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Abstract High-order moment fluid equations for simula-

tion of plasmas are presented. The ten-moment equations

are a two-fluid model in which time dependent equations are

used to advance the pressure tensor. With the inclusion of

the full pressure tensor Finite Larmor Radius (FLR) effects

are captured. Further, Hall-effects are captured correctly by

including the full electron momentum equation. Hall and

FLR effects are important to understand stability of compact

toroids like Field Reversed Configurations (FRCs) and also

to detailed understanding of small scale instabilities in

current carrying plasmas. The effects of collisions are dis-

cussed. Solutions to a Riemann problem for the ten-moment

equations are presented. The ten-moment equations show

complex dispersive solutions which come about from the

source terms. The model is validated with the GEM fast

magnetic reconnection challenge problem.

Keywords Magnetohydrodynamics (MHD) �Moment

equations �Magnetic reconnection �Ten-moment equations �
Two-fluid physics � Hall effects � Finite-Larmor Radius

effects

Introduction

Fluid equations are a common tool to study bulk plasma

behaviour. Among the most commonly used fluid models

are the Magnetohydrodynamics (MHD) model [4] and the

Hall-MHD model. In MHD the plasma is treated as a single

electrically conducting fluid. Although in the Hall-MHD

model a distinction is made between the bulk plasma

velocity and electron velocity, electron inertia and dis-

placement currents are ignored and the electron and ion

number-densities are assumed to be the same (quasi-neu-

trality). A more general approach is to treat to the plasma

as a mixture of multiple fluid species. In these two-fluid

models each plasma species is described by a set of fluid

equations evolving under electromagnetic forces and col-

lisions. The electromagnetic fields are modeled using

Maxwell equations of electromagnetism. Two-fluid models

retain both electron inertia effects and displacement cur-

rents and allow for ion and electron demagnetization.

Further, by retaining sufficient moments of the kinetic

equation, the two-fluid model can also describe Finite-

Larmor Radius (FLR) effects, important when character-

istic scales in the plasma are comparable to the ion gyro-

radius. In fusion devices, specially for Innovative

Confinement Concept (ICC) devices like Field-Reversed

Configurations (FRCs), there are two important spatial

scales and corresponding physics effects: the ion skin-

depth and the ion Larmor radius. The former describes

Hall-Effects and is dependent only on the number density

of the fluid. The latter describes FLR effects and depends

on both the plasma temperature and magnetic fields. The

Hall-MHD model, and a previously studied two-fluid

model [5], captures the ion skin-depth effects but not the

FLR effects. By including the pressure tensor in the fluid

equations FLR effects can also be captured. The FLR

effects are important to explain experimentally observed

FRC stability, not explainable in the ideal MHD model. In

this paper initial results of using high-order moment fluid

equations to correctly capture FLR effects are described.

The model used retains equations to evolve the full

pressure tensor but ignores heat transfer and collisional
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relaxation of the fluids. Including these effects are part

of ongoing research and will be addressed in future pub-

lications.

The rest of the paper is organized as follows. First, the

ten-moment equations are derived and effects of collisions

discussed. Next, a Riemann problem for the ten-moment

equations is formulated and numerical results presented.

Although artificial from a physical perspective, Riemann

problems are important mathematically as they clearly

show the wave structure of the equations used. An appli-

cation of the model to fast magnetic reconnection is then

presented. Results from the ten-moment reconnection agree

well with published results with full particle-in-cell (PIC)

codes results and two-fluid results [5]. Finally, some con-

clusions are presented and directions for future research are

outlined.

