in a coordinate system that

is well behaved at the horizon:

ds2 = ηµν dxµ dxν + 2HKS(xα)lµlν dxµ dxν , (6)

where ηµν is the metric of flat space, HKS is a scalar function of xµ, and lµ is an (ingoing)

null vector, null with respect to both the background and the full metric,

ηµνlµlν = gµνlµlν = 0. (7)

Comparing the Kerr-Schild metric with the ADM decomposition Eq. (1), we find that

the t = constant 3-space metric is: gij = δij + 2HKSlilj. Further, the ADM gauge variables

are

βi = 2HKSl0li, (8)

and

α =
1

√

1 + 2HKSl20
. (9)

The extrinsic curvature can be computed from Eq.(4):

Kij =
1

2α
[∇jβi + ∇iβj − ġij], (10)
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Each term on the right hand side of this equation is known analytically; in particular,

for a black hole at rest, ġij = 0.

The general non-moving black hole metric in Kerr-Schild form (written in Kerr’s original

rectangular coordinates) has

HKS =
mr

r2 + a2 cos2 θ
, (11)

and

lµ =
(

1,
rx + ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)

, (12)

where r, θ (and φ) are auxiliary spheroidal coordinates, z = r(x, y, z) cos θ, and φ is the

axial angle. r(x, y, z) is obtained from the relation,

x2 + y2

r2 + a2
+

z2

r2
= 1, (13)

giving

r2 =
1

2
(ρ2 − a2) +

√

1

4
(ρ2 − a2)2 + a2z2, (14)

with

ρ =
√

x2 + y2 + z2. (15)

In the nonspinning case, one has li = xi/r, so that α = 1√
1+2m/r

, and βi = 2mxi/r.

IV. CONSTRAINT SUBTRACTION

The difference between Eq. (4)–Eq. (5), and 4Gij = 0, is a specific subtraction of the

constraint equations. This has led to the consideration by a number of groups, of constraint

subtraction with coefficients chosen by numerical search, or by analytical estimate (perhaps

combined with numerical search) to improve the long-term stability of the unconstrained

evolution. We have carried out such a numerical search, and we use the following constraint

subtraction:

−αH(0.464 gi j + 0.36 Ki j ) (16)

on the right hand side of the K̇ij equation (Eq. (5)). We have found that this subtraction

substantially improves the unconstrained evolution of nonspinning single-hole data. For

these evolutions we choose fixed (Dirichlet) outer boundary conditions set equal to the
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analytical value. In every case the simulation excises the interior of the black hole. One-

sided differencing is used near the inner (mask) boundary, so no boundary condition is needed

there, consistent with the property of the horizon as a causal boundary. The mask is specified

at a radius of 0.75 M. The solution employs the SUNDIALS package for time integration

[6–8]. The spatial discretization is fourth order, and the time evolution is typically fourth

order (variable-order according to the relative and absolute error tolerances). This approach

successfully stabilizes the evolutions for domains of ±10M , as shown in Figure 1. For larger

domains, however, the system is increasingly shorter lived, as shown in Figure 2. As a simple

measure of the quality of solution, we present the either the l2 norm or the rms norm of the

Hamiltonian constraint constructed via a straightforward fourth order differencing scheme

from the code results.

Although it is difficult to compare subtraction techniques across different formal represen-

tations of the Einstein equations, we do find typically much smaller coefficients of subtraction

(of order 0.5) than found for different formulations, e.g. [1] with a constraint subtraction of

order −12. The BSSN formulation of [2] is also substantially different from ours (there is a

subtraction from the ġij equation, for instance, which we do not have, and the subtraction

from the K̇ij equation is different from ours), though the coefficient of subtraction from K̇ij

for this approach is small, comparable to ours.

A. Densitized Lapse

There is extensive evidence in the literature that a densitized lapse improves the

hyperbolicity[9] of the weakly hyperbolic specified lapse ADM form of the Einstein equations.

We implement densitized lapse for single black hole simulations by writing

α = αanalytic(g/ganalytic)
p, (17)

where αanalytic is the explicit lapse as a function of coordinates given by Eq. (9), ganalytic is the

analytic Kerr-Schild 3−metric determinant as a function of coordinates, (ganalytic = 1+2Hl2t ,

[10]), g is the computational 3−metric determinant, and p is an adjustable positive constant

usually taken to be 1
3

or 1
2
. In fact we find that densitized lapse does not enhance constraint-

subtracted lifetime, though it does contribute substantially to longer lifetime in constrained
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evolutions described below.

