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New Bessel-series representations for the calculation of the diffraction integral are presented yielding the
point-spread function of the optical system, as occurs in the Nijboer–Zernike theory of aberrations. In this
analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full
detail for the cases of coma and astigmatism. The analysis leads to stably converging results in the case of
large aberration or defocus values, while the applicability of the original Nijboer–Zernike theory is limited
mainly to wave-front deviations well below the value of one wavelength. Because of its intrinsic speed, the
analysis is well suited to supplement or to replace numerical calculations that are currently used in the fields
of (scanning) microscopy, lithography, and astronomy. In a companion paper [J. Opt. Soc. Am. A 19, 860
(2002)], physical interpretations and applications in a lithographic context are presented, a convergence analy-
sis is given, and a comparison is made with results obtained by using a numerical package. © 2002 Optical
Society of America
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1. INTRODUCTION
The Nijboer–Zernike theory of diffraction integrals was
intended to produce an analytical result that, with the
computational means of that time, led to a good approxi-
mation for the intensity distribution in or close to the fo-
cal plane. As indicated already by Nijboer himself, the
permitted wave-front aberration should not, in terms of
the phase of the exponential factor, exceed a few radians.
The amplitude distribution over the wave front is limited
to a uniform one. These two conditions mean that the
analysis is not well suited to the solution of practical
problems, where the defocusing and the aberrations may
be relatively large and where the uniformity condition on
the amplitude is too restrictive. For this reason the ana-
lytical method developed by Nijboer has not been exten-
sively used to solve practical problems; numerical inte-
gration or Fourier transform methods are used to
calculate the image intensity profiles. Neither can one
find recent publications in the optics literature aimed at
application or further developments of the Nijboer–
Zernike theory.

In this paper an extended analytical approach is pro-
posed that does not suffer from the small-aberration and
amplitude uniformity restrictions. In the remainder of
this paper, we will focus on the exact treatment of large
aberrations and/or defocus terms in the diffraction inte-
gral. It will become evident that amplitude nonunifor-
mity can also be treated in this new approach along the
same lines as the treatment given the (strong-) aberration
term in the exponential. One is thus led to the conclu-
sion that with these extensions the Nijboer–Zernike ap-
proach has become an interesting alternative to the com-
mon numerical methods, both in accuracy and in
calculation speed. In fact, numerical experiments with
defocus values as large as 2p and/or aberrations of the
same order of magnitude show the validity of the ex-
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tended approach (an example is contained in Section 4 for
the case of coma with defocus values up to 2p). In a
forthcoming paper1 these issues will be investigated in
more detail.

We first consider the Nijboer–Zernike theory of diffrac-
tion integrals containing small aberrations. As is well-
known, these diffraction integrals apply to optical sys-
tems where the pupil is large compared with the
wavelength of the light used. For a summary of the dif-
fraction theory of aberrations and the relevant aspects of
the Nijboer–Zernike theory, the reader is referred to Ref.
2, Chap. 9, in particular Secs. 9.1–9.4 and Appendix VII,
which summarize Nijboer’s thesis;3 more recent literature
on Zernike polynomials and their use and interpretation
in the context of aberrated circular optical systems in-
clude Refs. 4–7. We thus consider, as in Ref. 2, Chap. 9,
a point source of monochromatic light in the object plane
of a centered optical system (see Fig. 1), and we assume
the distortions to be symmetrical about the meridional
plane, so that the aberration functions are even functions
of the angular coordinate u in the exit pupil. In the nor-
malized form that is convenient for our purposes, the dif-
fraction integrals that we are concerned with take the
form

U~x, y ! 5
1

p
EE

n21m2<1
exp@i~n2 1 m2!f 1 iF~n, m!#

3 exp~2pinx 1 2pimy !dndm. (1)

Here U(x, y) is the normalized point-spread function,
with x, y the spatial Cartesian coordinates in the image
plane, F(n, m) is the aberration function, with n, m the
Cartesian coordinates in the exit pupil representing spa-
tial frequencies, and f is a parameter representing defo-
cusing. From a mathematical point of view, there is
nothing that prevents us from assuming that F in Eq. (1)
2002 Optical Society of America
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Fig. 1. A point source at O emits a spherical wave toward the schematically represented optical system. In the image space an aber-
rated wave front W leaves the exit pupil (center at E) and comes to a focus close to the image plane through O8. The spherical reference
wave front is denoted by S, and the wave-front aberration is given by the perpendicular distance between S and W. The phase function
F is derived from W through F 5 2pW/l, where l is the wavelength of the monochromatic radiation. The normalized Cartesian pupil
coordinates are denoted by (n, m), and the coordinates (x, y) in the image plane have been normalized with respect to the diffraction unit
l/NA, where NA is the image-side numerical aperture of the optical system. Note that the analysis in this paper is not limited to on-axis
object and image points.
is complex valued, so that nonuniform amplitude distri-
butions can be accommodated as well.

