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The judgment of the imaging quality of an optical system can be carried out by examining its through-focus
intensity distribution. It has been shown in a previous paper that a scalar-wave analysis of the imaging pro-
cess according to the extended Nijboer—Zernike theory allows the retrieval of the complex pupil function of the
imaging system, including aberrations as well as transmission variations. However, the applicability of the
scalar analysis is limited to systems with a numerical aperture (NA) value of the order of 0.60 or less; beyond
these values polarization effects become significant. In this scalar retrieval method, the complex pupil function
is represented by means of the coefficients of its expansion in a series involving the Zernike polynomials. This
representation is highly efficient, in terms of number and magnitude of the required coefficients, and lends
itself quite well to matching procedures in the focal region. This distinguishes the method from the retrieval
schemes in the literature, which are normally not based on Zernike-type expansions, and rather rely on point-
by-point matching procedures. In a previous paper [J. Opt. Soc. Am. A 20, 2281 (2003)] we have incorporated
the extended Nijboer—Zernike approach into the Ignatowsky—Richards/Wolf formalism for the vectorial treat-
ment of optical systems with high NA. In the present paper we further develop this approach by defining an
appropriate set of functions that describe the energy density distribution in the focal region. Using this more
refined analysis, we establish the set of equations that allow the retrieval of aberrations and birefringence
from the intensity point-spread function in the focal volume for high-NA systems. It is shown that one needs
four analyses of the intensity distribution in the image volume with different states of polarization in the en-
trance pupil. Only in this way will it be possible to retrieve the “vectorial” pupil function that includes the
effects of birefringence induced by the imaging system. A first numerical test example is presented that illus-
trates the importance of using the vectorial approach and the correct NA value in the aberration retrieval
scheme. © 2005 Optical Society of America
OCIS codes: 000.3860, 050.1960, 100.3190, 100.5070, 110.2990, 120.4820.
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1. INTRODUCTION

The characterization and the control of the quality of op-
tical imaging systems with high numerical aperture (NA),
such as microscope objectives and projection imaging sys-
tems, is of great practical importance. This type of high-
quality imaging system is encountered in a manufactur-
ing environment like that of the semiconductor industry
where very precise projection lenses are used to define
lines and spacings on silicon wafers well below 100 nm in
lateral size and that are crucial for the functioning of ad-
vanced computer processors and memories. Once applied
to the silicon wafer, the characterization of these very fine
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features also demands high-quality optical inspection de-
vices working well within the diffraction limit. A reliable
description of the residual aberrations of these optical in-
spection systems is needed to successfully enable the pre-
cise reconstruction of the details of the features on the
wafer. In practice, we also notice that the reliable produc-
tion of advanced integrated circuits requires a constant
quality monitoring of the optical projection lenses used in
microlithography; this applies to the manufacturing pro-
cess itself but it also has to be repeated during the life-
time of the apparatus in order to prevent any drift in the
manufacturing conditions.

© 2005 Optical Society of America
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A widespread classical method for quality control of an
optical system relies on interferometry to derive the
wavefront function in the exit pupil of the optical system.1
A practical drawback of this method is the special require-
ment on the source: An at-wavelength coherent source
should be available, which is not always easily realized.
An interferometric method also demands the insertion of
special optical components to realize the wavefront or am-
plitude splitting that is needed for interferometric mea-
surements.

An alternative to interferometry is the measurement of
the intensity impulse response of the imaging system. In
the literature many papers have been published in which
the intensity distributions in the image plane are mea-
sured in the presence of a known object. In some cases, a
simultaneous measurement of the intensity in the exit
pupil is included. Using the a priori object information in
analyzing the image, algorithms enable the reconstruc-
tion of the complex lens function, including the aberration
phasez_12 of the imaging system (inversion). The stability
of these algorithms is not always guaranteed because of
inherent nonuniqueness problems. Information obtained
from a focal plane intensity pattern has to be transformed
into a complex lens pupil function. Noise in the image
capturing process tends to make the inversion process un-
reliable and certain frequency bands can be irrevocably
lost. Wiener filtering is often used to stabilize the inver-
sion process but this method introduces an arbitrary pa-
rameter to the inversion process. Other approaches to re-
trieve the phase of the complex lens function use least-
squares method or other optimization methods™®™" to
compute the complex lens function that best fits the prob-
lem.

