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Abstract

Background: The increasing availability of time series microbial community data from metagenomics and other

molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association

networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in

that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that

cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not

consider time series data with replicates, which hinders the full exploitation of available information. With

replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence

interval.

Results: We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA.

Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented

the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data

normalization, statistical correlation calculation, statistical significance evaluation, and association network

construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where

unique time-dependent associations were identified.

Conclusions: The extended LSA analysis technique was demonstrated to reveal statistically significant local and

potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation

analysis. These statistically significant associations can provide insights to the real dynamics of biological systems.

The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA

homepage, which can be accessed at http://meta.usc.edu/softs/lsa.

Background
In recent years, advances in microbial molecular technol-

ogies, such as next generation sequencing and molecular

profiling, have enabled researchers to spatially and tem-

porally characterize natural microbial communities with-

out laboratory cultivation [1]. However, to reveal existing

symbiotic relationships and microbe-environment

interactions, it is necessary to mine and analyze temporal

and spatial co-occurrence association patterns of organ-

isms within these new datasets [2,3]. Time series data, in

particular, are receiving increased attention, since not

only ordinary associations, but also other local and

potentially time-delayed associations can be inferred

from these datasets. Here local association indicates that

the association only occurs in a subinterval of the time of

interest, and time-delayed association indicates that there

is a time lag for the response of one organism to the

change in another organism. The rapid accrual of time
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series data is not limited to the microbial ecology field.

Progress in high-throughput low-cost experimental tech-

nologies has also brought such changes to gene transcrip-

tion and translation studies. Thus, while the subjects may

vary, the association network we build from local and

potentially time-delayed association patterns will likely

pave the way to a better understanding of these systems.

To analyze microbial community and other data under

various conditions, researchers typically use techniques

such as Pearson’s Correlation Coefficient (PCC), princi-

pal component analysis (PCA), multi-dimensional scal-

ing (MDS), discriminant function analysis (DFA) and

canonical correlation analysis (CCA) [4-8]. Although

these analytic methods yield interesting patterns, they

generally analyze the data throughout the whole time

interval of interest without considering potential local

and time-delayed associations. We are specifically inter-

ested in discovering local and potentially time-delayed

associations. Such associations have been shown to play

important roles in understanding gene expression

dynamics and the association of organisms in microbial

communities [9-12].

To understand local and time-delayed associations, we

originally designed a Local Similarity Analysis (LSA) for

time series data measured typically at successive and

equal time intervals without replicates [11]. Studies

adopting the original LSA technique have shown inter-

esting and novel discoveries for microbial community

datasets. To name a few, Paver et al. [10] successfully

applied LSA to study glycolate-utilizing bacterial and

phytoplankton associations, while Shade et al. [13] used

LSA to discover bacterial association dynamics during

lake mixing.

Since biological experiments are often associated with

many potential sources of noise, repeated measurements

(replicates) are usually carried out in order to better

assess inherent uncertainties of the quantities of interest

[14]. Furthermore, data emerging from such experi-

ments are typically analyzed by mean effect or by the

development of profiles where variability is not properly

accounted for [15]. Temporal and spatial data with

replicates are being generated in Dr. Cardon’s laboratory

and others. The lack of support for replicated data in

the original LSA program has prevented its application

to these new datasets. With replicates, it is possible to

evaluate the variation of and to give a bootstrap confi-

dence interval for the local similarity (LS) score as

defined in Ruan et al.[11]. Furthermore, the original

LSA is restricted by the low computing efficiency of the

R language, as well as poor handling of missing values.

In order to improve upon these issues and make the

technique more accessible to the scientific community,

we developed an extended LSA technique, named eLSA,

and implemented it as a C++ extension to Python.

Briefly, given time series data of two factors and a

user-constrained delay limit, eLSA finds the configura-

tion of the data that yields the highest local similarity

(LS) score, which is a type of similarity metric. For

example, within a delay limit of two units, the first time

spot of one series might be aligned to the third time

spot of the other series, thus maximizing their LS. For a

dataset of many factors, eLSA is applied to each pairwise

combination of factors in the dataset. Candidate associa-

tions are then evaluated statistically by a permutation

test, which calculates the p-value which is the propor-

tion of scores exceeding the original LS score after shuf-

fling the first series and re-evaluating the LS score many

times, and by the false discovery rate (FDR q-value),

which is used to correct multiple comparisons.

Researchers can use eLSA to detect undirected associa-

tions, i.e., association patterns without time delays, and

directed associations, where the change of one factor

may temporally lead or follow another factor.

The organization of the paper is as follows. In the

“Methods” section, we describe the LSA algorithm for

calculating LS score with replicates, data normaliza-

tion, estimation of confidence interval for the LS score,

and testing the statistical significance of a LS score. In

the “Results” section, we first show the efficacy of

eLSA by simulations, then describe briefly the pipeline

of eLSA, and finally apply the pipeline to analyze a

microbiological dataset and a gene expression dataset.