In the Nijboer–Zernike theory one aims at expressing
U(x, y) in numerically tractable forms, where one should
be well aware that no powerful computational aids such
as we have now were available at the time the theory was
developed. For values of defocus parameter f and maxi-
mum uFu of order well below unity, U(x, y) can be com-
puted with sufficient accuracy by using the results of the
Nijboer–Zernike theory, where a modest number of Bessel
functions must be evaluated. See Ref. 2, Figs. 9.6 and
9.9, where some contour plots of uU(x, y)u2 are shown
that were drawn by Nijboer3 and Nienhuis8 in their re-
spective theses by using this approach.

Let us sketch the basic features of the Nijboer–Zernike
theory. One starts by expanding the aberration function
F as

F~n, m! [ F~r, u! 5 (
n,m

anmRn
m~r!cos mu, (2)

where (with slight abuse of notation) we use polar coordi-
nates r exp(iu) 5 n 1 im (see Ref. 2, Sec. 9.2.2). Here Rn

m

is a Zernike polynomial, so that the expansion in Eq. (2) is
orthogonal on the unit circle; see Ref. 2, Sec. 9.2.1 and Ap-
pendix VII, for the main properties of the Zernike polyno-
mials. In particular, we have that the series on the right-
hand side of Eq. (2) can be taken over all integers n, m
> 0 with n 2 m even and >0. Also, Rn

m(r) is a polyno-
mial in r of degree n containing the powers
rn, rn22 ,..., rm only. Then, using polar coordinates for
the integral on the right-hand side of Eq. (1), we have

U~x, y ! 5
1

p
E

0

1

r exp~ifr2!

3 H E
0

2p

exp@iF~r, u 1 f !#

3 exp~2pirr cos u!duJ dr, (3)
where x 1 iy 5 r exp(if ). The inner integral on the
right-hand side of Eq. (3) is expanded as

E
0

2p

exp@iF~r, u 1 f !#exp~2pirr cos u!du

5 (
k50

` ik

k!
E

0

2p

Fk~r, u 1 f !exp~2pirr cos u!du. (4)

As to the first-order term (k 5 1) on the right-hand side
of Eq. (4), we get, by using elementary properties of the
Bessel functions,

E
0

2p

F~r, u 1 f !exp~2pirr cos u!du

5 (
n,m

anmRn
m~r!E

0

2p

@cos m~u 1 f !#

3 exp~2pirr cos u!du

5 2p(
n,m

anmimRn
m~r!Jm~2prr !cos mf. (5)

Thus, as to first-order terms, evaluation of U in Eq. (3) re-
quires computation of the integrals

E
0

1

r exp~ifr2!Rn
m~r!Jm~2prr !dr, (6)

with integers n, m > 0 such that n 2 m is even and >0.
It is a key result in the Nijboer–Zernike theory that

E
0

1

rRn
m~r!Jm~2prr !dr 5 ~21 !~n2m !/2

Jn11~v !

v
,

v 5 2pr. (7)

Hence the integrals in expression (6) admit a simple ex-
pression when the defocus parameter f vanishes. For f
Þ 0 it is customary in the Nijboer–Zernike theory to use
Bauer’s identity and some further properties of the
Zernike polynomials, yielding
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exp~ifr2! 5 expS 1

2
if DAp

f (s50

`

~2s

1 1 !isJs11/2S 1

2
f DR2s

0 ~r!. (8)

The next step for evaluating the integrals in expression
(6) is then to write the products Rn

m(r) R2s
0 (r), which turn

up when Eq. (8) is inserted into expression (6), as a finite
series:

Rn
m~r!R2s

0 ~r! 5 (
p

ApRp
m~r!. (9)

Then Eq. (7) can be used for each of the terms on the
right-hand side of Eq. (9). This then yields a series rep-
resentation of the integrals in expression (6) that con-
verges sufficiently fast, so that only a modest number of
terms is enough to accurately approximate the integrals,
provided that f is not too large.