V. CONSTRAINED EVOLUTION

The evolution of Kerr-Schild data must continue to satisfy the constraint equations,

Eqs. (2)–(3) as we evolve away from the initial data. However, if we choose nonoptimal (e.g.

zero) constraint subtraction for even nonspinning black holes, the evolution, which initially

has constraint violation at the expected truncaction error level, leads to an eventual large

violation of the constraints and a crash. Hence we have investigated constrained evolution,

solving the constraint equations as part of the time update of the evolution equations.

The postevaluated tracking of constraint errors [residual postevaluation] shown in Figures

1–2 used the direct discretization of the constraint equations Eq. (2) and Eq. (3). For con-

strained evolution we need instead to implement an accurate, efficient method of constraint

solution. We adopt the conformal transverse-traceless method of York and collaborators [11]-

[15] which consists of a conformal decomposition with a scalar φ that adjusts the metric,

and a vector potential wi that adjusts the longitudinal components of the extrinsic curva-

ture. The constraint equations are then solved for these new quantities φ, wi such that the

complete solution fully satisfies the constraints.

Applying this approach to constrained evolution, the metric and traceless extrinsic cur-

vature in the middle of a timestep (after an explicit integration forward in time) are taken

as conformal trial functions g̃ij and Ãij.

The physical metric at the end of the full timestep (i.e. after the constraint equation

solve), gij, and the trace-free part of the extrinsic curvature at the end of the full timestep,

Aij, are related to the trial fields through a conformal factor:

gij = φ4g̃ij, (18)

Aij = φ−10(Ãij + ˜(lw)
ij
). (19)

Here φ is the conformal factor, and ˜(lw)
ij

will be used to cancel any possible longitudinal

contribution. wi is a vector potential, and

˜(lw)
ij
≡ ∇̃iwj + ∇̃jwi − 2

3
g̃ij∇̃kw

k. (20)

The trace K is not corrected:

K = K̃. (21)

7



FIG. 1: The log of the rms norm of the Hamiltonian constraint violations for constraint-subtracted

and unsubtracted nonspinning black hole simulations with excision. The simulations were per-

formed at resolutions of M/5 and M/7.5 on a domain size of ±10M . The long-lived runs employed

optimal constraint subtraction (Eq. (16)). The short-lived run employed no subtraction.
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FIG. 2: The l2 norm of the Hamiltonian constraint violation for constraint-subtracted nonspinning

black hole simulations with excision performed at a resolution of M/5 on a domain sizes of ±10M ,

±15M , or ±20M . All cases employed the optimal constraint subtraction (Eq. (16)). As the

computational domain size increases, the simulation is increasingly shorter lived.
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Writing the Hamiltonian and momentum constraint equations in terms of the quantities in

Eqs. (18)–(21), we obtain four coupled elliptic equations for the fields φ and wi [11]:

∇̃2φ = (1/8)
[

R̃φ +
2

3
K̃2φ5 −

φ−7
(

Ãij + ( ˜lw)ij
) (

Ãij + ( ˜lw)ij

)]

, (22)

∇̃j( ˜lw)ij =
2

3
g̃ijφ6∇̃jK̃ − ∇̃jÃ

ij. (23)

These equations are solved to complete each time-update step. The resulting solved gij

and Kij are taken as the data for the next time-update. Notice that these equations require

no specific gauge choice. A similar approach also can be applied to other formulations

which generally have a larger number of constraints. A different approach to constrained

evolution, called “fully constrained” uses the combination of gauge conditions and solution

of the constraints to restrict the system so that only the minimal set of variables is evolved

and the rest are obtained from the constraints or from gauge conditions. This approach has

been used previously in two dimensional studies, and is a feature of the current 3-d work of

Bonozzola et al [16].

A. Elliptic Equation Boundary Conditions

A solution of the elliptic constraint equations requires that boundary data be specified

on both the outer boundary and on the surfaces of any masked regions. For the elliptic

solution here we can choose simple conditions, φ = 1 and wi = 0, on the masked region

surrounding the singularity. Because we solve the problem on a finite domain, we also must

provide an outer boundary condition for φ and wi. For this demonstration of the technique,

we choose the same conditions at the outer boundary of the domain: φ = 1 and wi = 0. In

long term evolution we expect the evolved solution to converge (as the solution is refined)

to a solution of the constraints, so a global solution φ = 1 and wi = 0 is expected in this

analytic limit. For achievable resolutions, however, the quantities φ and wi deviate from

this prediction.
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VI. CONSTRAINED EVOLUTION RESULTS

The elliptic constraint equations are solved either by a PETSc [17–19] GMRES solver

or KINSOL [6] GMRES solver; the spatial differencing is fourth order. We present below

(Figures 3 - 7) the results of preliminary constrained evolution of nonspinning black holes.