The paper concludes with some discussion and

conclusions.

Methods
Pearson’s correlation coefficient-based analysis

Suppose that the time series data for factors X and Y

with replicates are measured simultaneously. We denote

them as X = X[1:n][1:m] and Y = Y[1:n][1:m], where n is the

number of samples (time points) and m is the number

of replicates. Let Xi[1:m] and Yj[1:m], or, in more abbre-

viated form, Xi and Yj, be the vectors containing the m

replicates from the i-th time spot of X and the j-th time

spot of Y, respectively. The application of Pearson’s Cor-

relation Coefficient (PCC) requires taking the profile

means, i.e. X i
and Y j . Then the PCC between X and Y

is defined as:
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are the means of X and Y, respectively. The
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statistical significance of r is tested by the fact that

t r
n

r
=

−
−

2

1
follows a t-distribution (degree of freedom: v

= n – 2, mean: 0 and variance v / (v – 2)) when m = 1.

For a pair of non-replicated series where m = 1, PCC is

a straightforward and powerful method to test and iden-

tify linear relationship between two bivariate normally

distributed random variables. It is widely adopted in the

literature but with limitations. Specifically, when the real

relationships are more complex, for example, the asso-

ciation between the two factors only occurs in a subin-

terval of the region of interest or the change of one

factor has a time-delay in response to the change of

another factor. Several methods, including the original

LSA method, have been proposed to overcome such dif-

ficulties [11,16].

Local similarity analysis with replicates

The original LSA method considers only data without

replicates. In this paper, we extend the Local Similarity

Analysis (LSA) method [11] to samples with replicates.

To formulate the algorithm, we suppose each sample

have m replicates and let F(·) be some summarizing

function for the repeated measurements. Thus, we

extend the original LSA dynamic programming algo-

rithm to data with replicates as follows:

(1) For i, j in {1,2,…,n}2:

P0,j = 0, Pi,0 = 0, and N0,j = 0, Ni,0 = 0.

(2) For i, j in {1,2,…,n}2 with |i – j|≤ D:

Pi+1,j+1 = max{0,Pi,j + SXY[F(Xi),F(Yj)]} and

Ni+1,j+1 = max{0,Ni,j + SXY[F(Xi),F(Yj)]}.

(3) Pmax(X,Y) = max1≤i,j≤nPi,j and

Nmax(X,Y) = max1≤i,j≤nNi,j.

(4) S X Y
P X Y N X Y

n
max

max max( , )
[ ( , ), ( , )]

=
max

and

Ssgn(X,Y) = sgn[Pmax(X,Y) – Nmax(X,Y)].

The Smax(X,Y) obtained is the maximum local similar-

ity score possible for all configurations of m-replicated

time series X and Y within time-delay D. In this

extended algorithm, the scalars xi ’s and yi ’ s from the

non-replicated series in Ruan et al.[11] are replaced by

vector functions F(Xi)’s and F(Yj)’s to handle data with

replicates. Alternatively, we can also consider F(Xi)’s and

F(Yj)’s as the same input data for the original algorithm

in Ruan et al.[11], except that they are F-transformed

data. In addition, this extended LSA framework easily

accommodates the original version of LSA without

replicates using m = 1 as a special case.

Different ways of summarizing the replicate data

Notice that the only additional component we intro-

duced in the eLSA algorithm is the function F. Many

reports have suggested different possible forms for F,

and several computational methods have been proposed

for summarizing the additional information available

from replicates, including the simple average method

(abbreviated as ‘simple’) and the Standard Deviation

(SD)-weighted average method (abbreviated as ‘SD’), and

the multivariate correlation coefficient method [17-19].

However, the result of the multivariate correlation coef-

ficient method from Zhu et al.[17] can be shown to be

the same as the ‘simple’ method. Therefore, in eLSA, we

used the first two methods. We also propose the use of

median in place of average and Median Absolute Devia-

tion (MAD) in place of SD when robust statistics are

needed to handle outliers [20]. The corresponding

methods are named simple median method (abbreviated

as ‘Med’) and MAD-weighted median method (abbre-

viated as ‘MAD’), respectively.

The ‘simple’ method is, in spirit, to take the mean

profiles to represent the replicated series. In practice, we

take F to be the simple average of repeated measure-

ments: F X Xi i( ) = . The ‘SD’ method, on the other

hand, takes the standard deviation of the replicates into

account. Here we take F to be the replicate average

divided by its standard deviation (SD): F X
X

i
i

X i

( ) =
s

.