The problematic point in the Nijboer–Zernike approach
is the determination of the coefficients Ap in the series on
the right-hand side of Eq. (9). While one can show that
representations (9) do exist for any allowed tuple n, m, s,
the explicit determination of the Ap is not easy; when n
and m are not too large, these Ap can be determined (and
this is in fact done this way) by using the explicit form of
the Zernike polynomials. This same problem becomes
even more serious when, on the right-hand side of Eq. (4),
terms of order k > 2 have to be included, for then one
needs to consider products of k 1 1 Zernike polynomials,
which should be represented as series of the form (9) with
an appropriate m, so as to be able to use the basic formula
(7). Interestingly, after this paper was accepted, the au-
thor obtained a systematic way to determine coefficients
in series of the Eq. (9) type for products of Zernike poly-
nomials. This is based on the formula, valid for m, k
5 0, 1 ,...,

rm12k 5 (
p50

k m 1 2p 1 1

m 1 p 1 k 1 1

S k
p D

S m 1 k 1 p
p D Rm12p

m ~r!,

(10)

together with the explicit representation of Zernike poly-
nomials as finite series of monomials (see Section 3).
Nevertheless, even with this coefficient problem solved in
principle, the whole procedure remains rather cumber-
some.

In this paper the above situation is remedied by giving
explicit Bessel-series representations for the integrals in
expression (6), as well as for integrals as those in expres-
sion (6) but with Rn

m(r) replaced with rn, where n 2 m is
even and > 0. The integrals involving Rn

m(r) are di-
rectly useful when the (possibly nonuniform) aberration
A exp(iF), rather than F itself, has been given in the form
of a Zernike series. The integrals involving rn can be
used when F has been given in the form of a Zernike se-
ries, as in Eq. (2), by expanding any Fk on the right-hand
side of Eq. (4) as a series of terms of the form rn cos m(u
1 f ) with integers n, m > 0 such that n 2 m > 0 and
even. Full details are given for the two cases in which
the aberration represents coma and astigmatism.

2. SUMMARY OF RESULTS
In Section 3 we shall explicitly express any of the terms

E
0

2p

Fk~r, u 1 f !exp~2pirr cos u!du (11)

that occur in the right-hand series in Eq. (4) in terms of
the functions

rnJm~2prr !cos mf (12)

with integers n, m > 0 such that n 2 m is even and > 0.
Then, in Appendix A.1, we consider the integrals

Tnm ª E
0

1

rn11 exp~ifr2!Jm~2prr !dr. (13)

For integers n, m > 0 such that n 2 m is even and > 0,
we show the explicit result

Tnm 5 exp~if !(
l51

`

~22if !l21(
j50

p

tlj

Jm1l12j~v !

vl , (14)

where

v 5 2pr, p 5
1
2 ~n 2 m !, q 5

1
2 ~n 1 m !,

(15)

tlj 5 ~21 !j
m 1 l 1 2j

q 1 1
S p

j D
3 S m 1 j 1 l 2 1

l 2 1 D Y S q 1 l 1 j
q 1 1 D ,

j 5 0, 1 ,..., l 5 1, 2 ,... . (16)

Thus, when the results of Appendix A.1 are combined, the
integral expression (3) for U can be expressed explicitly,
in terms of powers of f, the anm in Eq. (2), and Bessel
functions, in a way that is, in principle, practicable for
computerization. We also may note that in many cases
the p occurring in Eq. (14) is rather small, say p < 5, and
that the quantities tlj (despite their complicated appear-
ance) are quite easy to compute. Furthermore, because
of the behavior of the Bessel functions of large order at
fixed argument, the convergence of the series in Eq. (14)
is rapid when f and v are not very large. The author is
preparing a companion paper1 in which, among other
things, this approach of evaluating diffraction integrals is
compared with other approaches from a numerical point
of view. In that paper it is shown that, as a rule of
thumb, one needs some 25 terms in the series over l to get
absolute accuracy of order 1026 for all v < 20, 0 < m
< n < 14, and u f u < 2p.

The formulas (14)–(16) continue to hold for integers n,
m > 0 with n 2 m even and , 0, except that the sum-
mations over j in Eq. (14) should be extended to 1` and
the binomials in Eq. (16) involving p should be read as

S p
k D 5

p~ p 2 1 !¯~ p 2 k 1 1 !

k!
, (17)
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when k is a nonnegative integer. The particularly conve-
nient fact that we may consider finite p > 0 in Eqs. (14)
and (16) is a consequence of the fact that we have devel-
oped F in terms of Zernike polynomials.

As already said, we have for U the first-order approxi-
mation

U~x, y ! ' 2E
0

1

r exp~ifr2!J0~2prr !dr

1 2i(
n,m

anmim cos mf

3 E
0

1

r exp~ifr2!Rn
m~r!Jm~2prr !dr.