We propose an alternative method that is more practi-
cal and easily adapted to, for example, the on-line quality
measurement of projection lenses: Starting from a quasi-
point source, we directly analyze the spatial intensity in
the image volume of the imaging system. In some previ-
ous papers, some of the present authors have described
this method, which enables the retrieval of the complex
lens function from intensity data collected through the fo-
cal volume of the imaging system.18 To this end they de-
veloped and used a parametric semianalytic description of
the intensity in the focal region, the so-called extended
Nijboer—Zernike ‘cheoryw’20 of diffraction. While the ana-
lytic results from the classical Nijboer—Zernike theory
were limited in practice to near-best-focus image planes,
the extended analysis yields analytic results that are
valid and computationally reliable in an extended focal
volume. By using this extended theory and the immediate
relationship that is established in this theory between the
complex field in the exit pupil and the intensity distribu-
tion in the focal volume, we can establish a relatively
simple set of equations for the Zernike coefficients. These
equations use the measured intensity distribution in the
image volume as an input for a “matching” operation with
respect to the analytically calculated intensity distribu-
tion determined by the still-unknown complex Zernike co-
efficients. The solution of this system of equations yields
an effective representation of the complex pupil function
of the imaging system even when a relatively small set of
Zernike coefficients is used in the matching process.
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A. From Scalar-Wave to Vectorial-Wave Imaging in the
Presence of an Aberrated Optical System

In the case of low-NA scalar imaging the retrieval of the
complex Zernike coefficients enables a full description of
the wavefront aberration of the optical system as well as
of the possibly spatially varying transmission function of
the lens system. The treatment of the imaging by
high—NA optical systems first requires the extension of
the forward calculated intensity pattern in the focal vol-
ume from the scalar case to the high-NA vectorial case.
With respect to the scalar imaging theory, several refine-
ments are needed:

e The vectorial nature of the problem requires the calcu-
lation of the electromagnetic field vectors in the focal vol-
ume. The aberration-free case has been thoroughly exam-
ined in two well-known publications.>"?> The case of
aberrated imaging systems? 2" has been analytically ex-
tended to the Zernike formalism in a recent paper by the
present authors.”®

e Apart from the vectorial nature, the high-NA case also
requires a more careful treatment of the effect of defocus-
ing where the originally chosen quadratic phase factor??
has to be refined.

e The so-called radiometric effect? has to be included.
This can be done either in the diffraction integrals them-
selves or it can be included through a nonuniform trans-
mission function of the imaging system.

e For a full description in the vectorial case of the optical
wave exiting the imaging system, we have to specify the
complex exit pupil function for two orthogonal polariza-
tion states. In practice, one will often use two orthogonal
linear states of polarization, e.g., along the x and y direc-
tions.

To carry out our forward calculations, we now define
the complex pupil function, using polar coordinates (p, 6)
on the exit pupil sphere, according to

B*(p, 6) =A%(p, O)expli27W*(p,0)],

B(p,6) =A’(p, O)exp[i27W (p, 0)]. 1)

The A* and AY in this expression are real-valued functions
and describe the field strengths in the x and y directions.
W* and WY are also real-valued functions and they de-
scribe the wavefront aberration in units of \, the wave-
length of the polarized light. The wavefront aberration
has been caused by geometrical and polarization-
dependent optical path length variation and birefringence
and the aberration applies to linear polarization states
along the x and y directions in the exit pupil of the imag-
ing system. Different values of W* and W” are caused not
only by material or stress birefringence but they can also
be originated by polarization-dependent phase jumps at
discontinuities (e.g., air—glass transitions, optical surface
coatings) or by diffraction at structures with dimensions
of the order of the wavelength. Further on in this paper,
we will treat the more general case of elliptically polar-
ized light that is incident at the entrance pupil. Note that
in Ref. 28 we included the radiometric effect for a large-
field imaging system [equal to (1-s2p?) " with sy=sin a
equal to the value of the geometrical NA] directly in the
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functions A* and A?; this is because this radiometric effect
can be considered as an intrinsic property of the large-
field imaging system, as it has to obey the Abbe sine
condition.?> However, in this paper we will not follow this
convention because it leads to nonzero aberration coeffi-
cients B in the perfect imaging case, and this is consid-
ered a counterintuitive result.