Importantly, this method utilizes the variability informa-

tion available, and, as such, it is claimed to be better

than the ‘simple’ method in estimating the true correla-

tion [18]. However, in order for the ‘SD’ method to be

effective, a relatively large number of replicates, m, are

needed, e.g.,m ≥ 5. For a small number of replicates, the

‘SD’ method may not work well since the standard

deviation may not be reliably estimated. Further, if we

replace average with median and SD with MAD, we

obtain the ‘Med’ method: F(Xi) = Median(Xi) and the

‘MAD’ method: F X
Median X

MAD X
i

i

i

( )
( )

( )
= , where MAD(Xi) = Med-

ian(|Xi – Median(Xi)|). The two transformations have

similar properties as their corresponding average and

SD versions, but they are more robust.

Bootstrap confidence interval for the LS score

With replicate data, researchers can study the variation

of quantities of interest and to give their confidence

intervals. Due to the complexity of calculating the LS

score, the probability distribution of the LS score is hard
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to study theoretically. Thus, we resort to bootstrap to

give a bootstrap confidence interval (CI) for the LS

score. Bootstrap is a re-sampling method for studying

the variation of an estimated quantity based on available

sample data [21]. In this study, we use bootstrap to esti-

mate a confidence interval for the LS score. For a given

type I error a, the 1 – a confidence interval is the esti-

mated range that covers the true value with probability

1 – a. Thus, for a given number, B, of bootstraps, we

construct the bootstrap sample set

{( , ),( , ),...,( , )}( ) ( ) ( ) ( ) ( ) ( )     X Y X Y X YB B1 1 2 2 , where each

X i

k ( ) and Y j

k ( )
are samples with replacement from Xi

and Yj, respectively. The rest of the calculation is the

same as that used for the original data, and we obtain
  S S X Ymax

k
max

k k( ) ( ) ( )( , )= . Without the loss of generality,

we suppose that these values are sorted in ascending

order:   S S Smax max max
B( ) ( ) ( )...1 2≤ ≤ ≤ . Then, a 1 – a bootstrap

CI of Smax can be estimated by
[ , ]

( ) ( ( ) ) S Smax

B

max

B
a a

2
1

2
− , as

suggested by Efron et al.[21].

Data normalization

eLSA analyses require the series of factors X and Y to be

normally distributed, but this may not be the case in the

real dataset. Therefore, through normalization, the nor-

mality of the data can be enforced. To accommodate

possible nonlinear associations and the variation of

scales within the raw data, we apply the following

approach [22] to normalize the raw dataset before any

LS score calculations. We use F(Xi) to denote the F-

transformed data of the i-th time spot of an variable Xi.

First, we take

R F X F XF X F Xk k n= rank of in( { () ), ( ),..., ( )}.1 2 (2)

Then, we take

Z
n

R
k

k=
+

⎛
⎝
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⎞
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−Φ 1

1
, (3)

where F is the cumulative distribution function of the

standard normal distribution. We will take Z = Z[1:n]

obtained through the above procedure as the normaliza-

tion of X. Therefore, the normalization steps are taken

after the F-transformation.

Permutation test to evaluate the statistical significance of

LSA association

It is important to evaluate the statistical significance of

the LS score measured by the p-value, the probability

of observing a LS score no smaller than the observed

score when two factors are not associated locally or

globally. To achieve this objective, permutation test is

used. To perform the test, we fix Y and reshuffle all

the columns of X for each permutation. For a fixed

number of permutations L, suppose {X(1),X(2),…,X(L)} is

the permuted set of X; then the p-value PL is obtained

using

P Prob S S X Y I S X Y S X Y
L

L

L

max

k

max
k

max= ≥ ≈ ≥
=

∑[ ( , )] [ ( , ) ( , )],( )1

1

(4)

where I(·) is the indicator function. With large enough

number of permutations, we can evaluate the p-value to

any desired accuracy.

False discovery rate (FDR) estimation

In most biological studies, a large number of factors

need to be considered. If there are T factors, there will

be
T T( )− 1

2
eLSA pairwise calculations, representing its

quadratic growth in T. In order to avoid many falsely

declared associated pairs of factors, we need to correct

for multiple testing. Many methods have been developed

to correct for multiple testing and here we use the

method by Storey et al.[23] to address this issue. In par-

ticular, we report the q-value, Q, for each pair of factors.

The q-value for a pair of factors is the proportion of

false positives incurred when that particular pair of fac-

tors is declared significant.

Computation complexity and implementation

For a single pair of time series, the time complexity for

calculating the LS score using the dynamic program-

ming algorithm is O(n), where n is the number of time

points. The estimation of the bootstrap confidence

interval for the LS score using B bootstraps will need O

(Bn) calculations. The estimation of statistical signifi-

cance for each pair of factors using L permutations will

need O(Ln) calculations. Thus, the number of calcula-

tions for a full analysis of each pair of factors will be O

(BLn). If there are a total of T factors, there are a total

of
T T( )− 1

2
pairs of factors that need to be compared.