(18)

In Appendix A.2 we shall show that, for integers n,
m > 0 with n 2 m even and >0,

E
0

1

rRn
m~r!exp~ifr2!Jm~2prr !dr

5 exp~if !(
l51

`

~22if !l21(
j50

p

vlj

Jm1l12j~v !

lvl , (19)

where

vlj 5 ~21 !p~m 1 l 1 2j !S m 1 j 1 l 2 1
l 2 1 D

3 S j 1 l 2 1
l 2 1 D S l 2 1

p 2 j D Y S q 1 l 1 j
l D ,

j 5 0, 1 ,..., l 5 1, 2 ,..., (20)

and v, p, q are as in Eq. (15). In the particular case in
which f 5 0, we have that only the term with l 5 1 is
present on the right-hand side of Eq. (19). For l 5 1 the
series over j on the right-hand side of Eq. (19) reduces to
only the term with j 5 p because of the occurrence of the
binomial (p2j

l21) on the right-hand side of Eq. (20). It thus
appears that the basic integral (7) in the Nijboer–Zernike
theory occurs as a special case of Eq. (19) with f 5 0. We
may also note that the first integral on the right-hand
side of relation (18) can be dealt with by using Eq. (19)
and taking n 5 m 5 0; this is so, since R0

0 [ 1.
We thus see that these results can be considered a

completion of the Nijboer–Zernike theory in the sense
that, in principle, the diffraction integral can be computed
effectively for all aberrations of modest to relatively large
size on the basis of the formulas (11)–(16). Furthermore,
when the aberration is so small that first-order consider-
ations in Eq. (4) suffice, a considerable simplification of
the Nijboer–Zernike theory is obtained from formulas
(19) and (20). These formulas are, in addition, directly
applicable when one has developed the full aberration
A exp(iF), rather than F, in a Zernike series.

We finally note that in the results just presented it is in
no way required that f be real. Hence these results ex-
tend to the case in which we have Gaussian beam profiles
as well as defocusing in the exit pupil.
3. EXPRESSING THE DIFFRACTION
INTEGRAL IN TERMS OF Tnm

In this section we show how the kth-order term (11) in the
expansion (4), when multiplied by r exp(ifr2) and inte-
grated over r P @0,1# as in Eq. (3), can be expressed in
terms of the Tnm in Eq. (13).

We write the following for F as in Eq. (2):

E
0

2p

Fk~r, u 1 f !exp~2pirr cos u!du

5 (
n1 ,m1 ,..., nk ,mk

an1m1
¯ankmk

Rn1

m1~r!¯Rnk

mk~r!

3 E
0

2p

@cos m1~u 1 f !#¯@cos mk~u 1 f !#

3 exp~2pirr cos u!du. (21)

To deal with the integral on the right-hand side of Eq.
(21), we repeatedly apply the formula

cos x cos y 5
1
2 cos~x 1 y ! 1

1
2 cos~x 2 y !

5
1
4 cos~x 1 y ! 1

1
4 cos~x 2 y !

1
1
4 cos~2x 1 y ! 1

1
4 cos~2x 2 y !,

(22)

so that

cos m1x¯cos mkx 5
1

2k (
«1 , . . . ,«k561

cosS U(
l51

k

« lmlUx D .

(23)
The right-hand series in Eq. (23) has terms cos nx, where
n is a nonnegative integer < m1 1 ¯ 1 mk with the
same parity as that of m1 1 ¯ 1 mk . Furthermore,
there holds (see Ref. 9, Eqs. 9.1.44 and 9.1.45 on p. 361)
the relationship

E
0

2p

@cos n~u 1 f !#exp~2pirr cos u!du

5 2pin cos nf Jn~2prr !. (24)

Next we have from the explicit form

Rn
m~r! 5 (

s50

p
~21 !s~n 2 s !!rn22s

s!~q 2 s !!~ p 2 s !!
,

p 5
1

2
~n 2 m !, q 5

1

2
~n 1 m !, (25)

where n 2 m is even and > 0, that

Rn1

m1~r!¯Rnk

mk~r! (26)

is a polynomial in r of degree n1 1 ¯ 1 nk with nonzero
coefficients of the powers r t for only integers t satisfying

m1 1 ¯ 1 mk < t < n1 1 ¯ 1 nk (27)

and having the same parity as that of either side of rela-
tion (27).

We thus conclude that any term on the right-hand-side
series in Eq. (21) is a finite series of terms of the form
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bnmrnJm~2prr !cos mf (28)

with n, m > 0 and n 2 m even and > 0 and where the
bnm can be explicitly expressed in terms of the anm by us-
ing Eqs. (23)–(25). Hence we can express the kth-order
term in the expansions (3) and (4) of U(x, y),

E
0

1

r exp~ifr2!F E
0

2p

Fk~r, u 1 f !exp~2pirr cos u!duGdr,

(29)

explicitly in terms of the Tnm of Eq. (13), as claimed.

4. EXPLICIT RESULT FOR COMA AND
ASTIGMATISM
We shall now develop explicit representations of U(x, y)
in terms of the Tnm for the cases in which

F~r, u! 5 a r3 cos u, F~r, u! 5 gr2 cos 2u (30)

(coma and astigmatism, respectively); for these special
cases there are some shortcuts in the program outlined in
Section 3.