Ten-Moment Equations

Each species in a multi-component plasma is described by

the Boltzmann equation which describes the temporal

evolution of the particle distribution function in a six

dimensional spatial and velocity space and evolves under

the influence of collisions and electromagnetic forces. With

the distribution function f(x,v,t) defined such that

f(x,v,t)dxdv is the number of particles located in a phase-

space volume element dxdv, the Boltzmann equation may

be written as

of

ot
þ vj

of

oxj
þ q

m
ðEj þ �kmjvkBmÞ

of

ovj
¼ of

ot

� �
c

: ð1Þ

Here E is the electric field, B is the magnetic flux

density, q and m are the charge and mass of the plasma

species and ekmj is the completely anti-symmetric pseudo-

tensor which is defined to be ±1 for even/odd permutations

of (1,2,3) and zero otherwise. Summation over repeated

indices is assumed. The collision terms are represented by

(¶f/¶t)c the exact form of which is specified later in the

paper. The electromagnetic field is determined using

Maxwell equations of electromagnetism

r� E ¼ � oB

ot
ð2Þ

r � B ¼ l0Jþ 1

c2

oE

ot
ð3Þ

r � E ¼ .c

e0

ð4Þ

r � B ¼ 0: ð5Þ

Here l0 and e0 are the permeability and permittivity of

free space, c = (l0e0)–1/2 is the speed of light and .c and J

are the charge density and the current density defined by

.c �
X

qn ð6Þ

J �
X

qnu: ð7Þ

The summations in Eqs. 6 and 7 are over all species

present in the plasma. The number density n(x,t) and mean

velocity u(x,t) are defined by

n �
Z

fdv ð8Þ

uj �
1

n

Z
vj fdv; ð9Þ

where dv = dv1dv2dv3 represents a volume element in

velocity space.

A simple method to obtain fluid equations is to multiply

the Boltzmann equation in turn by tensors defined by

products of the velocities and integrate over the velocity

space. For example, in addition to the number density and

mean velocities defined by Eqs. (8) and (9) the following

higher order moments are defined.

Pij � m

Z
vivj fdv ð10Þ

Qijk � m

Z
vivjvk fdv ð11Þ

Kijkl � m

Z
vivjvkvl fdv: ð12Þ

These definitions are most convenient to derive the

moment equations although they do not have a convenient

physical interpretation. In classical fluid mechanics the

following physically more relevant definition are used.

Pij � m

Z
ðvi � uiÞðvj � ujÞ fdv ð13Þ

Qijk � m

Z
ðvi � uiÞðvj � ujÞðvk � ukÞ fdv ð14Þ

Kijkl � m

Z
ðvi � uiÞðvj � ujÞðvk � ukÞðvl � ulÞ fdv: ð15Þ

The fluid equations displayed below suggest, for

example, interpreting Pij as a fluid stress tensor and Qijk as

a heat flow tensor. As is easily shown, the moment set

Eqs. 10–12 and Eqs. 13–15 are related by
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Pij ¼ Pij þ nmuiuj ð16Þ

Qijk ¼ Qijk þ u½iPjk� � 2nmuiujuk ð17Þ

Kijkl ¼ Kijkl þ u½iQjkl� � u½iujPkl� þ 3nmuiujukul: ð18Þ

In these equations square brackets around indices rep-

resent the minimal sum over permutations of free indices

needed to yield completely symmetric tensors. For example

u½jPik� ¼ ujPik þ uiPkj þ ukPji:

Using this procedure leads to the set of exact moment

equations listed below

on

ot
þ o

oxj
ðnujÞ ¼ 0 ð19Þ

m
o

ot
ðnuiÞ þ

oPij

oxj
¼ nqðEi þ �ijkujBkÞ þ Rc ð20Þ

oPij

ot
þ oQijk

oxk
¼ nqu½iEj� þ

q

m
�½iklPkj�Bl þ Pc ð21Þ

oQijk

ot
þ oKijkl

oxl
¼ q

m
ðE½iPjk� þ �½ilmQljk�BmÞ þ Qc ð22Þ

In these equations Rc, Pc and Qc are yet unspecified

terms arising from the collision operator in the Boltz-

mann equation. Equations 19–22 are 20 equations

(1 + 3 + 6 + 10) for 35 unknowns (Kijkl has 15 inde-

pendent components). In general any finite set of exact

moment equations will always contain more unknowns

than equations. To reduce the number of unknowns and

make the system determinate closure relations must be

employed. Deriving accurate closure relations is difficult

and an extensive set of closures relevant to various

physical situations are known. In this paper we presently

circumvent the problem by assuming that the divergence

of the heat flux tensor Qijk,k vanishes. Although this may

be an inaccurate assumption for certain physical situa-

tions, the numerical methods used here are easily adapted

to handle general closure relations by including them as

additional source terms in the fluid equations. Note that a

non-zero pressure tensor, but a vanishing heat flux tensor,

is equivalent to assuming that the distribution function is

a Gaussian

G ¼ n

ð2pÞ3=2D1=2
exp � 1

2
H�1

ij cicj

� �
ð23Þ

where, D = det(Qij), Qij = Pij/mn and ci = vi–ui. In previ-

ous analysis to compute closures for the pressure tensor the

distribution function is expanded in inverse mean-free path

around a Maxwellian. As is easily shown this distribution

function expansion about a Maxwellian does not allow

arbitrary anisotropy in the pressure tensor as the distribu-

tion function is no longer always non–negative. On the

other hand the Gaussian shown above is always non–neg-

ative, as for D > 0 and n > 0 the matrix Qij is positive

definite and remains so under the flow. Closure analysis, if

carried out by expanding the distribution around the

Gaussian Eq. (23), will lead to, in general, more accurate

relations for the heat-flow tensor.

The set of fluid equations is called a two-fluid ten-mo-

ment model or a ten-moment model for short. For a two

species plasma it has 2 · 10 + 6 = 26 equations. In one

dimension and in Cartesian coordinates identifying the

subscripts (1,2,3) ” (x,y,z), these equations are put into the

conservation law form

oq

ot
þ of

ox
¼ s; ð24Þ

where the conserved variables and fluxes are

q ¼

q
qu
qv
qw

qu2 þ Pxx

quvþ Pxy

quwþ Pxz

qv2 þ Pyy

qvwþ Pyz

qw2 þ Pzz

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; f ¼

qu
qu2 þ Pxx

quvþ Pxy

quwþ Pxz

qu3 þ 3uPxx

qu2vþ 2uPxy þ vPxx

qu2wþ 2uPxz þ wPxx

quv2 þ uPyy þ 2vPxy

quvwþ uPyz þ vPxz þ wPxy

quw2 þ uPzz þ 2wPxz

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð25Þ

and sources are

s¼

0

rqðExþ vBz�wByÞ
rqðEyþwBx�uBzÞ
rqðEzþuBy� vBxÞ

2rquExþ2rðBzPxy�ByPxzÞ
rqðuEyþ vExÞþ rðBzPyy�ByPyz�BzPxxþBxPxzÞ
rqðuEzþwExÞþ rðBzPyzþByPxx�ByPzz�BxPxyÞ

2rqvEyþ2rðBxPyz�BzPxyÞ
rqðvEzþwEyÞþ rðByPxy�BzPxzþBxPzz�BxPyyÞ

2rqwEzþ2rðByPxz�BxPyzÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð26Þ

Fluxes in the y and z direction are obtained by appro-

priately permuting the subscripts on the various tensors. In

these equations, r ” q/m is the charge to mass ratio of the

particle and q ” mn is the mass density. Note that there is

one such set of equations for each of the s plasma species.

These 10s equations, coupled to Maxwell equations of

electromagnetism, Eqns. (2)–(5), are the ten-moment

plasma equations.
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Collisions

The collisional operator in the Boltzmann equation is

specified in various ways. In most fusion plasmas Coulomb

collisions are the dominant collisional processes. An

expression for the Coulomb collision operator, (¶fa/¶t)c =P
b C(fa, fb), for species a, in terms of the Rosenbluth

potentials,

HbðvÞ ¼
Z

dv0

jv� v0j fbðv0Þ ð27Þ

GbðvÞ ¼
Z

dv0jv� v0j fbðv0Þ; ð28Þ

is

Cðfa; fbÞ ¼
cab

2ma

o

ovi

o

ovj
fa

o2Gb

oviovj

� �
� 2 1þ ma

mb

� �
fa

oHb

ovi

� �
:

ð29Þ

Here, cab ¼ q2
aq2

blnKab=ð4p�2
0maÞ with Kab ¼ 12p�0

ðmaTb þ mbTaÞ=ðma þ mbÞkD and kD is the Deby length

k�2
D ¼

P
a naq2

a=ð�0TaÞ: Unfortunately, obtaining analytical

expressions for moments of the Coulomb collision operator

with the tensor products of the velocity vector v is not

possible. Instead one can use the following (l + 2k)-th

moment defined by Grad

nMlkðvÞ ¼
Z

dvPlðvÞv2k
T L
ðlþ1=2Þ
k ðs2Þ f ðx; v; tÞ: ð30Þ

Here vT = (2T/m)1/2 is the thermal velocity and s = v/vT.

The rank-l tensor Pl is determined from the recurrence

relation

Plþ1
ijk...mðvÞ ¼ viP

l
jk...m �

v2

2lþ 1

oPl
jk...m

ovi
ð31Þ

with starting condition P0 = 1. Also, Lk
(l+1/2) are the Sonine

(associated Laguerre) polynomials. Now one can expand

the distribution function as

f ¼
X

ij

f 0 1

v
ðlþ2kÞ
T rl

k

Plk �Mlk ð32Þ

where Plk = Pl(s)Lk
(l+1/2)(s2) and rl

k are normalization

constants. Linearizing the Coulomb collision operator [7],

and using in the Boltzmann equation one can obtain high-

order moment fluid equations. Note the problem of closure

still remains but is made more systematic in this framework.

Another option, if the gradients in the velocity space are

not large, is to approximate the collision operator using a

simple Bhatnagar-Gross-Krook (BGK) model as follows

Jðf Þ ¼ of

ot

� �
c

¼ mðf 0 � f Þ þ mðf 0 � f Þ; ð33Þ

where m and m are collision frequencies (units of inverse

seconds) and f0 and f 0 are Maxwellian distribution

functions given by

f 0 � n
m

2pkT

� �3=2

exp � m

2pkT
ðv� uÞ2

� �
ð34Þ

f 0 � n
m

2pkT

� �3=2

exp � m

2pkT
ðv� uÞ2

� �
: ð35Þ

Here T ; u are relaxed temperatures and bulk velocities.

For electron-ion plasma there are four collision frequencies

me, me which represent electron-electron and electron-ion

collisions and mi, mi which represent ion-ion and ion-elec-

tron collisions. Further, there are eight undetermined

parameters Te; Ti and ue and ui: Not all of these are

independent as the total momentum and energy must be

conserved by the collisions.

The advantage of the simple BGK model is that mo-

ments of the collision operator with 1, mvj, m vjvk are

simple to compute. We get

Rc ¼ m

Z
vjJðf Þdv ¼ mnmðuj � ujÞ ð36Þ

and

Pc ¼m

Z
vjvkJðf Þdv ¼ mðpdjk � PjkÞ þ mðpdjk � PjkÞ

þ mnmðujuk � ujukÞ; ð37Þ

where the scalar pressure is p ” Pii/3. From these expres-

sions it is clear that the collisions between like particles do

not change momentum but have the effect of driving the

off-diagonal terms of the pressure tensor to zero as 1/m fi
0. By selecting the collision frequencies properly the col-

lisional relaxation of the fluids to a Maxwellian is de-

scribed sufficiently accurately.

Without extensive calculations it is not possible to

evaluate the merits of using a linearized Coulomb collision

operator over the simple BGK operator. The choice of a

collision operator also affects the closure relations for the

heat flux tensor. These issues are being pursued in our

current research.