Thus, the number of calculations for a full analysis of T

factors will be in the order of O(T2BLn), which can be

computationally intensive.

In summary, the internal support for replicates and

the use of CI estimates are the two major methodologi-

cal enhancements to LSA. The eLSA software, however,

also incorporates other new features, such as faster per-

mutation and false discovery rate evaluations and more

options to handle missing values. Other implementation

details are available from the software documentation.

Results
Simulations and benchmarks

We generated simulated data to show the efficacy of

eLSA in capturing time-dependent association patterns,

such as time-delayed associations and associations

within a subinterval. We also studied the difference
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between the eLSA inference using the simple average

(referred to as ‘simple’) method, the SD-weighted aver-

age method (referred to as ‘SD’), the median (referred to

as “Med”) method, and the MAD (referred to as ‘MAD’)

method.

Time-delayed association

In this case, X and Y are assumed to be positively corre-

lated with a time delay D. For a particular example with

D = 3, we assume that (Xj+3,Yj)’s follows a bivariate nor-

mal distribution with mean μ = 0 and covariance matrix
∑ =

⎛

⎝
⎜

⎞

⎠
⎟

1

1

r

r
, for j = 1,2,…,20, where r = 0.8. Xj’s are

assumed to be standard normal for j = 1,2,3. The gener-

ated (Xj,Yj)’s are further perturbed m times by a mea-

surement disturbance εij : N(0, 0.01) to obtain the m-

replicated series. A pair of simulated series is shown in

Figure 1a for a typical simulation with m = 5.

We see that the two series closely follows each other if

we shift the Y series three units toward right. In this

particular example, the PCC is -0.258 (P=0.272) while

the LS score using ‘simple’ averaging method is 0.507

with a p-value of 0.006. We did 1000 bootstraps and the

95% bootstrap confidence interval for this particular

example is (0.448, 0.549). Therefore, this time-delayed

association is only found significant by the eLSA

analysis.

Association within a subinterval

In this case, we assume X and Y are positively associated

within a subinterval and not associated in other regions.

In our simulation, we generate 20 time spots of the two

series by sampling (Xj,Yj) from a bivariate-normal distri-

bution with mean μ = 0 and covariance matrix ∑ =
⎛

⎝
⎜

⎞

⎠
⎟

1

1

r

r

where r = 0.8 for 6 ≤ j ≤ 15, and r = 0 for j ≤ 5 or 16 ≤

j ≤ 20. The generated (Xj,Yj)’s are further perturbed m

times by a measurement disturbance εij : N(0, 0.01) to

obtain the m-replicated series. One generated series are

shown in Figure 1b for a typical simulation with m = 5.

We can see the two series mostly closely follow each

other within the intended subinterval 6 ≤ j ≤ 15. In this

particular example, the PCC is 0.258 (P=0.272) while

the LS score using ‘simple’ averaging method is 0.428

with a p-value of 0.028. We did 1000 bootstraps and the

95% bootstrap confidence interval is (0.404, 0.446). This

pattern is again uniquely captured by the eLSA analysis.

In real applications, there are many other possibilities

that two factors are associated without a significant

Pearson or Spearman’s correlation coefficient. The eLSA

can capture these associations as long as their LS score

can be maximized through dynamically enumerating

their configurations.

Different summarizing function

To see the effect of replicates, we also let m = 1, 10, 15,

20 in the time-delayed simulation and did the same ana-

lysis as above with 1000 simulations. The results are

summarized in Table 1. It can be seen from the table

that the results using “simple” and “Med” are similar

with mean LS scores ranging from 0.490 to 0.498 and

standard errors ranging from 0.078 to 0.091. On the

other hand, if the noise in the replicates is not normally

distributed, the “Med” method should be more robust.

On the other hand, the mean LS scores using “SD” and

“MAD” are generally lower than that using the “simple”

and “Med” methods. This maybe caused by the extra

variation introduced when estimating the standard

deviation or maximum absolute deviation from the data.

Running time comparison

We benchmarked the running time performance of the

new eLSA implementation and the old R script. For a

dataset of 72 time series each with 35 time points, we

tried eLSA analysis with 100 bootstraps, 1000 permuta-

tions and a delay limit of 3. It took the old script 20462

seconds to finish the computation while the new C++

program used 2054 seconds, which is about 9 times

Figure 1 Examples of simulated associations. a. An example of simulated time-delayed association series with five replicates is shown, where

X (red square) leads Y (blue circle) by three time units. The pattern is not significant by ordinary correlation analysis (PCC=-0.258, P=0.272);

however, it is captured by local similarity analysis (LS=0.507, P=0.006). b. An example of simulated subinterval association series with five

replicates is shown, where X (red square) and Y (blue circle) are associated in the time interval from 6 to 15. The pattern is not significant by

ordinary correlation analysis (PCC=0.258, P=0.273); however, it is captured by local similarity analysis (LS=0.428, P=0.028).
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faster. Meanwhile, the new implementation also reduces

the memory consumption and increases input/output

efficiency. The benchmark is carried out on a “Dell,

PE1950, Xeon E5420, 2.5GHz, 12010MB RAM” comput-

ing node.