Figures 3 and 4 shows the rms norm of Hamiltonian and momentum constraints for these

simulations. Compared to the relatively short term crash of the unconstrained evolution,

the constrained evolution clearly does stabilize single black hole evolutions in small domains,

regardless of the precise subtraction. To fully understand the content of Figures 3 and 4,

consider that, even if the residual limit in the solution of the constraint equations, Eq. (22)

– Eq. (23), is set to extremely small values (it can be set very near to machine precision,

meaning that the discretized matrix form of equations Eq. (22) – Eq. (23) can be solved to

fractional errors of order 10−15), the post-evaluations of the constraint residuals will typically

show the expected zero only to the internal discretization accuracy (here fourth order). This

is why the constrained solution shown in Figures 3 and 4 shows a finite (but convergent)

level of Hamiltonian constraint violation.

Figures 5-7 show a constrained ġ−K̇ evolution with densitized lapse, at three resolutions

(M/5, M/7.5, M/10). The M/5 evolution crashes before t = 100M . The M/7.5 run began

showing large residuals at t ≈ 350M . The M/10 run shows better behavior than M/7.5, at

least initially. It shows a similar intermediate time residual growth which tracks (at smaller

error) the behavior of the M/7.5 case, but around 150M ceases to be convergent; see Figure

6. Figure 7 shows the 2d z = 0 behavior of the residual component Gxx at t = 100M . The

“red-blue” pattern of the features near the excision mask indicates that most of the error

develops there. The residual becomes more asymmetrical at later times.

VII. CORRECTNESS OF CONSTRAINED EVOLUTION

The constraint maintenance approach uses what has been called in magnetohydrodynam-

ics, a projection method[20]. This method for constrained evolution raises questions about

the meaning of the solutions obtained. This is sometimes put bluntly: “Accepting that the

method finds solutions of the full Einstein system, how do we know that the found solution

is the right one?” By this is meant that the constraint solution step may somehow move the
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solution back to an “erroneous” point on the space of constraint solutions. For instance,

it might be possible that although the evolution substep and the constraint substep are

individually convergent computational processes, the result of combining them is in some

manner not convergent. (In the much simpler MHD case there are analytical proofs that

projection minimizes the resultant error in the magnetic field, in a convergent way.[20]) Re-

cently, Holst et. al [21] introduced this concept to addressing the problem of constraints in

general relativity. Ref. [21] minimizes the error using a measure of the deviation between

trial and solved variables based on the symmetrizer appropriate to the hyperbolic scheme

being considered.

We respond somewhat differently. There are several parts to our response. (It will be clear

that we do not pretend to a rigorous analytical proof.) To begin with, we have constructed

completely independent “residual evaluators” for the full Einstein system. These evaluate

the Einstein tensor, working just from the metric produced by the computational solution.

They are completely different from the way the equations are expressed in the constrained

evolution code. As we show in Figures 5,6, the resulting residual is in every case initially

small (order of truncation error) and convergent. Thus we have achieved a computational

solution to the Einstein system. Note that our full Einstein equation residual evaluator

checks both the constraints (Einstein equations at one time), and the evolution equations

connecting different time steps.

The residual evaluators are written to return fourth order accurate results. Since they

have now been verified and show convergence of the solution, we appeal to the assumption

that the Einstein system is not singular at the solution manifold. Thus we expect that the

computational result converges to the analytical solution of the Einstein equations. We

have converged to a spacetime configuration. Physical consistency and generality imply

that it is the physically unique one that contains the initial data slice. We also note that,

as in the situation in Figure 6, the convergence is eventually lost in some simulations; these

simulations are no longer solving Einstein’s equations.