For the first case in Eq. (30), we have

U~x, y ! 5
1

p
E

0

1

r exp~ifr2!F E
0

2p

exp@iar3 cos~u 1 f !#

3 exp~2pirr cos u!duGdr. (31)

Using Ref. 9, Eqs. 9.1.44 and 9.1.45 on p. 361, for either
exponential in the inner integral, and carrying out the in-
tegration over u, we have

U~x, y ! 5 2E
0

1

r exp~ifr2!J0~ar3!J0~2prr !dr

1 4(
j51

`

~21 !jE
0

1

r exp~ifr2!Jj~ar3!

3 Jj~2prr !dr cos jf. (32)

Next, by using the power-series expansion of the jth
Bessel function with argument z 5 ar3 (see Ref. 9, Eqs.
9.1.10 on p. 360), we get

E
0

1

r exp~ifr2!Jj~ar3!Jj~2prr !dr

5 S 1

2
a D j

(
k50

` ~2
1
4 a2!k

k!~k 1 j !!
T3j16k, j . (33)

Then, on collecting terms in the expansion of U with
equal powers of a, we finally obtain

U~x, y ! 5 (
l50

`

Cla
l, (34)

where, for m 5 0, 1 ,...,
C2m 5 2S 2
1

4 D m

(
k50

m

«k

~21 !kT6m,2k

~m 2 k !!~m 1 k !!
cos 2kf,

(35)

C2m11 5 22S 2
1

4 D m

(
k50

m
~21 !kT6m13,2k11

~m 2 k !!~m 1 k 1 1 !!

3 cos~2k 1 1 !f. (36)

In Eq. (35) we have used Neumann’s symbol «, so that
«0 5 1, «n 5 2, n Þ 0.

We next consider the second choice for F in Eqs. (30).
Then we have

U~x, y ! 5
1

p
E

0

1

r exp~ifr2!

3 H E
0

2p

exp@igr2 cos 2~u

1 f !#exp~2pirr cos u!duJ dr. (37)

Then, as above, we have

E
0

2p

exp@igr2 cos 2~u 1 f !#exp~2pirr cos u!du

5 2pJ0~gr2!J0~2prr !

1 4p(
j51

`

~2i !jJj~gr2!J2j~2prr !cos 2jf. (38)

The result is

U~x, y ! 5 (
l50

`

Dlg
l,

Fig. 2. Contour plot of the modulus of the point-spread function
U(x, y) with aberration F(r, u) 5 ar3 cos u (coma), where a
5 1 and f 5 0, p/4, p, 2p.
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where, for m 5 0, 1 ,...,

D2m 5 2S 2
1

4 D m

(
k50

m

«k

T4m,4k

~m 2 k !!~m 1 k !!
cos 4kf,

(39)

D2m11 5 22iS 2
1

4 D m

(
k50

m T4m12,4k12

~m 2 k !!~m 1 k 1 1 !!

3 cos 2~2k 1 1 !f, (40)

where we have again used Neumann’s symbol in Eq. (39).
In Fig. 2 uU(x, y)u is shown for the case of coma [see

Eqs. (30)] with a 5 1 and f 5 0, p/4, p, 2p, calculated ac-
cording to Eqs. (34)–(36) including the terms with
l 5 0, 1, 2, 3.

5. CONCLUSION
An extension has been given of the Nijboer–Zernike
theory of the diffraction integral over the exit pupil, pro-
ducing the point-spread function in the image plane.
The new approach is valid for large aberration and defo-
cus values and also permits a nonuniform amplitude dis-
tribution over the wavefront in the exit pupil. As such,
the new approach provides an interesting tool for the
analysis of image plane intensity distributions encoun-
tered in fields such as microscopy, lithography, or astro-
nomical observation. In a companion paper1 physical in-
terpretations and applications in a lithographic context of
this approach are presented, a convergence analysis is
given, and a comparison is made with results obtained by
using a numerical package.

