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Summary. Earlier results [1,2]2 on safe loads for a Prandtl-Reuss material subject to
surface tractions or displacements which increase in ratio are here extended to any
perfectly plastic material and any history of loading.

1. Introduction. The general limit design problem is concerned with a body or
assemblage of bodies made of perfectly plastic (i.e. non-workhardening) material and
subject to an arbitrary history of loading. In many cases, only the extreme values of
the loads are given, but the order in which these loads are applied to the body is not
specified. An important question is whether the body will "collapse", that is deform
appreciably under essentially constant loads, or whether its deformation will be con-
tained although substantial portions may go plastic. In engineering design, the actual
problem is to insure a reasonable margin of safety against such collapse.

In the present paper a somewhat restricted form of this general problem is discussed:
the actual history of loading is assumed to be completely specified rather than only
the extreme values of all loads. The given loading history may be very simple; for
instance, all loads may increase so as to preserve their ratios (proportional loading).
On the other hand, the loading program may be very elaborate; additional loads may
be superimposed on a state of initial stress, as is the case when traffic loads come on a
bridge, or when torsion and bending are applied to a shot peened and hence prestressed
axle.

The boundary conditions are assumed to be of the stress type for a single body or
assemblage of bodies. At each point of the surface of the body or assemblage of bodies
each component of the surface traction is specified except when the corresponding
component of the displacement is prescribed to be zero.

Several terms must be introduced, and a number of concepts must be discussed
before the main theorems can be stated and proved.

2. Perfect plasticity. In the following discussion, the general stress-strain relation for
a perfectly plastic material will be used so that the results will apply to a wide variety
of materials. By definition, a perfectly plastic material in simple tension has a stress-
strain diagram of the form shown in Fig. 1. The essential feature of this diagram is the
flat yield which produces a sharp boundary between elastic behavior and unrestricted
plastic flow at points such as B in Fig. 1.

To describe this kind of behavior mathematically for more general types of loading,
it is convenient to use tensor notation. Latin subscripts take the range of values 1, 2, 3,
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and the summation convention concerning repeated letter subscripts is adopted. The
coordinates X; used in the following are rectangular and Cartesian. Differentiation with
respect to a coordinate is indicated by a comma followed by the appropriate subscript
(Uij = dUi/dXj).

The mechanical behavior of a perfectly plastic material is completely characterized
by its yield function. For a homogeneous material, the yield function / depends only
on the nine stress components o\, ; it is positive definite and is symmetric with respect
to the conjugate shearing stresses <t;, and tr,j (i j) which are formally treated as inde-
pendent variables. Plastic flow can occur only under states of stress for which / = 1.
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States of stress for which / > 1 are not possible in a perfectly plastic material. For the
completely stress-free state / = 0; for any other state of stress within the elastic range
0 < / < 1. In the following, states of stress for which / < 1 will be called safer

The most frequently used form of the yield function is / = s,,s,,/2fc2, where S;, =
a a — crkk8ij is the stress deviation and k the yield stress in simple shear. However, more
complicated forms may be used to represent, for instance, various types of anisotropy.
For a non-homogeneous material, the yield function may vary from particle to particle.

The stress-strain law of a perfectly plastic material does not contain the strain itself
but only the strain rate. Since viscosity effects are disregarded, this law must contain
the rates of stress and strain in a homogeneous manner. The strain rate e,, can be
decomposed into an elastic component e',- and a plastic component e®,- :

= e'j + <%i • (1)

The elastic strain rate e',- is related to the rate of stress o-', by the generalized form
of Hooke's law. For the following, it is not necessary to write down this relation between
tn and a 'u ; it suffices to note that

t'ijff'ii > 0 except when eu = a'u = 0. (2)

The plastic strain rate is related to the state of stress. Since viscosity effects are neg-
lected, the stress components must be homogeneous of the order zero in the components
of the plastic strain rate. In other terms, the stress tensor a a determines the tensor of
the plastic strain rate e;, only to within an arbitrary factor.

The following geometric representation of states of stress and plastic strain rate is
often useful. In a nine-dimensional Euclidean space, consider a fixed system of rect-
angular Cartesian coordinates. The state of stress <tu will be represented by the point
with coordinates proportional to a,,- . The plastic strain rate will be represented by
the ray with direction cosines proportional to eu . This manner of representing the
plastic strain rate by a ray rather than a point is suggested by the fact that the state
of stress determines the plastic strain rate only to within an arbitrary factor.



1952] EXTENDED LIMIT DESIGN THEOREMS 383

The yield condition / = 1 defines a surface in this nine-dimensional space. We assume
this yield surface to be convex and to possess a unique normal in each of its points.
The mechanical significance of this assumption will become clear from the following
discussion.

