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Abstract An extended meshless method for both
static and dynamic cohesive cracks is proposed. This
new method does not need any crack tip enrichment to
guarantee that the crack closes at the tip. All cracked
domains of influence are enriched by only the sign func-
tion. The domain of influence which includes a crack tip
is modified so that the crack tip is always positioned at
its edge. The modification is only applied for the discon-
tinuous displacement field and the continuous field is
kept unchanged. In addition to the new method, the use
of Lagrange multiplier is explored to achieve the same
goal. The crack is extended beyond the actual crack tip
so that the domains of influence containing the crack tip
are completely cut. It is enforced that the crack opening
displacement vanishes along the extension of the crack.
These methods are successfully applied to several well-
known static and dynamic problems.

Keywords Extended element free Galerkin method
(XEFG) · Local partition of unity · Cohesive cracks ·
Static and dynamic fractures

1 Introduction

If the tangent modulus of a material loses its positive
slope, the strain gets localized to a narrow region.
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Eventually, the material separates as the displacement
develops a discontinuity, i.e. a crack. It is well known that
for rate-independent materials, the change of momen-
tum equations due to the loss of hyperbolicity leads to
a localization of deformation to a set of measure zero
with zero energy dissipation [2]. So modeling the crack-
ing process requires an additional model which dissi-
pates energy during the crack initiation and growth in
addition to the constitutive model if a softening rate-
independent material is used.

In the cohesive crack model, traction on the crack
surface is nonzero, depends on the crack opening dis-
placement and thus, dissipates energy during the crack
opening. Although there are numerous computational
models in which the cohesive crack model is incorpo-
rated to model the fracture process, we may consider
the most efficient methods as including meshfree meth-
ods [8,10,23], the inter-element method [14,35,50], and
the extended finite element method (XFEM) [5,6, etc.].
Of course remeshing can be a solution, too but it is not
practical because of the computational cost for reme-
shing and the inaccuracy caused by the projection be-
tween different meshes. In this paper, we discuss a new
meshfree method based on the concept of the extended
finite element method.

In classical meshfree methods [7,8,10,11,27,29,45],
fracture problems are treated by the so called visibil-
ity criterion and its modifications. Here, the support is
truncated by the crack [7,8,11]. Manipulation of the sup-
port near the crack may cause some difficulties. Mesh-
free methods, however, can provide better results for
fracture problems than the classical finite element
method thanks to high order interpolation and the
smooth stress field. Impressive results using a multiscale
cracking approach were shown by Liu et al. [28].
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The recently developed XFEM has been proven to
be an efficient tool for fracture problems. Unlike the
classical finite element method, the solution space of
XFEM includes the discontinuity caused by the crack.
The method is based on the ‘local’ partition of unity, in
which the solution space is enriched by a priori knowl-
edge about the behavior of the solution near any discon-
tinuity. Detailed discussions about the (local) partition
of unity are found in the literature [e.g. 16,30]. Because
only the nodes belonging to the elements cut by cracks
are enriched, the number of additional degrees of free-
dom for the enrichment is minimized.

The only drawback of this method is the blending
region inevitably introduced to the neighboring ele-
ments of the tip element in which the crack tip is posi-
tioned. Those elements in the blending region are
partially enriched. The local partition of unity does not
hold for them. Thus the solution becomes inaccurate in
the region.

Ventura et al. [49] extended the concept of XFEM to
the meshfree method for linear elastic cracks.
Rabczuk and Zi et al. [40] developed the extended ele-
ment-free Galerkin (XEFG) method for cohesive cracks.
Like XFEM, the domains of influence cut by a crack are
enriched by the step function and those including the
crack tip by the branch function. XEFG has been applied
to many static and dynamic fracture problems [40]. Be-
cause XEFG inherits the features of XFEM, there is the
blending region near the crack tip. In this paper, we will
develop a new XEFG to remove the blending region.

The paper is arranged as follows: The element free
Galerkin method is briefly reviewed in Sect. 2. The
developed enrichment is described in Sect. 3. In Sect. 4,
the way of describing cracks is given. The governing
equation of the continuum containing multiple cracks is
given in Sect. 5. The variational principle and the discret-
ized equation are given in Sect. 6. To verify the method,
several examples are solved in Sect. 7. They are both sta-
tic and dynamic problems. The conclusion for this work
follows in Sect. 8.