Ten-moment Riemann Problem

The one dimensional Riemann problem is a Cauchy

problem for the conservation law Eq. 24 with initial
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conditions q(x < 0,0) = ql and q(x > 0,0) = qr, where

ql,r are constant vectors. Although artificial from a

physical standpoint it is fundamental from a mathemati-

cal standpoint as its solution illustrates the mathematical

structure of hyperbolic balance laws. Solutions to the

Riemann problem for the ten-moment equations are

presented in this section. The numerical method used is

not described but is an extension of the one described in

[5]. The Riemann problem selected is a generalization of

the Brio-Wu shock-tube problem[2] commonly used to

benchmark MHD codes. The initial conditions used are

[5, 14]

qe

ue

ve

we

pe

qi

ui

vi

wi

pi

Bx;
By;
Bz;
Ex;
Ey;
Ez

2
666666666666666666666666664

3
777777777777777777777777775

l

¼

1:0 me

mi

0

0

0

5� 10�5

1:0
0

0

0

5� 10�5

0:75

1:0
0

0

0

0

2
666666666666666666666666664

3
777777777777777777777777775

qe

ue

ve
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qi

ui

vi

wi

pi

Bx;
By;
Bz;
Ex;
Ey;
Ez

2
666666666666666666666666664

3
777777777777777777777777775

r

¼

0:125 me

mi

0

0

0

5� 10�6

0:125

0

0

0

5� 10�6

0:75

�1:0
0

0

0

0

2
666666666666666666666666664

3
777777777777777777777777775

ð38Þ

where me/mi = 1/1832.6. Note that the initial pressure

tensor is assumed to be isotropic, i.e.Pxx = Pyy = Pzz = p

with all other components being set to zero. Simulations

with qi/mi = 1,10 were carried out. These correspond to

skin-depths of 1 and 1/10 respectively. With decreasing

skin-depth the solutions tend towards the ideal MHD limit.

The solutions were computed on a grid of 5000 cells. All

collisional terms were set to zero.

Electron and ion number density at t = 10 are show in

Fig. 1. The results are significantly different when com-

pared to ideal MHD results and five-moment two-fluid

results (see Figs. 1, 2 and 3 in [5]). This is not surprising as

the ten-moment model includes more physics than ideal

MHD or five-moment models. Also, in absence of colli-

sions the ten-moment model is fundamentally different that

the five-moment model, the latter being a fully relaxed

limit of the former. In fact, including the BGK collision

terms in the simulation and varying the collision frequency

drives the solution of the ten-moment equations to that of

the two-fluid equations.

Small scale dispersive waves are visible in the solutions.

The source terms in the ten-moment (as in the five-

moment) model cause the dispersion. To see this we can

linearize the conservation law Eq. (24), after writing it in

non-conservative form,

ov

ot
þ Ap

ov

ox
¼ sp; ð39Þ

about a uniform equilibrium v0. Let v = v0 + v1, where v1

is a small perturbation. Using a Taylor series expansion to

first-order to write spðvÞ ¼ spðv0Þ þ osp=ov
� �

v0
v1 and

ApðvÞ ¼ Apðv0Þ þ oAp=ov
� �

v0
v1 and letting Mp ” ¶sp/¶v,

the linear form of the non-conservative equation, Eq. (36),

becomes

ov1

ot
þ Apðv0Þ

ov1

ox
¼Mpðv0Þv1: ð40Þ

To understand the mathematical structure of the linear

equation a Fourier representation of the solution is assumed

and each mode is represented as v1 ¼ v̂1eixteikx: Using this

in Eq. 40 we obtain
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Fig. 1 Electron (thick line) and ion number density (thin line) for ion

skin-depth of 1 (top) and 1/10 (bottom) respectively. The results differ

significantly from ideal MHD[5] as more physics is included in the

ten-moment model. Dispersive wave propagation is clearly visible in

the small scale oscillations in the solutions
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ixIþ ikApðv0Þ �Mpðv0Þ
	 


v1 ¼ 0; ð41Þ

where I is a unit matrix. For non-trivial solutions the

determinant of the matrix in the square brackets must van-

ish, a condition which leads to the dispersion relation

x = x(k). If for all k real, x(k) is also real then the linear

solutions are undamped. It can be shown that the dispersion

relation for the various two-fluid models (five- and ten-

moment) in the absence of collisions is nonlinear (as the

matrix Mp is in general non-zero) and non-dissipative. The

non-linear dispersion relation indicates dispersion of the

waves as they propagate in the plasma. These dispersive

effects can also be reproduced in simpler model problems in

which the matrix Mp has purely imaginary eigenvalues.