The eLSA analysis pipeline

In this subsection, we briefly describe the eLSA analysis

pipeline implemented into the eLSA software package,

as shown in Figure 2.

F-transformation and data normalization

The eLSA tool accepts a matrix file where each row is a

time series for one factor. It fills up missing data by a

user-specified method. Zero to third order spline-based

methods and the nearest neighbour method as imple-

mented in the Scipy (http://www.scipy.org) interpolation

module are available. It then transforms the data by the

user-specified F function and normalizes the F-trans-

formed data by the normal score transformation follow-

ing Li et al.[22] (see Methods).

Local similarity scoring

Local similarity analysis calculates the highest similar-

ity score between any pair of factors. Users can specify

parameters, including, for example, the maximum

shifts allowed. Local Similarity score is calculated using

the eLSA dynamic programming algorithm (see

Methods).

Permutation test

The statistical significance, the p-value, of LS score is

evaluated using a permutation test. Briefly, eLSA ran-

domly shuffles the components of the original time ser-

ies and recalculates the LS score for the pairs. The p-

value is approximated by the fraction of permutation

scores that are larger (in absolute value) than the origi-

nal score. Confidence interval for a given LS score is

also found by bootstrapping from the replicated data.

Finally, users can obtain significant eLSA association

results by the combined use of p-value and FDR q-value

thresholds as their filtering criteria.

Association network construction

Using only the significant associations, users can con-

struct a partially directed association network. Generally,

for two factors X and Y, if the time interval [s1,t1] in X

and [s2,t2] in Y have the highest LS and s1 <s2, we can

infer that X leads Y; in other words, X possibly activates

Y. In network visualization software (e.g., Cytoscape

[24]), one can use arrows to directionally indicate these

lead patterns (i.e., X to Y, if X leads Y; otherwise

Table 1 Mean and standard error of the estimated LS score

m=1 m=5 m=10 m=15 m=20

F-function mean se. mean se. mean se. mean se. mean se.

‘simple’ .495 .078 .495 .085 .491 .088 .493 .076 .496 .091

‘SD’ na. na. .332 .127 .391 .124 .412 .119 .435 .109

‘Med’ .495 .078 .490 .090 .490 .090 .490 .083 .498 .083

‘MAD’ na. na. .494 .115 .302 .128 .325 .129 .371 .119

The values are calculated based on 1000 simulations. ‘se.’ indicates standard error and ‘na.’ indicates not applicable.

Figure 2 eLSA pipeline. Users start with raw data (matrices of time series) as input and specify their requirements as parameters. The LSA tools

subsequently F-transform and normalize the raw data and calculate Local Similarity (LS) scores and Pearson’s Correlation Coefficients. The tools

then assess the statistical significance (P-values) of these correlation statistics using the permutation test and filter out insignificant results. Finally,

the tools construct a partially directed association network from the significant associations.
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undirected, if no direction is inferred). One can also use

lines to indicate association types (solid, if X is positively

associated with Y; otherwise dashed). Following these

rules, one can build a partially directed association net-

work based on eLSA results.

Microbial community data analysis

As an immediate application, we applied the eLSA pipe-

line to a set of real microbial community time series

data. This San Pedro Ocean Time Series (SPOTs) data-

set, originally reported in Steele et al.[2] and Countway

et al.[25], was collected following a biological feature (i.

e. the chlorophyll maximum depth) off the coast of

Southern California. The bacterial community was ana-

lyzed using the ARISA [4] technique and the protistan

community was analyzed using the T-RFLP [26] techni-

que. The dataset is composed of monthly sampled data

from September 2000 to March 2004, including 40 time

points without replicates. We analyzed the dataset with

a delay limit of 3 months and 1000 permutations to

evaluate the statistical significance of the LSA score. In

this dataset, the factor names, including the operational

taxonomic units and environmental factors, are pre-

viously defined by Steele et al. [2].

First, we compared the performance of Pearson’s cor-

relation coefficient (PCC) and eLSA analysis in identify-

ing potential local and time-delayed associations.

Restricting the significance threshold for the q-value Q

≤ 0.01 and the p-value P ≤ 0.01, 1643 pairs of significant

associations with eLSA were identified, and among them

only 293 (~18%) were discovered by PCC (see Table 2).

Therefore, most significant associations found by eLSA

would have been missed by PCC analysis in this case.