2 Element-free Galerkin (EFG) approximation

An approximation of the displacement field u can be
written as

u(X, t) =
∑

I∈W
�I(X) uI(t), (1)

where �I(X) is the shape function of particle I at
position XI , W is the set of all the particles and uI are
the parameters which scale the shape functions. In the
EFG method [see e.g. 8,10,13,22], the shape functions
are constructed as follows

�J(X) = pT(X) · A(X)−1 · D(XJ), (2)

A(X) =
∑

J

p(XJ) pT(XJ) W(r̄J ; hJ), (3)

D(XJ) =
∑

J

p(XJ) W(r̄J ; hJ). (4)

Here, p are the base polynomials, W is the kernel func-
tion, r̄J = r/hJ is a dimensionless distance, r = ||X−XJ||
is the distance from XJ to X and hJ is the size of the
domain of influence of particle J. The base polynomials
are chosen such that p = (1, X, Y).

In addition to the fact that the order of continuity can
be increased quite easily, meshfree methods have advan-
tages over finite elements because of their smoothness
and nonlocal interpolation character. Better stress dis-
tributions around the crack tip are expected, which must
lead to a non-oscillatory crack propagation. Continuity
in meshfree methods is governed by the continuity of
the kernel function W. We used a cubic B-Spline as the
kernel which is C2, i.e.

W(r̄; h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
3 − 4r̄2 + 4r̄3 for r̄ ≤ 1

2 ,

4
3 − 4r̄ + 4r̄2 − 4

3 r̄3 for 1
2 ≤ r̄ ≤ 1,

0 for r̄ > 1.

(5)

3 Enrichment of displacement field

3.1 The enriched displacement field

To model the discontinuity due to cracks, the approxi-
mation of Eq. (1) is enriched as follows

u(X, t) = u0(X, t) + ue(X, t), (6)

where u0 is the continuous displacement field defined
by (1) and ue is the discontinuous (or the enriched) dis-
placement field which is given by

ue(X, t) =
∑

J∈E
ue,J(X, t). (7)

Here E is the set of all the cracks in the domain and ue, J

is the displacement enrichment by crack J. The displace-
ment enrichment ue, J is given by

ue, J(X, t) =
∑

I∈WJ

�I(X) �J
I (X) aJ

I (t), (8)

where WJ is the set of the particles whose domain of
influence is cut by crack J, �J

I is the enrichment func-
tion for particle I and crack J and aI are the additional
degrees of freedom for the enrichment �J

I . Note that
the shape function �I in Eq. (8) does not have to be the
same as �I in Eq. (1) [16,46,47].
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If a domain of influence is completely cut by a crack,
it is enriched by using the sign function or the Heav-
iside function, which is now classical. We will use the
sign function as the enrichment function here rather
than use the Heaviside function because of its appealing
symmetry. The sign function enrichment is equivalent to
the Heaviside function enrichment. The enrichment is
given by

�J
I (X) = sign

[
f J(X)

]
− sign

[
f J(XI)

]
. (9)

Here f J(X) is the signed distance measured from X to
crack J. It is defined as

f J(X) = sign
[
n · (X − XJ)

]

× min ||X − XJ|| with XJ ∈ �J
c (10)

in which n is the crack normal and �J
c represents crack J.

The choice of the direction of the crack normal is com-
pletely arbitrary as long as it is consistent throughout the
entire computation. Note that the minimum ||X−XJ|| in
Eq. (10) should be searched and determined first so that
XJ is the closest point projection of X on �J

c . Otherwise,
f J(X) may not be accurate for a highly nonlinear crack.
The sign function is defined as

sign(x) =
{

1 for x > 0,

−1 for x < 0.
(11)

There may be a case that a particle is sitting on a crack,
which is not defined by Eqs. (9) and (11). Therefore an
initial notch is placed between particles. The possibility
of encountering such a case during crack propagation is
very low, especially in a double precision computation;
it never happened in the following example problems.
If a crack grows to the position of a particle, the crack
path may be little bit adjusted to preclude having such a
case.

If the domain of influence is partially cut such as the
case where the crack tip is located in a ‘tip element’, then
the enrichment of Eq. (9) does not work. Then branch
enrichment is needed [12,31]. If the cohesive crack is
considered and a crack tip is located on an edge of a
domain of influence, not inside of any domain of influ-
ence at the same time, a successful enrichment can be
devised by using only the sign function or the Heavi-
side step function without other enrichment functions
[18,51].

The above idea can be applied to the extended finite
element method only. The shape function for a node in
the standard finite element method with C0 approxima-
tion is completely decoupled from others except those
for the neighbor nodes. Imagine a crack tip in a two-
dimensional finite element mesh; see Fig. 1a. The crack

(a) (b)

Fig. 1 The enrichment for the crack tip by using the step function
in a the finite element method and b meshfree methods; solids are
enriched nodes and circles unenriched nodes

tip is positioned on the edge connecting nodes A and
B. Because the crack tip must close at the tip, i.e. the
crack opening displacement at crack tip must be zero,
the nodes A and B should not be enriched. Fig. 1b is
the case for meshfree methods. The domain of influence
for a particle in the case of meshfree methods, is heavily
overlapped with others. Therefore it is difficult to apply
the idea to meshfree methods.