Using the complex amplitude functions B* and B’
above, we can evaluate the complex field in the exit pupil
in the presence of a general superposition of two linear
polarization states in the entrance pupil (using complex
numbers a and b with |a|?+|b[?=1 for normalization
puposes). This will lead to a distribution of, in general, el-
liptically polarized light in the exit pupil of the imaging
system.

For the vectorial treatment of the imaging by an aber-
rated imaging system we have expanded the complex exit
pupil functions from Eq. (1) with the aid of a set of com-
plex Zernike coefficients ,B;fx or ,BZ,y for the Zernike terms
explim H]Rl,;n‘(p). It was shown?® that the three Cartesian
electric field components in the focal region corresponding

to an initially linearly x-polarized incident wave are given
by

E*(r, /) =—iysg eXp{ - } > "By explim @]

Uo fnm
( 2 ;2 3\
lV;zn,o + sz exp(2i¢) + —V7'_, exp(- 2i¢)
< lsg Lsg >
N - ?V:znz exp(2i¢) + ?V;'f_z exp(- 2i¢)
=50V}, exp(ip) +isoV,' 1 exp(-i¢h)
\ J
(2)

For a y-polarized incident field a similar expression is
found as

—if
B, 6,0 = - i75) exp{ u—} S, imgr, explimg]
0 lnm
( 2 2 3
|: Vm2 exp(2i¢) + L_ _oexp(—2ip)V7!
52 2
X\ - Vi exp(2id) - SV expl- 2ig) >
- SOVZLJ exp(i¢) - SOVZL,-1 exp(- i¢)} .
\ J
3

The functions V) (r,f) have been given in Ref. 28. A minor
modification is introduced here concerning the radiomet-
ric effect [equivalent to a factor of (1-s3p?)~"4 in the in-
tegrand]. The functions are now given by

1 m(1+ V1 - s2p?)li+t if
f 1-s2pia P —(1-\1-530?)
0

Uo

X R‘,z"‘<p)Jm+j<2wrp>pdp. (@)
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In the formulas above (r, ¢,f) are normalized cylindri-
cal coordinates in the image space with the origin located
at the geometrical focus, see Fig. 1, with f being the nor-
malized axial coordinate and (r, ¢) the lateral polar coor-
dinates. The normalization has been carried out with re-
spect to the diffraction unit A\/NA in the radial r direction
and f=-27upz/N in the axial direction with u=1
- v"l—s(z). As mentioned before, the quantity sg=sin «
equals the (geometrical) NA of the imaging system (u,
=1-cos @). The coefficients g;', pertain to the Zernike
circle polynomials le (p) and are sufficient to describe
the complex pupil functlon (both amplitude and phase) of
the lens system under study in the case of incident light
linearly polarized in the x direction. The integers n, m
satisfy n—|m|=0 and even. An analytical approach to
evaluate the V' integral has been developed® in the
framework of the extended Nijboer—Zernike theory and
the evaluation with the radiometric effect included is car-
ried out along the same lines.

B. Procedure for the Retrieval of the Complex Pupil
Function of a High-NA Imaging System

In the present paper, we use the results of the forward
calculation according to Eqs.(2)—(4) to obtain semianalytic
expressions for the intensity distribution through the fo-
cal volume as a function of the cylindrical coordinates
(r,¢,f). Although the squaring operation of the complex
amplitudes of the electric field components leads to rather
complicated expressions, a systematic notation has
turned out to be possible. From this notation it becomes
clear that each separate aberration term with an azi-
muthal dependence of order m gives rise to azimuthal
components in the resulting intensity distribution of or-
ders m—-2, m, and m+2. If more than one aberration type