Consider a state of stress for which / = 1. As has been shown in earlier papers [3, 4],
any plastic strain rate e*,- associated with this state of stress is represented by the ray
which has the direction of the exterior normal of the yield surface at the point er,-,- .
From this fact and the assumption regarding the yield surface, there follow two im-
portant lemmas.

Lemma 1. The stress rate <rj,- and the plastic strain rate e",- satisfy

= 0. (3)

Proof. If the plastic strain rate is not to vanish, the stress rate must correspond to
the change from one point on the yield surface to a neighboring point. Thus, the stress
rate is represented by a vector which is tangential to the yield surface, whereas the plastic
strain rate is represented by a ray normal to the yield surface. Equation (3) expresses
the orthogonality between this vector and ray. The special case <r', = 0 also satisfies
Eq. (3).

Lemma 2. There exists a function F, homogeneous of the first order in the com-
ponents of the plastic strain rate, such that in flow with the plastic strain rate ,
energy is dissipated at the rate F(eh), whereas, for any safe state of stress <r'a ,

,i,4, < Ftfd- (4)
Proof. If the plastic strain rate «;,■ is associated with the stress cr,,-, the rate of dissipa-

tion of energy is <Ti,€^ . Since the stress components are homogeneous of the order zero

FIG. 2

in the components of the plastic strain rate, the dissipated energy is homogeneous of
the first order in these strain rate components. Let II be the tangent plane of the yield
surface at the point a,, and h its distance from the origin 0 (Fig. 2). The rate of dis-
sipation of energy is then given by (evijtvii)1/2h. The inequality (4) expresses the fact
that any safe state of stress is represented by a point which lies on the same side of II
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as the origin. (Note that the function F is the supporting function of the convex yield
surface.)

3. Collapse. From the point of view of the practical engineer, the term collapse
implies that appreciable changes in the geometry of a structure will occur under es-
sentially constant loads. For the purpose of the following discussion, however, it is
more convenient to use the term collapse to refer to conditions for which plastic flow
would occur under constant loads if the accompanying change in the geometry of the struc-
ture or body were disregarded. In the discussion of this type of collapse, the equilibrium
conditions can be set up for the undeformed rather than the deformed body. This
obviously represents a great simplification because the deformation occurring during
collapse is not known beforehand but constitutes one of the unknowns of the collapse
problem.

To illustrate the relation between these two definitions of collapse, consider first a
hollow sphere of uniform wall thickness under gradually increasing interior pressure.
The material at the interior surface reaches the yield limit first, but its plastic deforma-
tion is contained by the surrounding shell of still elastic material. As the pressure con-
tinues to increase, the boundary between the elastic and plastic regions moves towards
the exterior surface; only when it has reached this surface does large plastic flow become
possible. Let us now compare the simplified stress analysis which neglects all changes of
geometry during the loading process to the complete analysis which takes account of
these changes. Even in the elastic range, and also in the subsequent range of contained
plastic deformation, the hollow sphere expands and its wall thickness diminishes some-
what. If those effects are taken into account, the pressure for which the entire sphere
becomes plastic is found somewhat smaller than when they are neglected. However, the
difference between the two pressure values is small because the deformations occurring
up to the end of the range of contained plastic deformation are of the order of magnitude
of elastic deformations. Continuing the analysis into the subsequent range of unrestricted
plastic flow, we find that the simplified analysis predicts flow under constant interior
pressure, whereas the complete analysis predicts flow under gradually decreasing pres-
sure. In either case the sphere loses its usefulness as a pressure vessel. As far as this
first example is concerned, the two definitions of collapse are therefore in substantial
agreement as to the pressure under which collapse sets in.

Next, consider a blunt, rigid wedge which is pressed against the flat surface of a
large block of perfectly plastic material. It is obvious that the term "collapse" can not
be applied to this problem in the sense attributed to this term by the practical engineer.
Indeed, as the wedge is pressed into the plastic material, the area of contact continues
to increase; thus, the load on the wedge must be increased steadily if plastic flow is to
be maintained. On the other hand, there exists a well-defined "collapse load" under
which plastic flow would continue if all changes in geometry could be disregarded. The
physical meaning of this "collapse load" is less clear than that of the collapse pressure
obtained in the preceding example. Obviously, the collapse load in the case of the wedge
is not the load under which the first indentation occurs, because some identation takes
place even in the elastic range. It is likely, however, that the collapse load indicates
the load intensity at which the permanent indentation begins to increase considerably
faster than the elastic identation. Thus, the collapse load in the case of the wedge has
the nature of a conventional yield limit, whereas the collapse pressure in the case of the
hollow sphere represents a natural yield limit.
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To arrive at a mathematical characterization of collapse, let the velocities be de-
noted by Vi , the surface tractions by T, , and the body forces (per unit volume) by
Fi . Furthermore, use the prime to indicate rates of change and the superscript c to
refer to collapse. From the definition of collapse introduced above it follows then that
during collapse

/
T\cv° dS = 0 and F'° = 0 for some v\ ^ 0, (5)

where the integration is extended over the surface S which bounds the considered body
or assemblage of bodies. Indeed, since collapse is to occur under constant loads, the
rates F'° must vanish throughout V; moreover, for those components of the surface
traction which are prescribed by the boundary conditions the rates T' must vanish,
whereas the surface velocities v° corresponding to the remaining components of the
surface traction must vanish according to our definition of stress boundary conditions.
Thus, the integral in the first Eq. (5) is seen to vanish.