3.2 Domain-decrease method

Zi and Belytschko [51] proposed a simple idea to enrich
triangular elements with only the sign function (11) with-
out using the the branch enrichment even when the
crack tip is located inside of an element, not on the edge.
They modified the shape function of the discontinuous
displacement field ue,J in Eq. (8) so that the crack tip is
always placed on the edge of the shape function in (8) as
the crack grows. The modification is only for the tip ele-
ment in which the crack tip is located. Once the crack tip
grows into an element, this element, then, becomes the
tip element. The shape function of the discontinuous dis-
placement field for the tip element is modified as shown
in Fig. 2. Because the shape function vanishes at its edge,
the discontinuity from Eq. (8) must be zero beyond the
edge. So branch enrichment is not needed. Of course
the shape function of the continuous displacement u0 is
completely independent of the crack growth.

We adopt their idea for meshfree methods, too. A
crack is shown in Fig. 3. The domain of influence of par-
ticle 1 is completely cut by the crack. It is enriched by
the sign function as in Eq. (9). The crack tip P is located
inside the domain of influence of particle 2 which is
partially cut. As Zi and Belytschko [51] modified the
shape function of triangular elements, we scale down the
shape function �I for the discontinuous displacement
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(a)

(b)

Fig. 2 The discontinuous displacement field by Zi and Belytschko
[51]’s scheme in which the shape function for the enrichment is
modified so that the crack tip is positioned at the edge; a three
node triangular element and b six node triangular element

(b)

(a)

(c)

Fig. 3 Domain of influences a completely cut by the crack and
b, c partially cut; b is decreased so that the crack tip is positioned
at its edge and c is not needed as its size is decreased; circles and
hatched circles are unenriched particles, and solids enriched nodes

in Eq. (8). This is so that the crack tip is positioned at its
edge as shown in the figure, i.e.

�∗
J(X) = pT(X) · A∗(X)−1 · D∗(XJ), (12)

A∗(X) =
∑

J

p(XJ) pT(XJ) W(r̄∗
J ; h∗

J), (13)

D∗(XJ) =
∑

J

p(XJ) W(r̄∗
J ; h∗

J) (14)

Fig. 4 The discontinuity �c,ext beyond crack tip P when particles
are enriched by using only the sign function

in which the asterisk denotes the modification for the
crack tip and h∗ is the modified size of the domain of
influence. Note that the shape function for the continu-
ous displacement field as in Eq. (1) is not changed.

The domain of influence of particle 3 is also partially
cut. The shape function may be shrunk, too. However,
we do not enrich the particle. Because the particle is
very close to the crack tip, the shape function becomes
very small compared to others after it is modified. The
approximation for the discontinuous displacement field
becomes bumpy. Therefore, when the domain of influ-
ence of a particle is partially cut, we enrich the particle
if the support of the shape function includes at least one
enriched particle after it is modified. Particle 4 is also
not enriched because the shape function becomes not
cut by the crack as it is modified.

One drawback of this method is that the crack appears
to be shorter for particles close to the crack and the crack
tip. This is because such particles are not enriched and
hence do not feel the presence of the crack. We there-
fore expect the system response to be a little stiffer.
However, we did not observe any severe difficulties or
discrepancies compared to more accurate techniques as
e.g. Lagrange multiplier method explained in the next
section. As might become obvious, this method is well
suited for adaptive procedures that will not only provide
higher accuracy but also a better particle distribution
around the crack tip

3.3 Lagrange multiplier method

Instead of modifying the shape function of the parti-
cle whose domain of influence is partially cut, we may
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consider the use of Lagrange multiplier method. If only
the sign function enrichment of Eq. (9) is used, there is
the extension of discontinuity �c,ext beyond the crack tip;
see Fig. 4. To model the actual crack, the discontinuity
on �c,ext should vanish. Because the condition should
be satisfied along a line, not at a point, the Lagrange
multiplier must be discretized too. To avoid introduc-
ing additional particles for the discretization, we use the
same shape functions as those partially cut by the crack.
The detailed formulation is given later.

4 Description of cracks

4.1 The geometric information of cracks

The crack �c is defined implicitly by the level set method.
This level set method is a general tool for the descrip-
tion of evolving surfaces. It has been used for a wide
range of applications [see 42]. It defines the surface of a
discontinuity by a function of position X measured from
the discontinuity. The function does not have to be the
signed distance function defined in Eq. (10). For exam-
ple, Ventura et al. [49] developed the vector level set
method in which the distance of X to the discontinuity
and its direction are used for the level set.

The level set with the signed distance function has suc-
cessfully been incorporated in XFEM [6,32,48,51] and
XEFG [40,49]. We will not explain the detailed crack
tracing procedure with level sets in detail. Instead we
refer the interested readers to the literature. However,
we briefly describe how to treat crack branching and
crack intersection which is different from the approach
in Daux et al. [17]. The difference is that we do not use
any special branch function in addition to the ‘usual’
enrichment.