APPENDIX A: DERIVATION OF FORMULAS
(14) AND (19)
1. Derivation of Formula (14)
It will now be shown that, for integers n, m > 0 with n
2 m even and > 0,

Tnm 5 exp~if !(
l51

`

~22if !l21(
j50

p

tlj

Jm1l12j~v !

vl ,

(A1)

where v 5 2pr, p 5
1
2 (n 2 m), and q 5

1
2 (n 1 m), as

in Section 2, and

tlj 5 ~21 ! j
m 1 l 1 2j

q 1 1
S p

j D
3 S m 1 j 1 l 2 1

l 2 1 D Y S q 1 l 1 j
q 1 1 D ,

j 5 0, 1 ,..., l 5 1, 2 ,... . (A2)

We start by noting that

Tnm 5 S 1

2pr D
n12E

0

v

tn11 exp~ibt2!Jm~t !dt

5: S 1

2pr D
n12

Hnm~v !, (A3)

where v 5 2pr and b 5 f/(2pr)2.
We consider, more generally, real values of n and m
such that n 1 m 1 1 . 0, and we define a sequence of
functions Fnm

(l) (v) by

Fnm
~0 ! ~v ! 5 vnJm~v !, (A4)

Fnm
~l ! ~v ! 5 E

0

v

tFnm
~l21 !~t !dt, l 5 1, 2 ,.... (A5)

Then, with Hnm given as in Eq. (A3), it follows by partial
integrations that

Hnm~v ! 5 exp~ibv2!(
l51

`

~22ib!l21Fnm
~l ! ~v !, (A6)

where b 5 f/(2pr)2 as above.
It is claimed that, for l 5 1, 2 ,...,

Fnm
~l ! ~v ! 5 vn1l(

j50

` m 1 2j 1 l

q 1 1

3 ~21 !j
S p

j D S m 1 j 1 l 2 1
l 2 1 D

S q 1 j 1 l
q 1 1 D Jm12j1l~v !.

(A7)

Here we have set p 5
1
2 (n 2 m), q 5

1
2 (n 1 m) as

usual, and the binomials that occur on the right-hand side
of Eq. (A7) are given as

S a
k D 5

a~a 2 1 !¯~a 2 k 1 1 !

k!

5
G~a 1 1 !

G~a 2 k 1 1 !G~k 1 1 !
(A8)

for a P R and k 5 0, 1 ,... with the usual precautions for
the G-functions on the far right-hand side of Eq. (A8)
when a is a negative integer. From Eq. (A7) result (A1)
follows from Eqs. (A3) and (A6) by using that v 5 2pr
and b 5 f/(2pr)2.

To show Eq. (A7), we start from Ref. 9, Eq. 11.1.1 on p.
480, with m 5 n 1 1, n 5 m, which takes the form @ p
5

1
2 (n 2 m), q 5

1
2 (n 1 m)#

E
0

v

tn11Jm~t !dt

5 vn11(
k50

`
~m 1 2k 1 1 !G~2p 1 k !G~q 1 1 !

G~2p !G~q 1 k 1 2 !

3 Jm12k11~v !. (A9)

We can see that the right-hand side of Eq. (A9) agrees
with the right-hand side of Eq. (A7) for the case l 5 1 by
observing that

~21 !jS p
j D 5

2p~2p 1 1 !¯~2p 1 j 2 1 !

j!
5

G~2p 1 j !

G~2p !j!
.

(A10)
We furthermore note that, for arbitrary l 5 1, 2 ,...,



Augustus J. E. M. Janssen Vol. 19, No. 5 /May 2002/J. Opt. Soc. Am. A 855
m 1 2j 1 l

q 1 1
~21 ! j

S p
j D S m 1 j 1 l 2 1

l 2 1 D
S q 1 j 1 l

q 1 1 D
5

G~2p 1 j !

G~2p !

G~ j 1 l !

G~ j 1 1 !

G~q 1 1 !

G~q 1 j 1 l 1 1 !

3 S m 1 j 1 l 2 1
l 2 1 D ~m 1 2j 1 l !. (A11)

Now assume that Eq. (A7) holds for a certain l
5 1, 2 ,... . Then

Fnm
~l11 !~v ! 5 E

0

v

tFnm
~l ! ~t !dt

5 (
j50

`
G~2p 1 j !

G~2p !

G~ j 1 l !

G~ j 1 1 !

G~q 1 1 !

G~q 1 j 1 l 1 1 !

3 S m 1 j 1 l 2 1
l 2 1 D ~m 1 2j 1 l !

3 E
0

v

tm1l11Jm12j1l~t !dt. (A12)

Next, Eq. (A9) (with n8 5 n 1 l, m8 5 m 1 2j 1 l in-
stead of n, m, so that we have p8 5 p 2 j, q8 5 q 1 j
1 l instead of p, q) yields
E
0

v

tn1l11Jm12j1l~t !dt 5 vn1l11(
k50

`
@m 1 2~ j 1 k ! 1 l 1 1#G~2p 1 j 1 k !G~q 1 j 1 l 1 1 !

G~2p 1 j !G~q 1 l 1 j 1 k 1 2 !
Jm12~ j1k !1l11~v !. (A13)
Inserting Eq. (A13) into Eq. (A12) and simplifying, we ob-
tain

Fnm
~l11 !~v ! 5 vn1l11 (

j,k50

`
G~2p 1 j 1 k !