The results are similar if we use less stringent criteria, i.

e., Q ≤ 0.05 and P ≤ 0.05, where only 658 out of 2804

(~23%) eLSA significant associations were also found by

PCC. We need to point out that, PCC also found some

associations that were missed by eLSA. For example,

with q-value Q ≤ 0.01 and the p-value P ≤ 0.01, PCC

found 3237 significant associations and only 293 of

them were found to be significant using eLSA. There-

fore, eLSA is not a substitute but a complimentary

approach to PCC, which specializes in finding local and

possibly time-delayed associations. For a thorough

analysis of a dataset, one should apply both approaches,

which is why we also integrated PCC analysis into our

software pipeline.

If we look at the top five positive and negative abso-

lute highest LS scores from the unique associations (|D|

≤ 1) found by eLSA (Q ≤ 0.05 and P ≤ 0.05, see Table

3), we can see most of them are time-dependent asso-

ciations, either time-shifted or within a subinterval. The

majority of these are, in any case, beyond the capacity of

PCC. In addition, eLSA provides more information

about its findings. For example, in the table, Bac609 and

Bac675 factors are associated with a shift of one and

Euk97 and boxy (oxygen) factors are best associated

within a time interval of length 21 starting at time point

15 with no delay. This kind of additional information is

not easily obtainable from the PCC analysis but very

important for further functional analysis. For instance,

we construct an association network using all above

unique eLSA associations, as shown in Figure 3. The

obtained network obviously reveals some interesting

dynamics of the microbial community, such as the dom-

ination of positive directed associations, the existence of

environmental factors as hubs that are associated with

many other factors, (e.g. nutrients such as NO2, PO4,

SiO3 and oxygen), and the existence of some highly con-

nected clusters formed by certain bacteria or eukaryote

groups.

Taking a closer look at one of the topmost ranked

association: Bac609 and Bac675 (see Table 3), we found

that they are closely following each other with a time

shift of one month, where Bac609 precedes Bac675.

Further inspection suggests a yearly pattern that recurs

with near regularity for this association, such that

Bac609 blooms in early springtime each year (time spots

6, 18 and 29 are February, January and March, respec-

tively), and Bac675 blooms one month later (see Figure

4a). From the binning definition in Steele et al. [2],

Bac609 is a Bacteroidetes group bacterium while Bac675

is an undefined bacterium. Since these microbial groups

are uncultured, this association as well as many others

uniquely identified by eLSA provides new insight into

their ecological role in the ocean surface waters. Notice

there is an unexpected abundance jump at time spot 35

of the Bac675 series. The reason for this outlier however

Table 2 Significant associations found in real datasets

Found by eLSA Found by PCC Found by both Found by eLSA Found by PCC Found by both

Dataset # of factors P ≤ 0.01 P ≤ 0.01 P ≤ 0.01 P ≤ 0.05 P ≤ 0.05 P ≤ 0.05

Q ≤ 0.01 Q ≤ 0.01 Q ≤ 0.01 Q ≤ 0.05 Q ≤ 0.05 Q ≤ 0.05

Microbial 515 1643 3237 293 2804 4242 658

C. elegans 446 42532 56605 39114 57991 71799 54201

Numbers of significant associations found by the extended Local Similarity Analysis (eLSA) and Pearson’s Correlation Coefficient (PCC) by controlling both the p-

value (P) and the q-value (Q). The p-values for eLSA were evaluated by permutations and p-values for PCC was calculated based on the t-distribution.
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is unknown to us. While such prominent time-delayed

associations as the Bac609 and Bac675 are easily visible,

we must caution that time-dependent associations could

also be too subtle to be viewed directly. Thus, statistical

significance can provide a much more reliable guideline.

Gene expression data analysis

Although LSA had its roots grounded in microbial com-

munity analysis, the technique can be readily applied to

other biological time series data, such as replicated gene

expression time series data from microarray and RNA-

Seq experiments [27-29]. Here we show an example of

applying eLSA to the dauer exit gene expression profile

time series data of 446 genes from a C elegans study.

The result of the original study suggests that the 446

genes under investigation have similar kinetics in both

the dauer exit and the L1 starvation time course [30].

Here we use the dauer exit time series data consisting

of 12 hourly time spots, each with four replicates. We

Figure 3 Typical association network from the microbial community data. Round- (brown), square- (blue) and triangle- (green) shaped

nodes are bacteria, eukaryotes and environmental factors, respectively. Solid (red) edges are positively associated, while dashed (blue) edges are

negatively associated. Arrow indicates the time-delay direction.