It is of interest to ask why our approach has not been implemented previously. A number

of factors were at work. It has been almost universally assumed that the computational

overhead of elliptic solvers is excessive. However Choptuik [22] indicates a time penalty

of ×2, incurred by a fully constrained 2d evolution, compared to free evolution. This cost
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FIG. 3: The rms norm of the Hamiltonian constraint H for simulations of a Schwarzschild (non-

spinning) black hole with excision. None of the simulations used any constraint subtraction. The

simulations were performed at resolutions of either M/5 or M/7.5 on a domain size of ±5M . The

long-lived runs employed constrained evolution as described in the text. The short-lived runs were

unconstrained.
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FIG. 4: The rms norm of the momentum constraints Hx, Hy, Hz, for simulations of a Schwarzschild

(nonspinning) black hole with excision. None of the simulations used any constraint subtraction.

The simulations were performed at resolutions of either M/5 or M/7.5 on a domain size of ±5M .

The long-lived runs employed constrained evolution as described in the text. The short-lived runs

were unconstrained.
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FIG. 5: The log of the rms norm for the Hamiltonian constraint in simulations evolving a nonrotat-

ing Kerr-Schild black hole with a spatial domain of [−10M...10M ] at three resolutions: M/5,M/7.5,

and M/10. The excision radius was 0.5M in all constrained and unconstrained cases. All simula-

tions used a densitized lapse with p = 1
3
. The constraints were solved in the constrained evolution

cases every 0.05M everywhere on the domain except those points where r < 2.0M . Independent

residual evaluations for the constrained cases with resolution M/7.5 and M/10 are found in Figure

6
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FIG. 6: The rms norm of the diagonal spatial components of the Einstein tensor for the M/7.5

and M/10 constrained simulations presented in Figure 5

is justified by the much longer physical lifetimes achieved in the (2d) evolutions of Ref

[23]; Choptuik’s factor of two in time is considered a small penalty. However, in previous

implementations of constrained (2d) evolution, one additionally had the problem that the

solvers were restricted, for instance to conformally flat situations. This required strong gauge

constraints on the evolution, and meant that generally one re-solved a strongly nonlinear

equation (comparable to the initial value problem), on each time step. But we have found,
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FIG. 7: The z = 0 plane of the Einstein tensor component Gxx at time 100M for the M/7.5

constrained evolution presented in Figures 5, 6.

even working with straightforward package solvers, that the penalty for our approach is only

of order 30%. This is because our constraint solver (developed for Kerr-Schild superposed

initial data), is in fact completely general with no restrictions on the form of the background.

(There are, of course, general conditions on the elliptic equations to allow their solution [24],

but we have encountered no difficulties in working with physically realistic configurations).

Thus our elliptic solver can use backgrounds that are strongly nonflat. They may be

strongly nonflat, but they are already very close to constraint solution. This is so because

they arise from evolving one timestep with an accurate time integrator; we use a package

integrator which is typically fourth order accurate in time, and the spatial discretization is

also fourth order. There is thus only a very small correction arising from the elliptic solve,
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and minimal outer iteration is required. Further, we take note of the fact that our explicit

time integration has a certain inherent order of truncation error. Thus we do not in fact set

the residual limit for the elliptic solve anywhere near machine accuracy. Instead we set it so

that it produces errors which are consistent in size with the evolution truncation error. This

reduces the internal iteration in the solver to a very small number. Finally, computational

resources are now becoming adequate for constrained 3-d evolution. 1Tflop/sec Computers

are now accessible, making this work plausible. It will always be the case that constrained

evolution is more computation- and memory- intensive than unconstrained, but the time has

arrived that interesting constrained evolutions are possible. Further, ongoing computational

infrastructure improvements will make this level of computation generally accessible. Well

within a decade, desktop access to 10 Tflop/sec will mean that constrained evolutions at

LISA- or LIGO- relevant resolutions will become unexceptional.

VIII. DISCUSSION

We have demonstrated that the analytical formulation is not critical to long term evo-

lution of single black holes, if the correct constraint subtraction is used. Thus, “modern”

approaches that pose explicitly hyperbolic approaches are not essential; “traditional” ġ - K̇

methods produce comparably long evolutions. The evidence seems to be that there are many

formulations and subtraction schemes that lead to long-term single black hole stability; we

have found an especially simple one.

However, we have found, consistent with theoretical estimates, that the precise subtrac-

tion is critical (a fraction to two or three decimals). To attack this problem, we have carried

out periodic solution of the elliptic constraint equations as part of the time integration, to

enable fully constrained evolutions of the Einstein equations. Our initial results demonstrate

dramatic improvement of long term stability of a nonspinning black hole simulation. Because

we solve the constraints, constraint subtraction is irrelevant in this case. We are beginning

exploration of the constrained evolution approach in spacetimes involving single moving, and

multiple interacting black holes. We find substantial improvement from constraint solving

in every simulation, but we have not achieved infinite-lived ġ − K̇ simulations, even with

densitized lapse (which is known to improve the hyperbolicity of the system of equations).