Consider cracks shown in Fig. 5. Let W1
b be the set

of particles whose domain of influence is cut by the dis-
continuity f 1(X) = 0 and W2

b the corresponding set for
f 2(X) = 0. W3

b = W1
b ∩ W2

b . Zi et al. [53] proposed a
computationally more efficient approach than Daux et
al. [17]’s approach. Zi et al. modified the signed distance
functions so that no cross terms are needed for junc-
tion or branch problems. By using the signed distance
functions of the pre-existing and approaching crack, the
signed distance function of the approaching crack is
modified. Consider Fig. 5. Three different subdomains
have to be considered: (f 1 < 0, f 2 < 0), (f 1 > 0, f 2 > 0),
(f 1 > 0, f 2 < 0) as in Fig. 5b or (f 1 > 0, f 2 < 0),
(f 1 > 0, f 2 > 0), (f 1 < 0, f 2 < 0) as in Fig. 5d. The
signed distance function of crack 1 of a point X is then
obtained by:

f 1(X) =
⎧
⎨

⎩

f 1
0 (X), if f 2

0 (X(1)) f 2
0 (X) > 0,

f 2
0 (X), if f 2

0 (X(1)) f 2
0 (X) < 0

(15)

in which f 1
0 (X), f 2

0 (X) represent the signed distance func-
tions of cracks 1 and 2 without consideration of the junc-
tion, respectively, and X(1) is any point on crack 1.

4.2 Initiation and propagation of cracks

We employed the loss of hyperbolicity criterion for crack
initiation and propagation [6,40]. Therefore, a crack is
initiated or propagated if the minimum eigenvalue of
the acoustic tensor Q is smaller or equal to zero:

min eig(Q) ≤ 0 with Q = n · A · n, (16)

where n = [cos θ sin θ ] is the normal to the crack sur-
face depending on the angle θ , A = C t + σ ⊗ I, σ is
the stress tensor and C t is the fourth order tangential
modulus.

For a rate-independent material, loss of hyperbolic-
ity serves as a criterion for crack initiation. In the case
of a rate-dependent material, the transition criterion to
discontinuum is governed by the same condition which,
however, is called material stability, rather than loss of
hyperbolicity, since the equations are regularized. For a
Rankine material, a crack is initiated when the princi-
pal tensile stress exceeds the tensile strength. The crack
is then normal to the direction of the principal ten-
sile stress. Note that the Rankine criterion is a special
case of the loss of hyperbolicity condition for mode I
fracture.

Assuming that the loss of hyperbolicity condition
should be satisfied at the moving crack tip with a cer-
tain velocity at any time, Belytschko et al. [6] proposed
an approach to calculate the speed of crack propaga-
tion. Because the continuum transits to the discontinu-
um right at the crack tip, the eigenvalue obtained from
the localization analysis (16) must be equal to zero at all
the active crack tips, i.e.

De
Dt

= 0 (17)

in which e = h · Q · h is the hyperbolicity indicator and h
is the eigenvector from the localization analysis in (16).
Using the transport theorem, one can change (17) to

∂e
∂t

+ v c · ∇e = 0 with v c = vcs, (18)

where v c is the speed of crack propagation, s is the prop-
agation direction which fulfills the condition of n · s = 0.
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Fig. 5 The change of the
signed distance function when
one crack joins to another

(a) (b)

(d)(c)

4.3 Measure of crack opening displacement

The jump in the displacement is governed only by the
enrichment and is given by

[[u(X)]] = 2
∑

J∈E

∑

I∈WJ(X)

�J
I (X) aJ

I . (19)

The normal part δn, i.e. the crack opening and the tan-
gential part δt, the crack sliding are given by

δn = n · [[u(X)]], (20)

δt = ‖[[u(X)]] − nδn‖ . (21)

More details are given in [12]. If not mentioned oth-
erwise, we only consider normal tractions to the crack
surface and neglect any mode II effect.

5 Governing equations

5.1 The momentum equation and the boundary
conditions

The strong form of the momentum equation in the total
Lagrangian description is given by

�0ü = ∇0 · P + �0 b in �0 \ �c
0 (22)

with boundary conditions:

u(X, t) = ū(X, t) on �u
0 , (23)

n0 · P(X, t) = t̄(X, t) on �t
0, (24)

n0 · P− = n0 · P+ = tc0 on �c
0, (25)

tc0 = tc0([[u]]) on �c
0, (26)

where �0 is the initial mass density, ü is the acceleration,
P denotes the nominal stress tensor, b designates the
body force, ū and t̄ are the prescribed displacement and

traction, respectively, n0 is the outward normal to the
domain and �u

0 ∪ �t
0 ∪ �c

0 = �0, (�u
0 ∩ �t

0) ∪ (�t
0 ∩ �c

0) ∪
(�c

0 ∩ �u
0 ) = ∅. Moreover, we assume that the stresses

P at crack surface �c
0 are bounded. Since the stresses

are not well defined in the crack, the crack surface �c
0 is

excluded from the domain �0 which is considered as an
open set.