An expression for the rate at which work is done during collapse is useful. If the
velocities v\ considered as functions of the coordinates are continuous and have con-
tinuous first derivatives, the principle of virtual displacements yields the following
equation:

J T'v* dS + J FY, dV = J dV. (6)

4. Admissible states. Consider first a state of stress for which the components
<ti j are continuous functions of the coordinates. Such a state is called statically admissible
if it satisfies (i) the conditions of equilibrium

fii.i + Fi = 0 (7)

throughout V and (it) the boundary condition

= Ti (8)

on those portions of the surface where the component T{ of the surface traction is given.
In (8), the unit vector along the exterior normal of S is denoted by n, .

The preceding definition may be generalized to include stress fields with a finite
number of surfaces of discontinuity. On either side of such a surface, the stresses must
then satisfy (7). Moreover, if n* denotes the unit normal vector of the surface of dis-
continuity, the expression cr,,n* must have the same value whether it is evaluated from
the stresses on one or the other side of the surface of discontinuity.

A velocity field t>, is called kinematically admissible if the velocity component v,-
vanishes on those portions of the surface S where the corresponding component T{ of
the surface traction is not prescribed. A kinematically admissible velocity field may
represent rigid body motions for certain portions of the body and genuine deformations
for the remainder. Special discontinuous velocity fields are also permissible and often
useful; they will be discussed in some detail later. For the present, however, we consider
only kinematically admissible velocity fields for which the velocity components are
continuous functions of the coordinates.

Such a velocity field is said to define a kinematically admissible slate of collapse if the
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rate at which the actual surface tractions and body forces do work on the velocities v<
equals or exceeds the rate of dissipation of energy computed from the strain rates

= Wi.i + »J.<) (9)
treated as purely plastic strain rates. Thus, for a kinematically admissible collapse state

J T,v- dS+ J F,v- dV > f Fie1:,) dV. (10)

5. Collapse theorems. The following theorems were previously established for special
cases [1, 2]; they can now be shown to hold generally.

Theorem 1. If all changes in geometry occurring during collapse are neglected, all
stresses are found to remain constant during collapse.

Proof. Applying the principle of virtual work to the velocity field and the rates of
change of the surface tractions, body forces, stresses and strains during collpase, we
obtain

f T'.Y dS+ f F'M dV — J tTi'eij dV. (11)

According to (5), the left-hand side of (11) must vanish for the considered collapse
state. The strain rate on the right-hand side of (11) can be decomposed into its elastic
and plastic components; thus,

I dV + J dV = 0. (12)

The second integral in (12) vanishes according to (3). The relation (2) shows then that
(12) can be satisfied only if the stress rate <r'° vanishes throughout V.

Theorem 2. If a safe statically admissible state of stress can be found at each stage
of loading, collapse will not occur under the given loading schedule.

Proof. Suppose this theorem to be false. Then, at some stage of loading, a collapse
state v°i would exist although a safe statically admissible state of stress a-®,- could be found.
Applying the principle of virtual work to the actual surface tractions T° and body forces
F°i at this collapse stage, the stresses awith which these are in equilibrium, the velocities
v"i , and the corresponding strain rates tu , we obtain

J T'v'i dS+ J F°v° dV = J cr't.eh dV. (13)

According to Theorem 1, the stresses and hence the elastic strain remain constant
during the collapse described by the field v° . Thus, the strain rate e°, is purely plastic.
From the first part of Lemma 2 it follows then that the right-hand side of (6) can be
written as / F(ec{i) dV. Combining this form of (6) with (13), we obtain

f aUh dV = J F(e%) dV (14)
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which is in contradiction to the second part of Lemma 2, since the strain rate is
purely plastic.

Theorem 3. As long as collapse does not occur, a safe statically admissible state of
stress can be found at each stage of loading.

To prove this converse of Theorem 2, consider a generic stage of loading defined by
the surface tractions T, and the body forces F, . If the actual stresses at this stage of
loading are denoted by <ra , we have /(o-,,) < 1, because collapse is not supposed to occur.