Finding the dispersion relation is equivalent to finding the

eigenvalues of the matrix –kAp(v0)– iMp(v0). Thus if

kp(k,v0) is the pth eigenvalue of this matrix then the pth

branch of the dispersion relation is x = kp(k,v0). An

example of the full ten-moment dispersion relation for

perpendicular (to the magnetic field) propagation in a

background plasma with a normalized plasma frequency, xp

= 1, normalized cyclotron frequency, xc = 0.75, and nor-

malized thermal velocity, vT = 0.447214, is shown in Fig. 2.

In contrast, waves propagate without dispersion for the ideal

MHD equations linearized around a uniform plasma.

Fast Magnetic Reconnection

In this section the ten-moment model is applied to simu-

lating fast magnetic reconnection, i.e. the process in which

the topology of the magnetic field lines changes violently

[12]. For this problem we have ignored all collision terms

in the ion equations and set the heat flux tensor to zero.

Further, we have assumed that the electron-electron colli-

sions are sufficient to drive the off-diagonal terms of the

electron pressure tensor to zero (i.e. the electrons are fully

relaxed). In this case the electron fluid is described by just

five equations (continuity, momentum and total energy

equations). Ignoring ion collisions is appropriate for this

problem as the time scale of fast magnetic reconnection is

much faster than ion relaxation time scale. Further, the bulk

reconnection rate, although much faster than that described

by resistive MHD, is not dependent on collisions. In ideal

MHD or ideal Hall MHD the field line topology cannot

change, i.e. the field lines are ‘‘frozen’’ into the fluid

(frozen into the electron fluid in case of ideal Hall-MHD).

The situation is analogous to neutral ideal fluid flow in

which vortex tube topology remains constant. Even small

resistivity (viscosity in neutral fluids), however, can make

the topology change and the field lines reconnect and this

process is adequately described in the framework of

resistive MHD or Hall-MHD. In a low collisionality plas-

ma magnetic reconnection is also observed to occur and at

a much faster rate than in collisional plasmas. Fast colli-

sionless reconnection is important in understanding many

space plasma phenomena, for example, solar flares and the

dynamics of the Earth’s magnetotail during a geomagnetic

substorm. It also occurs during formation of an FRC from

theta-pinch reversal. To understand the mechanism of fast

reconnection a number of plasma models were used to

study reconnection of oppositely directed magnetic fields

separated by a thin current sheet. This was the Geospace

Environmental Modeling (GEM) Reconnection Challenge

[3]. The various models used were electron MHD [6], Hall

MHD with anisotropic pressure [1], MHD and Hall MHD [

9, 10, 13], full particle [11] and hybrid [8] models. It was

found that the although reconnection initiates at length

scales on the order of the electron skin depth the recon-

nection rate is governed by ion dynamics. The ten-moment

model can describe the physics at electron skin depth scales

as well as full ion dynamics and hence can describe fast

reconnection correctly. On the electron-skin depth scales

the field lines are no longer frozen to the electron fluid and

this allows the reconnection to initiate without the need for

resistivity. On the other hand in the Hall MHD model [9]

the reconnection needs to be initiated by using a small

resistivity.