5.2 Constitutive equations

We use Rankine type materials and the Lemaitre dam-
age model [26]. For the Lemaitre model, the stress–
strain behavior is

σ = (1 − D) C : ε, (27)

where C is the elasticity tensor and D is a scalar damage
variable which ranges from 0 to a maximum of 1. The
damage evolution depends on the effective strain ε̄:

D(ε̄) = 1 − (1 − A) εD0 ε̄−1

−A exp
[−B(ε̄ − εD0)

]
(28)

with

ε̄ =
√√√√

3∑

i=1

ε2
i H(εi), (29)

where A, B and εD0 are the material parameters and εi

are the principal strains and with

H(x) =
{

1 if x > 0,

0 if x < 0.
(30)

5.3 Cohesive cracks

In the cohesive crack model, there is no stress singular-
ity near the crack tip. The traction on the crack surfaces
is a function of the crack opening displacement. The
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cohesive crack models that are most popularly used in
practice are shown in Fig. 6. For problem simplicity, we
use the linear cohesive law and the exponential law in
this study. Various kinds of the bilinear cohesive law can
be found in Bažant and Zi [4]. The cohesive traction τ

for the linear law is given by

τ(δ) =
{

τf

(
1 − δ

δc

)
if δ ≤ δc,

0 if δ > δc,
(31)

where δ is the crack opening displacement, δc is the criti-
cal crack opening displacement beyond which the cohe-
sive traction is reduced to zero and τf is the strength of
the material. The exponential cohesive law is given by

τ(δ) =
{

τf exp
(
− τf

Gf
δ
)

if δ ≤ δc,

0 if δ > δc.
(32)

If a potential for the cohesive crack is defined, the
unidirectional relation of Eq. (31) can be extended to
general mixed mode problems, too [3,14,36]. Here we
consider only the mode I crack separation. The com-
putational implementation of Eq. (31) including the
unloading and reloading behaviors can be found in the
literature [e.g. 6].

6 Discretized equations

6.1 The discrete governing equations

The weak form of the momentum equation is given by

δW = δWint + δWkin − δWext − δWcoh, (33)

where δWint, δWkin, δWext, δWcoh are the virtual works
by the internal stress, the inertia force, the external

Fig. 6 The types of the cohesive laws frequently used in practice;
a linear (or triangular), b bilinear and c exponential cohesive laws

traction and the cohesive traction, respectively. They
are given by

δWint =
∫

�0\�c
0

(∇ ⊗ δu)T : P d�, (34)

δWkin =
∫

�0\�c
0

�0 δu · ü d�, (35)

δWext =
∫

�0\�c
0

�0 δu · b d�0 +
∫

�t
0

δu · t̄0 d�, (36)

δWcoh =
∫

�c
0

[[δu]] · τ d�. (37)

Substituting the continuous and discontinuous dis-
placement fields u0 and ue in Eqs. (1) and (7), and the
crack opening displacement [[u]] in Eq. (19) to the weak
form, we obtain

δWint =
∑

I∈W
δuT

I

∫

�0\�c
0

∇0�I(X)T : P d�

+
∑

J∈E

∑

K∈WJ

δaJ
K

T
∫

�0\�c
0

∇0

×
[
�K(X)�J

K(X)
]T

: P d�, (38)

δWkin =
∑

I∈W
δuT

I

∑

J∈W

∫

�0\�c
0

�0 �I(X)T · �J(X) d� üJ

+
∑

I∈W
δuT

I

∑

J∈E

∑

K∈WJ

×
∫

�0\�c
0

�0 �I(X)T · �K(X)�J
K(X) d� äK

J

+
∑

J∈E

∑

K∈WJ

δaJ
K

T ∑

I∈W

∫

�0\�c
0

�0

×
[
�K(X)�J

K(X)
]T · �I(X) d� üI

+
∑

J∈E

∑

K∈WJ

δaK
I

T ∑

L∈E

∑

M∈WL

∫

�0\�c
0

�0

×
[
�K(X)�J

K(X)
]T ·

�M(X)�L
M(X) d� äL

M, (39)
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δWext =
∑

I∈W
δuT

I

∫

�0\�c
0

�0 �I(X)T · b d�

+
∑

I∈W
δuT

I

∫

�t
0

�I(X)T · t̄0 d�, (40)

δWcoh = 2
∑

J∈E

∑

K∈WJ

δaT
K

∫

�c
0

�K(X)T · t̄c d�. (41)

Using the fundamental lemma of the variational prin-
ciple, one obtains the discretized equation, i.e.