G~2p !

G~ j 1 l !

G~ j 1 1 !

3
G~q 1 1 !

G~q 1 j 1 k 1 l 1 2 !
S m 1 j 1 l 2 1

l 2 1 D
3 ~m 1 2j 1 l !

3 @m 1 2~ j 1 k! 1 l 1 1#Jm12~ j1k!1l11~v!.

(A14)

Collecting terms in the double series on the right-hand
side of Eq. (A14) with the same value of j 1 k, we arrive
at

Fnm
~l11 !~v ! 5 vn1l11(

s50

`
G~2p 1 s !

G~2p !

G~q 1 1 !

G~q 1 s 1 l 1 2 !

3 ~m 1 2s 1 l 1 1 !

3 Jm12s1l11~v !(
j50

s
G~ j 1 l !

G~ j 1 1 !

3 S m 1 j 1 l 2 1
l 2 1 D ~m 1 2j 1 l !. (A15)
Next, we consider the series on the last two lines of Eq.
(A15). It holds that

(
j50

s
G~ j 1 l !

G~ j 1 1 !
S m 1 j 1 l 2 1

l 2 1 D ~m 1 2 j 1 l !

5
G~s 1 l 1 1 !

G~s 1 1 !
S m 1 s 1 l

l D . (A16)

This identity is easily established by induction on s
5 0, 1 ,..., where we also note that Eq. (A16) is equiva-
lent to

(
j50

s

~ j 1 l 2 1 !¯~ j 1 1 !~m 1 j 1 l 2 1 !

¯~m 1 j 1 1 !~m 1 2j 1 l !

5
1

l
~s 1 l !¯~s 1 1 !~m 1 s 1 l !¯~m 1 s 1 1 !,

(A17)

which is conveniently used in the induction step.
Going back to Eq. (A15), we then see that we have

shown that

Fnm
~l11 !~v ! 5 vn1l11(

s50

`
G~2p 1 s !

G~2p !

G~q 1 1 !

G~q 1 s 1 l 1 2 !
3
G~s 1 l 1 1 !

G~s 1 1 !
S m 1 s 1 l

l D
3 ~m 1 2s 1 l 1 1 !Jm12s1l11~v !, (A18)

and then comparing Eq. (A18) with Eq. (A11), we see that
it is the desired formula (A7) for Fnm

(l11)(v).

2. Derivation of Formula (19)
It will now be shown that, for integers n, m > 0 with n
2 m even and > 0,

E
0

1

rRn
m~r!exp~ifr2!Jm~2prr !dr

5 exp~if !(
l51

`

~22if !l21(
j50

p

vlj

Jm1l12j~v !

lvl , (A19)

where v 5 2pr, p 5
1
2 (n 2 m), and q 5

1
2 (n 1 m) as

above, and

vlj 5 ~21 !p~m 1 l 1 2j !S m 1 j 1 l 2 1
l 2 1 D

3 S j 1 l 2 1
l 2 1 D S l 2 1

p 2 j D Y S q 1 l 1 j
l D ,

j 5 0, 1 ,..., l 5 1, 2 ,... . (A20)
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To arrive at Eqs. (A19) and (A20), we have from Eq.
(25) that

E
0

1

rRn
m~r!exp~ifr2!Jm~2prr !dr

5 (
s50

p
~21 !s~n 2 s !!

s!~q 2 s !!~ p 2 s !!
Tn22s,m , (A21)

with the Tn22s,m as in Eq. (13). We next insert formula
(14) into the right-hand side of Eq. (A21) (with n8 5 n
2 2s instead of n, so that we have p8 5 p 2 s, q8 5 q
2 s instead of p, q), and we get

E
0

1

rRn
m~r!exp~ifr2!Jm~2prr !dr

5 exp~if !(
l51

`

~22if !l21

3 F(
s50

p

(
j50

p2s
~21 !s~n 2 s !!tlj~n 2 2s, m !

s!~q 2 s !!~ p 2 s !!

Jm1l12j~v !

vl G ,

(A22)
where
tlj~n 2 2s, m !

5 ~21 ! j
m 1 l 1 2 j

q 2 s 1 1
S p 2 s

j D
3 S m 1 j 1 l 2 1

l 2 1 DYS j 1 q 2 s 1 l
q 2 s 1 1 D

5 ~21 ! j~m 1 l 1 2 j !S m 1 j 1 l 2 1
l 2 1 D

3
~ p 2 s !!~q 2 s !!

~ p 2 j 2 s !!~ j 1 q 2 s 1 l !!

3
~ j 1 l 2 1 !!

j!
. (A23)

On simplifying, we then find that the quantity in [ ] on
the right-hand side of Eq. (A22) is given by

@ # 5 (
s50

p

(
j50

p2s

~21 !j~m 1 l 1 2j !