Consider now the loading specified by NTt and NFt , where N is constant throughout
the body. For N = 1, collapse does not occur according to the condition of the theorem.
Since the equations of equilibrium are linear in the stresses, body forces, and surface
tractions, the stresses Naif will be in equilibrium with N'T, and NF, . Moreover, it
follows from the convexity of the yield surface that /(iVo-,,) < 1 if N < 1. Thus, collapse
can occur under the loads NTt , NF{ only if iV > 1. Let <j\, denote the actual stresses
for such a state of collapse. These stresses are in equilibrium with NT; , NF{ and satisfy
/(<7;,) < 1. Therefore, the stresses a'a/N are in equilibrium with T t , F, and satisfy
f(<Tcn/N) < 1; in other terms, these stresses define a safe statically admissible state of
stress for the loads T, , .

Theorem 4. If a kinematically admissible collapse state can be found at any stage of
loading, collapse must impend or have taken place previously.

Proof. Suppose this theorem to be false. According to Theorem 3, a safe state of
stress <j'a could then be found in spite of the existence of a kinematically admissible
collapse state o\ . Applying the principle of virtual work to the actual surface tractions
Ti and body forces Ft at the considered stage of loading, the stresses a-*,- with which
these are in equilibrium, the velocities vl and the corresponding strain rates e*,- , we
obtain

J 7>* dS + J F^ dV = J o'ijtij dV. (15)
On the other hand, we may use (10) since v\ is a kinematically admissible collapse state.
Thus,

J dV> f F(eJ,) dV (16)
which is in contradiction to (4) since the strain rates tu of a kinematically admissible
collapse state are treated as purely plastic.

6. Discontinuous velocity fields. It is often useful to consider discontinuous velocity
fields. However, it should be kept in mind that in plastic flow, as distinct from fracture,
actual discontinuities cannot occur across a fixed surface. The type of discontinuity to
be considered in the following is simply an idealization of a continuous distribution in
which the velocity changes very rapidly across a thin transition layer (Fig. 3). This
idealization is permissible provided the stresses on the assumed discontinuity surface
are chosen as the limiting values of the stresses on the surfaces bounding the transition
layer as the thickness of this layer approaches zero. For plane plastic flow in a Prandtl-
Reuss material, for instance, the line of discontinuity must be a shear line for each of
the stress fields on the two sides of the line of discontinuity. If the yield function /
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depends upon the mean normal stress, it will be found that a discontinuity in tangential
velocity implies separation or overlap of the material on the two sides of the discontinuity.
In such a case, the actual transition layer must have appreciable thickness, but the
idealization to a discontinuity surface may still be useful.*

The theorems of Sec. 5 are obviously valid in the presence of a transition layer. They
will, therefore, remain valid in the limit as the thickness of the transition layer approaches

FIG. 3

zero, provided it is kept in mind that the rate of dissipation of energy in the transition
layer approaches a finite value in the limit. If the transition layer is replaced by a surface
of discontinuity, the expression / F(e{i) dV must, therefore, be replaced by

J F(*„) dV + J TiAVi dA (17)

where dA is the element of area of the discontinuity surface, T, the traction and At',-
the velocity jump across this surface. Thus, in the definition (10) of a kinematically
admissible collapse state, the right-hand side must be replaced by (17).

Actual discontinuity of velocity can occur in the case of an assemblage of bodies;
for instance slip may occur between a punch and the indented material. If there is no
friction between the bodies of an assemblage, Theorems 1 through 4 remain valid in spite
of such discontinuities in the velocity because no energy is dissipated on the contact
surface in the absence of friction.

7. Additional theorems. The following theorems are intuitively obvious but their
statement and indication of proof seems worthwhile.

Theorem 5. Addition to the body of (weightless) material cannot result in a lower
collapse load. The proof follows directly from the fact that the collapse stresses <r<,-
for the original body and zero stresses in the added material constitute a statically
admissible state for the new body.

Corollary. Removal of material cannot increase the collapse load.
If the yield surface of one material contains that of a second material, the first

material will be said to have higher yield strength than the second.

Theorem 6. Increasing the yield strength of the material in any region of a perfectly
plastic body cannot weaken the body.

The proof follows from the fact that any statically admissible state of stress which
is safe for the unimproved body is also safe for the improved body.

*Application to soil mechanics provides an excellent illustration and will be treated in a separate
paper.
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Theorem 7. Initial stresses or deformations have no effect on collapse providing the
geometry is essentially unaltered.

To prove this, we note that an initial or residual state does not affect any of the
equations or statements made. This means, for example, that settlement of supports of
a continuous structure or initial plastic torsion of a bar subsequently bent or pulled
does not affect the limit loads provided the geometry is not changed appreciably.

It is probably best to end on a note of caution. Just as in elasticity, the concept of
an essentially unaltered geometry rules out buckling which must, therefore, be studied
separately. ,
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