M q̈ = fext + fcoh − fint, (42)

where M is the consistent mass matrix, q is the general-
ized parameters, fext, fint, fcoh are the discrete external,
internal and cohesive force vectors, respectively. The
expressions for M, q, fext, fcoh and fcoh are given by

M =
∫

�0\�c
0

�0

⎡

⎢⎣
�0 T

�0 �0 T
�e

�e T �0 �e T �0

⎤

⎥⎦ d�, (43)

fint =
∫

�0\�c
0

B0 T
P d� +

∫

�0\�c
0

Be TP d�, (44)

fext =
∫

�0\�c
0

�0 �0 T
b d� +

∫

�t
0

�0 T
t̄0 d�, (45)

fcoh = 2
∫

�c
0

�Ttc0 d� (46)

q =
{

u
a

}
(47)

u = [ uI ]T ∀ I ∈ W and a =
[
aJ

K

]T

∀ K ∈ WJ , ∀ J ∈ E , (48)

�0 = [�I] ∀ I ∈ W and �e =
[
�J�

K
J

]

∀ K ∈ WJ , ∀ J ∈ E , (49)

B0 = ∇0�
0 and Be = ∇0�

e. (50)

If the Lagrange multiplier is used, Eq. (33) should be
modified as follows:

δWL = δW + δ(� · [[u]]) (51)

in which δWL is the general variation with constraint
and � is the Lagrange multiplier vector. As mentioned
in Sect 3.3, the Lagrange multiplier is defined for �c,ext
and is interpolated using the shape function of the mesh-
free method. Therefore the discretized Lagrange multi-
plier is given by

� = �0λ, (52)

where λ are the vector parameters to interpolate the
Lagrange multiplier �. Through the standard procedure
for deriving the discrete equations [e.g. 9], we obtain

M q̈ = fext + fcoh − fint − fcon, (53)

G a = 0. (54)

Here fcon is the extra force term due to the constraint
and is given by

fcon = λTG (55)

in which G is

G = 2 �0T
�e. (56)

6.2 Numerical integration

To integrate the discrete Eqs. (43) to (46), the integra-
tion cells, consisting of rectangles, are used. The integra-
tion cell without any crack is integrated by the standard
Gauss quadrature. The cells with cracks are subdivided
into many triangles where the edges are aligned with
the cracks. These cells may be integrated by the same
standard procedure. This integration scheme is now clas-
sical and the detailed information can be found in the
literature [e.g. 12,40,51].

If there is a stress singularity near the crack tip, the
above procedure cannot be used and care should be
taken. Recently, a simple technique has been developed
to integrate the singularity accurately [25]. In the cohe-
sive crack model, however, there is no such a singularity.
The classical triangulation produces a satisfactory result.

7 Numerical examples and discussions

7.1 Arrea–Ingraffea beam

The first example is the Arrea and Ingraffea [1] beam.
The beam was loaded as shown in Fig. 7. The initial
elastic modulus was 28,000 MPa, tensile strength was
2.8 MPa, Poisson’s ration ν = 0.18 and the fracture en-
ergy was Gf = 100 N/m. The beam failed because of a
mixed tensile-shear failure.

We used the Lemaitre’s damage model in tension
for the continuum [e.g. 26], and loss of hyperbolicity
for crack initiation. A linear decaying cohesive law was
used. The concrete was assumed to be linear elastic in
compression. The beam was discretized with approxi-
mately 2,700, 6,000 and 40,000 particles with a struc-
tured uniform particle arrangement. With a refinement
where the crack was expected, even lower discretiza-
tions would be possible.
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Fig. 7 The tensile/shear beam from Arrea and Ingraffea [1]

Fig. 8 The crack pattern of the Arrea–Ingraffea beam for the
domain-decrease method with different number of particles

Fig. 9 The crack pattern of the Arrea–Ingraffea beam for the
Lagrange multiplier method with different number of particles

The crack paths for different refinements are shown in
Fig. 8 for the domain-decrease method and Fig. 9 for the
Lagrange multiplier method. The curvature of the cracks
obtained from both methods was similar to the one from
the experiment. The differences between the two meth-
ods were very marginal. The load displacement curve
(right of the notch) is shown in Fig. 10. It lies in the
experimental scatter.