Table 3 Top LS scores from the microbial community

data

X Y LS Xs Ys Len D P PCC Ppcc Q Qpcc

Euk239 Euk269 0.82 1 1 40 0 0 0.09 0.59 0.02 1.00

Bac609 Bac675 0.77 1 2 39 -1 0 0.14 0.41 0.00 1.00

Euk381 Euk462 0.77 1 1 40 0 0 0.44 0.00 0.02 0.11

Euk583 Bac989 0.68 2 1 39 1 0 0.30 0.06 0.02 0.73

Euk229 Euk339 0.57 1 2 39 -1 0 0.05 0.77 0.02 1.00

Euk97 boxy -0.62 15 15 21 0 0 -0.42 0.01 0.00 0.17

Euk98 boxy -0.62 15 15 21 0 0 -0.42 0.01 0.00 0.17

Euk109 boxy -0.62 15 15 21 0 0 -0.42 0.01 0.00 0.17

Euk112 boxy -0.62 15 15 21 0 0 -0.42 0.01 0.00 0.17

Euk116 boxy -0.62 15 15 21 0 0 -0.42 0.01 0.00 0.17

The 5 positive and 5 negative highest absolute LS Scores from associations

uniquely found by eLSA in the microbial community dataset. The columns in

succession are X (first factor), Y (second factor), LS (Local Similarity score), Xs

(start of the best alignment in the first sequence), Ys (start of the best

alignment in the second sequence), Len (alignment length), D (shift of the

second sequence compared to the first sequence, -: X is ahead of Y, +

otherwise), P (p-value for the LS score, 0.00 stands for P<0.005), PCC

(Pearson’s Correlation Coefficient), Ppcc (P-value for PCC), Q (q-value

calculated for P, 0.00 stands for Q<0.005), Qpcc (q-value for Ppcc).
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analyzed the dataset with a delay limit of 3 hours and

with 1000 permutations and 100 bootstraps.

The results are summarized in Table 2. Comparing

the C. elegans results to those of the microbial commu-

nity, we see that gene-gene associations in this network

are much denser, since a smaller number of genes end

up with a much larger, rather than smaller, number of

eLSA significant associations (e.g. 2804 versus 57991 for

Q ≤ 0.05 and P ≤ 0.05, see Table 2). Also different is

that about 93% of these associations are found by PCC

analysis as well. The high congruence between PCC and

eLSA analysis may be due to the fact that about 90% of

the eLSA findings are without delays, which thus are

also amenable to PCC analysis.

Because these genes do not change expression level in

both dauer exit and L1 starvation conditions, they are

considered as common feeding response genes [30].

However, it is not clear whether they are correlated with

each other in expression profiles under the dauer exit

condition. To study this, we combined all eLSA and

PCC significant associations with Q ≤ 0.05 and P ≤ 0.05,

and found the average degree of the resulting associa-

tion network is around 169, while that of previous

microbial community data is around 12. Such high aver-

age degree for C. elegans genes shows the high similarity

of their expression profiles, which also reflects their inti-

mate functional coordination along the process. There-

fore, our result suggests those feeding response genes

are likely to be co-expressed under the dauer exit

condition.

We next analyzed the unique eLSA associations.

These associations form a dense association network

themselves with a long-tailed degree distribution, as

shown in Figure 5. While the degree distribution peaks

at five, the most highly connected gene 48941 has a

degree of 189. We also looked at the top 5 positive and

5 negative highest absolute LS scores unique associa-

tions by eLSA. Because replicates are available for this

dataset, we are able to obtain the bootstrap confidence

intervals for the LS score and they are given in Table 4.

Interestingly, we found most of the top LS associations

Figure 4 Examples of real data association. a . Shown are

microbe group Bac675 (red square) and Bac609 (blue circle) ARISA

abundance time series from the marine microbial community data

analysis. Notice that there exists an almost regular yearly pattern

where Bac609 leads Bac675 by one month in blooming time. b.

Shown are gene 32607 (red square) and 51986 (blue circle)

expression level time series from C. elegans gene expression data

analysis. Notice that 51986 leads 32607 in expression level change

throughout the time course.

Figure 5 Node degree distribution of associations in C. elegans

analysis. Shown is the node degree distribution of eLSA unique

associations in C. elegans analysis. It shows a long-tail distribution

with the maximum 189.
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involve high degree nodes, such as genes 48941(189),

29494(129), 29504(128), 27993(116), 436287(106), 32607

(58), and 51986(52) (degree in parenthesis). These high

degree nodes could be regulation hubs in the feeding

response pathway. Here we show an example of time-

delayed association of gene 32607 and gene 51986 in

Figure 4b. In the figure, gene 51986 leads gene 32607 in

expression profile change.

We also analyzed all the eLSA associations together,

including both unique and non-unique eLSA findings.