The simulation is initialized with oppositely directed

magnetic fields separated by a thin current sheet. The

magnetic field is given by

BðyÞ ¼ B0 tanhðy=kÞex: ð42Þ
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w
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Fig. 2 Scatter plot of the full dispersion relation of the ten-moment

model. Note the complex structure of the various branches of the

dispersion relation. Some waves in the ten-moment equations suffer a

cut-off at a particular wave number but start propagating again

without dispersion for larger wave numbers
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The initial current is carried only by the electrons:

Je ¼ �
B0

k
sech2ðy=kÞ: ð43Þ

The number densities of the ions and electrons are ini-

tialized as ne(y) = ni(y) = n(y), where

nðyÞ ¼ n0 1=5þ sech2ðy=kÞ
� �

: ð44Þ

The electron pressure is set to pe(y) = p(y) and ion

pressure to pi(y) = 5p(y) where

pðyÞ ¼ B0

12
nðyÞ: ð45Þ

To initiate reconnection in a controlled manner the

magnetic field is perturbed with dB ¼ ez �rw , where

wðx; yÞ ¼ w0 cosð2px=LxÞ cosðpy=LyÞ; ð46Þ

and [–Lx/2, Lx/2] · [–Ly/2, Ly/2] is the simulation domain.

This form of the perturbation assures that r � B ¼ 0 at

t = 0. Periodic boundaries are applied at x = ± Lx/2 and

open boundaries at y = ± Ly/2. Simulations presented be-

low are for a 256 · 128 grid. The other parameters used are

me/mi = 1/25, Lx = 8p, Ly = 4p, w0 = B0/10 and k = 0.5.

The unit length scale is the ion skin-depth and the unit time

scale is in inverse ion cyclotron frequency. These param-

eters are similar to the original GEM challenge problem.

To compare results with the models used in the GEM

challenge problem the reconnected flux, /, was computed

using

/ðtÞ ¼ 1

2Lx

Z Lx=2

�Lx=2

jByðx; y ¼ 0; tÞj dx: ð47Þ

As the reconnection proceeds the reconnected flux,

which is a measure of the net Y-direction magnetic field,

increases and indicates the reconnection rate. Figure 3

shows the reconnected flux history. It is observed that the

reconnection occurs at about t = 10 and the reconnected

flux increases rapidly after that. The computed flux history

is in excellent agreement with flux histories from full

particle and hybrid models used in the original GEM

Challenge problem. Figure 4 shows the electron and ion

number densities at t = 25. Counter-streaming fluid insta-

bilities are excited at later times due to the strong electron

flow at the edge of the current sheet.

Conclusions

We have presented a high-order moment model for ex-

tended MHD simulations. The model includes electron

inertia, displacement currents, non-neutral effects and finite

Larmor radius (FLR) effects. The model is validated using

the well known GEM fast magnetic reconnection problem.

Correct reconnection rates are obtained hence validating

the model.

The results presented here are preliminary and several

directions of research are being pursued. In particular the

effects of collisions are being incorporated. Initially the
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Fig. 3 Reconnected flux from the ten-moment model. Time mea-

sured in ion-cyclotron periods is plotted on the X-axis and

reconnected flux on the Y-axis. The reconnection rate obtained here

agrees well with the two-fluid results presented in [5]

Fig. 4 Electron number density (top) and current density (bottom) at

t = 25. The reconnection process is well under way by this time. The

electrons show a strong flow at the edge of the sheet which eventually

leads to counter streaming fluid instabilities
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simple Bhatnagar-Gross-Krook (BGK) model is being used

to study relaxation of the distribution function to a Max-

wellian. The use of the exact linearized Coulomb collision

operator [7] as outlined above is also being explored. The

problem of closure is a complex one and depends on the

form of the collision operator used and often on the par-

ticular physical situation being studied. For the ten-moment

model it seems natural that Chapman-Enskog type expan-

sion be carried out about the Gaussian distribution (see Eq.

23) rather than the Maxwellian. This allows arbitrary

anisotropy in the pressure tensor without the distribution

function going negative. A unexplored question is the

incorporation of linear Landau damping effects in the fluid

closures. Incorporating Landau damping in collisional

plasmas is not simple and will be explored in the future.

The ten-moment and five-moment models are being used to

study Field Reversed Configuration (FRC) formation and

stability in full three dimensions. It is expected that the

additional inclusion of the FLR effects in the ten-moment

model, coupled to an appropriate closure for the heat-flux

tensor, will lead to an understanding of FRC stability.
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