3 S m 1 j 1 l 2 1
l 2 1 D ~ j 1 l 2 1 !!

j!

3
Jm1l12j~v !

vl

~21 !s~n 2 s !!

s!~ p 2 j 2 s !!~ j 1 q 2 s 1 l !
.

(A24)
We next write the double series over s and j on the right-
hand side of Eq. (A24) as ( j50

p (s50
p2j , and we obtain

@ # 5 (
j50

p

~21 !j~m 1 l 1 2j !S m 1 j 1 l 2 1
l 2 1 D

3
~ j 1 l 2 1 !!

j!

Jm1l12j~v !

vl

3 (
s50

p2j
~21 !s~n 2 s !!

s!~ p 2 j 2 s !!~ j 1 q 2 s 1 l !!
. (A25)
Now noting that n 5 p 1 q, we can write the series over
s on the last line of Eq. (A25) as S( p 2 j, n, p 2 j
2 l), where, for k 5 0, 1 ,..., p and integer i , k, we
have written

S~k, n, i ! 5 (
s50

k
~21 !s~n 2 s !!

s!~k 2 s !!~n 2 s 2 i !!

5
1

k! (s50

k

~21 !sS k
s D ~n 2 s !!

~n 2 s 2 i !!
. (A26)

The last equality in Eq. (A26) follows immediately from
the definition of the binomials.

We shall see now that, for k 5 0, 1 ,..., p and integer
i , k, we have

S~k, n, i !

5 H 0, 0 < i , k

~21 !kS k 2 i 2 1
k D ~n 2 k !!

~n 2 i !!
, i , 0

.

(A27)

To that end, we observe that from the second form of
S(k, n, i) on the right-hand side of Eq. (A26), we have

S~k, n, i ! 5
1

k!
~Dkf !~n !, (A28)

where

f~x ! 5
G~x 1 1 !

G~x 2 i 1 1 !
, x . min~21, i 2 1 !,

(A29)

and where Dk denotes the kth power of the backward-
difference operator D, defined as

~Dg !~x ! 5 g~x ! 2 g~x 2 1 ! (A30)

for functions g with x, x 2 1 in the domain of g.
In the case in which i is an integer with 0 < i , k, we

have that f in Eq. (A29) is a polynomial in x of degree
i , k, whence Eq. (A28) vanishes. In the case in which
t ª 2i is a positive integer, we have

f~x ! 5
1

~x 1 1 !¯~x 1 t !
5

~21 !t21

~t 2 1 !!
~D t21g !~x !,

(A31)

where

g~x ! 5
1

x 1 t
. (A32)

In Eq. (A31) the first identity follows at once from Eq.
(A29), while the second identity follows easily by induc-
tion with respect to t 5 1, 2 ,... . It thus follows that
when i 5 2t is a negative integer,

S~k, n, i ! 5
1

k! XDkF ~21 !t21

~t 2 1 !!
D t21gG C~n !

5
~21 !t21

k!~t 2 1 !!
~Dk1t21g !~n !. (A33)

Next, we use the fact that D commutes with the shift op-
erator f(x) → f(x 2 k), together with Eq. (A31), which
holds for arbitrary positive integers t, and we get
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S~k, n, i ! 5
~k 1 t 2 1 !!

k!~t 2 1 !!

~21 !k

~n 2 k 1 1 !¯~n 1 t !

5 ~21 !kS k 1 t 2 1
k D ~n 2 k !!

~n 1 t !!
, (A34)

and this is the second case, i 5 2t , 0, in Eq. (A27).
In Eq. (A25) we need S(k, n, i) with k 5 p 2 j, i

5 p 2 j 2 l. Thus Eq. (A27) yields

S~ p 2 j, n, p 2 j 2 l !

5 H 0, p 2 j > l

~21 !p2jS l 2 1
p 2 j D ~q 1 j !!

~q 1 l 1 j !!
, p 2 j , l

.

(A35)

Therefore the quantity in Eq. (A22) between [ ] equals

@ # 5 (
j50

p

vlj

Jm1l12j~v !

lvl , (A36)

where

vlj 5 ~21 !p~m 1 l 1 2j !S m 1 j 1 l 2 1
l 2 1 D ~ j 1 l 2 1 !!

j!

3 S l 2 1
p 2 j D ~q 1 j !!

~q 1 l 1 j !!
l

5 ~21 !p~m 1 l 1 2j !S m 1 j 1 l 2 1
l 2 1 D S j 1 l 2 1

l 2 1 D
3 S l 2 1

p 2 j D Y S q 1 l 1 j
l D , (A37)
and this is what we wanted to prove.
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