Though most of the genes are still hypothetical protein

coding genes, we do find a group of eukaryotic initiation

factors: 30080(eIF-3E), 33683(eIF-3K), 21358(eIF-3D),

33525(eIF-4E), 32503(eIF-1A) and 23975(eIF-2B) in the

446 selected genes. This is as expected because both L1

starvation recovery and dauer exit will increase transla-

tion activities and result in high expression level of

these genes. In addition, in the translation process, these

factors work closely together to form different transla-

tion related complexes [31], so their expression levels

should be highly correlated with each other. Actually, if

we check the associations found by eLSA, we do see

these factors form a clique together with all edges being

positive associations and statistically significant (see Fig-

ure 6). The coherence of the eLSA finding and our bio-

logical knowledge shows that eLSA associations do

reveal true associations within the biological system.

However, as the majority of genes are still hypothetical,

a thorough examination for true functional discoveries

will require biological experiments.

Discussion and conclusions
The eLSA technique extends LSA to time series data

with replicates. This will help investigators better utilize

the available information from their sample replicates

and assist them in more effective and reliable hypothesis

generation of time-dependent associations. In addition, a

bootstrap framework is developed to estimate the

confidence interval for the LS score. We also provided

flexible missing value options and integrated efficient

multiple testing control methods for the new eLSA tech-

nique. Using the microbial community and gene expres-

sion datasets, we demonstrated that eLSA uniquely

captures additional time-dependent associations, includ-

ing local and time-delayed association patterns, when

compared to ordinary correlation methods, such as

PCC. In this paper, we described the applications of our

method with the time series data. Actually, the eLSA

can be applied to any type of data with some gradients,

including the response to different levels of treatments,

temperature, humidity, or spatial distributions.

Currently, we use permutation test to assess the statis-

tical significance of LS scores and bootstrap re-sampling

to estimate the confidence interval of LS score. Both the

permutation test and bootstrap methods are time con-

suming if high precise determination of statistical

Table 4 Top LS scores from the C. elegans gene-expression data

X Y LS lowCI upCI Xs Ys Len D P PCC Ppcc Q Qpcc

48087 27993 0.53 0.41 0.61 1 2 11 -1 0.00 0.56 0.06 0.00 0.01

32607 51986 0.52 0.41 0.61 2 1 10 1 0.01 0.51 0.09 0.00 0.01

29504 48087 0.52 0.40 0.61 2 1 11 1 0.00 0.41 0.18 0.00 0.03

23193 27993 0.51 0.41 0.59 1 2 11 -1 0.00 0.48 0.11 0.00 0.02

29494 30208 0.51 0.39 0.61 2 1 11 1 0.00 0.58 0.05 0.00 0.01

27993 53694 -0.55 -0.62 -0.44 2 1 11 1 0.00 -0.53 0.08 0.00 0.01

436287 53694 -0.54 -0.62 -0.44 2 1 11 1 0.01 -0.55 0.06 0.00 0.01

48941 53694 -0.52 -0.61 -0.42 2 1 11 1 0.00 -0.38 0.22 0.00 0.03

29494 22857 -0.52 -0.61 -0.41 2 1 11 1 0.00 -0.49 0.10 0.00 0.02

29494 436727 -0.52 -0.61 -0.40 2 1 11 1 0.01 -0.55 0.06 0.00 0.01

The 5 positive and 5 negative highest absolute LS Scores from the C. elegans gene expression dataset. The notations are the same as in Table 3 except lowCI (CI

is lower bound) and upCI (CI is upper bound) in the 4th and 5th columns.

Figure 6 Translation initiation factor associations in C. elegans

analysis. Shown is the association network of translation initiation

factors learned from eLSA analysis. Solid (red) edges are positively

associated. Edge labels are LS scores. The factors form a clique as

expected.
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significance or confidence interval is desired. Theoretical

developments on the distribution of the LS score are

needed to eliminate or mitigate the computational bur-

den required for these processes, and would be interest-

ing topics for future studies. There is also a minimum

sample number requirement for eLSA analysis. We sug-

gest the sample number to be greater than 5+D, where

D is the desired delay limit, since shifting and trimming

by eLSA will further reduce the effective sample number

and result in lower statistical power.

Finally, we implemented the eLSA technique and ana-

lysis pipeline into an Open Source C++ extension to

Python with many new features. Specifically, the pipeline

streamlines data normalization, local similarity scoring,

permutation testing and network construction. As

shown in Figure 7, we also provide a Galaxy web

framework-based version [22] of the eLSA pipeline. This

eLSA service features customized workflow, history and

data sharing. In addition, we integrated Cytoscape [23]

Java Web Start technology so that the association net-

work generated by eLSA can be immediately visualized.

Based on these efforts, we anticipate that our novel

eLSA methodology, as implemented by the newly devel-

oped pipeline software, will significantly assist research-

ers requiring systematic discovery of time-dependent

associations. More information about the software and

web services is available from the eLSA homepage at

http://meta.usc.edu/softs/lsa.
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