7.2 Double edge-notched specimen with curved cracks

Consider a double edge-notched specimen as shown
in Fig. 11. Experimental data is available in Nooru-
Mohamed [33]. At first, the specimen was loaded in
shear without any vertical force. At a certain load, the
type of loading was then changed. In the second stage,
the shear force was kept constant and the displacement
in the vertical direction was gradually increased. There
were two distinct cracking patterns by the change of the
shear force at Ps = 5 kN and Ps = 27.5 kN. In the first
case, the crack path was pretty straight. For the second
case, a highly curved crack pattern was observed. This
cracking pattern was because of the high shear force
and not surprising. In addition to the experiments, sev-
eral authors have carried out numerical studies of this
experiment [see e.g. 34,37].

The material properties, according to [33], were com-
pressive strength fc = 46 MPa, splitting tensile strength
fs = 3.78 MPa that yields according to the CEB-FIP
Model Code [e.g. 20] a tensile strength of ft = 0.8fs,
initial Young’s modulus E = 29 GPa, Poisson’s ratio
ν = 0.22 and fracture energy Gf = 110 J/m2.

For the first case in which load reversion is at Ps =
5 kN, the crack pattern is shown in Fig. 12 at two different
steps. Figs. 12a,b present the results from the domain-
decrease method; Figs. 12c,d present the results from
the Lagrange multiplier method. Though the domain-
decrease method is much simpler, the results are
almost identical. A crack propagated almost perpendic-
ular to the vertical direction since the shear force was
very small. When the two cracks were ‘overlapping’ each
other, the upper crack still propagated while the lower
crack is arrested because of unloading of the ligament
next to the crack. The results for the other load rever-
sion, Ps = 27.5 kN, are shown in Fig. 13 for different
load steps. As in the experiment, the large shear force
wa sufficient to produce a highly curved crack. The sim-
ulation was able to predict this behavior well. The load
deflection curve is shown in Fig. 14 and agrees well with
the experimental results. For the higher shear force load,
the computed load deflection curve overestimated the
experimental one. However, this overestimation was re-
ported by several authors, e.g. Patzák and Jirásek [37].
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Fig. 10 The load deflection curve of the Arrea-Ingraffea beam for different numbers of particles

Fig. 11 Nooru-Mohamed’s double edge-notched specimen [33]

Our results agreed well with the numerical results in
[37]. The domain-decrease method gave little bit stiffer
results compared to the Lagrange multiplier method.
This is probably because of the slight underestimation
of the crack length for the mixed mode problem with
multiple loading paths.

7.3 Cracks in dams

Carpinteri et al. [15] and Shi [44] studied the behavior
of concrete gravity dams subjected to hydraulic loading.
The test set-up is shown in Fig. 15. The experimental con-
crete material parameters were measured to Young’s
modulus E = 35.7 GPa, Poisson’s ratio ν = 0.1, den-
sity � = 2, 400 kg/m3, tensile strength ft = 3.5 MPa and
fracture energy Gf = 0.184 N/mm. We carried out sim-

ulations with two different refinements and used 12,000
and 25,000 particles. The final crack pattern is shown in
Fig. 16 for the domain decrease method; the results for
the Lagrange multiplier method looks almost identical.

7.4 Crack branching

In the following, we examined the performance of these
methods in a crack branching problem. We considered
a rectangular prenotched specimen as shown in Fig. 17.
The length of the rectangle was 0.1 m and the width
0.04 m. Plane strain conditions were assumed. Initially,
there was a horizontal crack from the left edge to the
center of the plate over the entire thickness. A tensile
traction of 1 MPa was applied on the top and bottom
edges.

We used the Lemaitre’s damage law [26], loss of hy-
perbolicity and an exponential decaying cohesive law
(Fig. 6c. The material constants were � = 2, 450 kg/m3,
E = 32 MPa, ν = 0.2 and A = 1.0, B = 7, 300 and εD0 =
8.5 × 10−5 for the Lemaitre model. Two dimensional
computations of this problem have previously been re-
ported by Xu and Needleman [50], Falk et al. [19], Be-
lytschko et al. [6], Rabczuk and Belytschko et al. [38]. A
three dimensional computation was made by Rabczuk
and Belytschko [39]. Experimental data is available, see
Ravi-Chandar [41], Sharon and Fineberg [43], Fineberg
et al. [21].

The crack pattern is shown in Fig. 18 for different
computations. It does not show mesh dependence. On
the left hand side of Fig. 18 are the results of the coarse
discretization and on the right hand side the results of
the fine discretization. Two crack branches occurred
similar to the results obtained by Rabczuk and Be-
lytschko [38,39].
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Fig. 12 The crack pattern of
the double edge-notch
specimen for load reversion
of Ps = 5 kN at different load
steps; a,b for domain-decrease
method; c,d for Lagrange
multiplier method

The time history of the crack speed is shown in Fig. 19.
The crack starts to propagate at about 0.012 ms. As
expected, the crack speed was highest at the time of
crack branching. At the first branching, the crack speed
almost reached the theoretical Rayleigh wave speed.
Afterwards, the crack speed decreased. The crack
speed of the upper branch is shown in the figure. The
crack speed of the lower branch is very similar as Fig. 18
might indicate.