We have begun an approach where the inner excision is made at a constant coordinate

18



surface that coincides with the apparent horizon (essentially spherical, or spheroidal coor-

dinates) near the excision region[25].The spherical coordinates near the hole are matched

to a Cartesian region further away. This approach addresses concerns about the validity of

the stair-step (LEGO) excision region ([26]). Additionally the best long-lived isolated black

hole simulation to date has been carried out by Ref [1] with a pseudo-spectral method with

apparent horizon conforming coordinates, and it is hoped that this approach may exhibit

some of the good properties and long lifetime of the codes described in [1].

Acknowledgments

Computations were performed at the Texas Advanced Computing Center at the Univer-

sity of Texas. This work was supported by NSF grants PHY 0102204 and PHY 0354842,

and by NASA grant NNG04GL37G. Additionally, portions of this work were conducted

at the Kavli Institute for Theoretical Physics, The University of California at Santa Bar-

bara, under NSF grant PHY99 07947, and at the Laboratory for High Energy Astrophysics,

NASA/Goddard Space flight Center, Greenbelt Maryland, with support from the Univer-

sity Space Research Association. M. Anderson acknowledges support from a Department

of Energy Computational Science Graduate Fellowship administered by the Krell Institute.

A preliminary version of this work was presented at the meeting of the International As-

sociation of Relativistic Dynamics, summer 2003, and RM thanks the organizers for their

hospitality.

19



[1] Mark A. Scheel, Lawrence E. Kidder, Lee Lindblom, Harald P. Pfeiffer, Saul A. Teukolsky,

“Toward stable 3D numerical evolutions of black-hole spacetimes,” Phys. Rev. D66 124005

(2002)[arXiv:gr-qc/0209115].

[2] Hwei-Jang Yo, Thomas W. Baumgarte, Stuart L. Shapiro, “Improved numerical stability

of stationary black hole evolution calculations,” Phys. Rev. D66 084026 (2002) [arXiv:gr-

qc/0209066].

[3] R. Arnowitt, S. Deser, and C. Misner in Witten, Gravitation, an Introduction to Current

Research (Wiley, New York 1962).

[4] Frittelli, S., and Reula, O., “First-order symmetric-hyperbolic Einstein equations with arbi-

trary fixed gauge”, Phys. Rev. Lett., 76, 4667-4670, (1996).

[5] R. Kerr and A. Schild, “Some Algebraically Degenerate Solutions of Einstein’s Gravitational

Field Equations,” in Applications of Nonlinear Partial Differential Equations in Mathemat-

ical Physics, Proc. of Symposia B Applied Math., Vol XVII (1965); “A New Class of Solu-

tions of the Einstein Field Equations”, Atti del Congresso Sulla Relitivita Generale: Problemi

Dell’Energia E Onde Gravitazionala G. Barbera, Ed. (1965).

[6] A. Hindmarsh, R. Serban and C. Woodward, “SUNDIALS home page”,

http://www.llnl.gov/CASC/sundials/ (2002).

[7] A. Hindmarsh and R. Serban, “User Documentation for CVODES”, (Center for Applied

Scientific Computer, Lawrence Livermore National Laboratory, 2002).

[8] A. Taylor and A. Hindmarsh, “User Documentation for KINSOL, A Nonlinear Solver for

Sequentail and Parallel Computers”, (Center for Applied Scientific Computer, Lawrence Liv-

ermore National Laboratory, 1998).

[9] Gabriel Nagy, Omar E. Ortiz and Oscar A. Reula “Strongly hyperbolic second order Einstein’s

evolution equations”, gr-qc/0402123 (2004).

[10] Mijan F. Huq, Matthew W. Choptuik and Richard A. Matzner, “Locating Boosted Kerr and

Schwarzschild Apparent Horizons” Physical Review D66, 084024 (2002).

[11] J. York and T. Piran “The Initial Value Problem and Beyond”, Spacetime and Geometry:

The Alfred Schild Lectures, R. Matzner and L. Shepley Eds. University of Texas Press, Austin,

Texas. (1982); G. Cook, “Initial Data for the Two-Body Problem of General Relativity”, Ph.D.

20



Dissertation, The University of North Carolina at Chapel Hill (1990).
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