Fig. 1. Propagation of light in a high-NA optical system. The in-
cident field is specified in the entrance pupil S of the system [po-
lar coordinates (p, )] with the aid of the amplitude and phase of,
e.g., the tangential and radial field vectors (g, and ¢;) and the
unit propagation vector s,. After traversal of the optical system,
the field vectors and the propagation direction on the exit pupil
sphere S; [cylindrical co-ordinates (r, ¢,z)] are specified by, re-
spectively, the vectors g1, €1, s;. The NA of the imaging system is
given by NA=n sin «, with n equal to the refractive index of the
image space. The nominal image plane position is given by P;.
The description of the field vectors according to the scheme in the
paper requires a distance R that is rather large so that the aber-
rations of the system do not significantly influence the directions
of the electric field vectors g; and ¢; in image space.
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is present in the pupil function, cross terms are present
with sum and difference orders m;+mq+0, 2, 4 of the azi-
muthal dependence. The complete path to the reconstruc-
tion of the complex pupil function uses the basic ideas de-
veloped in a former publication18 on scalar retrieval, but
now extended to the high-NA case. First, in Section 2, we
derive the expression for the electric energy density in the
focal region in the presence of aberrations and nonuni-
form pupil transmission, using the Zernike coefficients
that correspond to the specific exit pupil function. The ex-
pression for the Poynting vector can be obtained also but
will not be used here. This paper focuses on the aberra-
tion retrieval process. In Section 3 we introduce the en-
ergy density formulas that arise when the lens defects are
relatively small and not too far beyond the so-called dif-
fraction limit, both regarding the lens aberration and lens
transmission defects. These formulas are derived in the
presence of an arbitrary state of polarization of the inci-
dent light and we present some special cases and combi-
nations of intensity patterns that enable a stable retrieval
scheme for the complex lens pupil function. In Section 4
we extend our analysis to the practical case where the op-
tical system under study exhibits residual (linear) bire-
fringence. The explicit dependence of the detected inten-
sity patterns is derived in the presence of geometrical
aberrations, transmission defects, and polarization-
sensitive “aberrations” due to linear birefringence that is
spatially varying over the exit pupil. In Section 5 we
present the basic steps that have to be taken to retrieve
the complex lens function from a three-dimensional ag-
gregate of intensity data in the focal volume. In Section 6
we present a detailed analysis of the functions that are
used to describe the complex amplitude and intensity dis-
tribution in the focal region. Apart from the aberration-
free case we also present graphs of the focal intensity dis-
tribution in the presence of typical aberrations that
illustrate the interaction between vectorial image forma-
tion effects and aberrational image degradation. Finally,
we present a numerical retrieval example that is relevant
in practice, viz., the high-NA retrieval of the lens function
in the presence of illumination with natural (unpolarized)
light. This case is frequently encountered in projection
systems for lithography and it leads to a simplified ver-
sion of our analysis, closely resembling the one we get in
the scalar case. Finally, Section 7 is devoted to some con-
clusions on this theoretical and numerical study about
the retrieval of lens data in high-NA imaging systems.

2. EXPLICIT EXPRESSION FOR THE
ELECTRIC ENERGY DENSITY

For the retrieval of lens data we need the expression for
the light intensity in the focal volume of the imaging sys-
tem. To this end we consider the time-averaged value of
the electric field energy density (w,) and, for a harmonic
field in a homogeneous medium with a dielectric constant
e=n?, we obtain [see Eq. (2) above]

€
(w,) = Zn?lElz. (5)

The electric field components in the presence of aberra-
tions in a high-NA system are used to compute the scalar
product E*-E.
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To examine the energy flow through the focal region, we
should evaluate the time-averaged values of the Carte-
sian components of the Poynting vector S. This leads to
the expression

6002 .
(S)= ?Re[E X B, (6)

with B the magnetic induction for which a similar expres-
sion holds as for the electric field s‘crength.28 Although the
divergence of the Poynting vector would also allow us to
solve the retrieval problem, we prefer to use the expres-
sion for the electric energy density because (w,) is the
electromagnetic quantity directly relevant for the calcula-
tion of the locally absorbed electromagnetic energy
(exposure).29

A straightforward notation of (w,) leads to a rather
lengthy expression involving a quadruple sum over the
indices m, n, m’ and n’ that occur in the expressions for
the products of electric field components as derived from
Eq. (2). In general, we encounter expressions that can be
written as

Gula,B) = 2, i explim ¢laf Vi, (r,explik ¢]

n,m

x X i expl-im' ¢1BL Vi, (r,Hexp[- il 4]

>

n,m,n’,m’

~ Dl B VI AV (), (7

expli(m - m')w/2]expliim -m' +k

where the function G, has the sets of Zernike coefficients
o' and B as variables (in shorthand notation written as
a and B in the argument of Gy;).