7.5 John and Shah’s beam

John and Shah [24] performed a series of dynamic exper-
iments on notched concrete beams. Figure 20 shows the
test setup. They varied the load rate and the location
of the notch. The location of the notch is defined by a
parameter γ = l1/l2 in which l1, l2 are the distances to
the notch and the left support from the center, respec-
tively; see the figure. The parameter γ ranges from 0.5
to 0.77.

The rate of loading ranged from a slow strain rate of
10−6/s for the quasi-static experiments to a dynamic
load with strain rates of 0.5/s. Two different failure
modes were observed in the experiments. The first one
was a pure mode I failure in the middle of the beam; the
second one was a mixed mode failure where the crack
started to propagate from the notch. The transition from
the mode I to the mixed mode failure depended on the
location of the notch and differed for the dynamic and
the static loading conditions. For the same location of
the notch, the slopes of the crack (for the mixed mode
failure) for the quasi-static and dynamic loading were al-
most equal. We studied here the dynamic loading. If the
notch was at γ = 0.77, a mixed mode failure occurred
in the dynamic experiment (a crack evolved from the
notch and another crack was initiated in the middle of
the specimen). The load was applied via a boundary
velocity condition given by John and Shah [24].

First, we focused on the notched beam number 4
(γ = 0.77) under dynamic loading. We now present
the results for the domain-decrease method. We tested
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Fig. 13 The crack pattern of
the double edge-notch
specimen for load reversion
of Ps = 17.5 kN at different
load steps; a–c for
domain-decrease method;
d for Lagrange multiplier
method

Fig. 14 The load deflection curve of the double edge-notch specimen for a load reversion of Ps = 5 kN and b load reversion of
Ps = 27.5 kN

two discretizations, one with approximately 4,000 par-
ticles and the second one with 14,000 particles. The crack
had an angle of 23◦ against the y-axis for the first
computation (see Fig. 21a), which matched the
experimental data pretty well; see John and Shah [24].
The results for the different refinements were almost
identical.

Finally, we ran the problem with the notch located at
γ = 0.50 far away from the left support. We used 4,000
and 14,000 particles similar to the last example. The final
crack pattern is shown in Fig. 22 and is very close to the
experimental one; see John and Shah [24]. Only one
crack occurs that is travelling from the end of the notch.
A similar result was shown in Zi et al. [52], also.
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Fig. 15 A test model of concrete gravity dam by Carpinteri
et al. [15]

8 Conclusion

1. We developed a new meshfree method for cohe-
sive cracks. In this new method, the entire crack is
enriched by the sign function, i.e. the branch enrich-
ment is removed from the discontinuous displace-
ment field. The shape function of the domain of
influence containing the crack tip is modified so
that the crack tip is always positioned on the edge

Fig. 17 A plate with an edge crack loaded by a uniform traction
on the top and bottom edges

of the domain of influence. The modification is only
for the discontinuous displacement field; the con-
tinuous displacement field is not changed.

2. We showed that the classical Lagrange multiplier
can be used to remove the branch enrichment from
the discontinuous displacement field. The crack is
extended virtually beyond the crack tip so that
the domains of influence containing the crack tip
are completely cut by the crack. Then, the crack
opening displacement along the virtual extension is
enforced to vanish. The Lagrange multiplier is
naturally discretized using the shape functions
cut by the virtual extension. Therefore, a few
additional unknowns should be introduced for each
crack tip.

3. The developed methods are applied to well-known
static and dynamic problems. It is demonstrated
that the methods can reproduce the experimen-

Fig. 16 The development of
cracks in dam by the two
different methods
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Fig. 18 The cracking patterns
of the plate with an edge
crack at different time steps
for the two different methods

Fig. 19 The crack speed time history for the crack branching
problem

Fig. 20 The test for a mixed-mode dynamic fracture of concrete
beam by John and Shah [24]; l2 = 101.6 mm

Fig. 21 The crack pattern of the John and Shah beam under
impact loading for a location of the notch at γ = 0.77; a 4,000
particles b 14,000 particles

tal results and the simulations by other researchers
very well. The results of the two proposed meth-
ods produced almost same results. If the domain of
influence is decreased, the results tend to be a little
softer since the crack appears to be a little shorter.
However the global response is barely influence by
this effect.

4. The loss of hyperbolicity is used to determine the
speed of crack propagation and the direction. The
speed of crack propagation calculated from
the loss of hyperbolicity is less than the Rayleigh
wave speed and seems acceptable theoretically.
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Fig. 22 The crack pattern of the John and Shah beam under
impact loading for a location of the notch: γ = 0.50; a 4,000 parti-
cles and b 14,000 particles
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