For the retrieval of Zernike coefficients, it is important
to make explicit the azimuthal dependence of the inten-
sity distribution in the focal region. To this end, we write
a quadruple series X, ,,, 1 /@ m e @s in Eq. (7) accord-
ing to the following diagonal summation scheme:

ny mg Mmax
E am,m’;n,n’ = E 2 am,m;n,n+ 2 E (am,m+,u.;n,n
m,m’,n,n’ n=ny \ m=my u=l m
Vmax
+am+;¢,m;n,n) + E E E (am,m;n,n+v
v=1 n m
Mmax
+ am,m;nﬂ/,n) + E E E [am,m+,u.;n,n+v
u=l n m
+a +a

m+u,m;n,n+v m,m+u;n+v,n

+ am+#,m;n+v,n] ) (8)

where the various summation ranges determined by m1,
Mg, N1, N9, Mmax, a0Nd vy, are derived from the transfor-
mation from a rectangular summation scheme to a sum-
mation scheme along diagonals. After some rearrange-
ment, the following expression is obtained:
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Mmax
sz(a,B)=eXp[i(k—l)¢]lE > VIV 4 Y [exp< ipm/2)exp(— W)E 2 BV VI
n m pu=1 n
+exp<m/2>exp<m¢>2 E (g Ve >] + 2 (E > (B VIVl BV V)
r=1 n m

Mmax
+ 2 {exp( ipm/2)exp(- m@[EE(a Bt Vi Vit + gt B Vi wViet) | + exp(+ ip/2)exp(+ i)

u=1

[2 2 (B ViV + B, VZinsz)]})] )

where we have suppressed the (r,f)-dependence of the V functions.
With the G function notation above, the electric energy density is readily written as

4

2
<w (r d) f)) {GO O(Bxugx) + SO Re[GO 2(ﬂx7ﬁx - LIBy) + GO Z(Bx’ﬂx + lﬂy)] + [GZ 2 ilgyvﬁx - L,By) + G—Z,—Z(lgx + iIByqu
4 4
+ lﬂy)] +— Re[GQ Q(Bx LBy?ﬂx + LBy)] + GO O(By’ﬂy) SO Re[GO Z(Ey,lﬁx + ﬁy) + GO Z(Byv lﬁx + By)] + [GQ 2(lﬂx
+ By’llgx + By) +G -2, 2( lﬁx + By’ lﬁx + :By)] + Re[G2 2(lﬁx + IBya llgx + By)] + SO[GI l(lﬁx + By’llgx + By)

+ G—l,—l(_ lﬂx + :By’_ lﬁx + By)] + 233 Re[Gl,—l(i:Bx + By,_ lﬁx + By)]} ’ (10)

where the indices x, y of 8 in the arguments of the Gy, functions refer to the sets of Zernike coefficients to be used, cor-
responding to either x- or y-linearly polarized light (to be denoted by B’” and B’” , respectively).
Using the summation property

Grilag + ag, B1 + Bs) = Gr(ay, Br) + Gy, Bo) + Giyag, B1) + Gl ag, Bs) (11)

and the property
Gula,B) = G(B,a), (12)

we write for the electric energy density

2
<we(r ¢ f)> {GO O(Bxugx) + GO O(IByaBy) + SO Re[GO 2(Bx,Bx) + lGO 2(Bx’:8y) + lGO Z(By’ﬁx) GO 2(By’ﬁy)]
; 0
+ 8o Re[GO,—Z(Bx: Bx) - iGO,—Z(Bquy) - iGO,—2(By7ﬁx) - GO,—Z(IBy By)] + E[G2,2(Bx7ﬁx) + iG2,2(:8x’ By) - iG2,2(:By’ Bx)

4
S
+ G2,2(Byaﬂy)] + EO[G—Z—Z(Bx’Bx) - iG—Z,—Z(Bx’.By) + iG—2,—2(Byan) + G—2,—2(By7ﬁy):| + Sg[Gl,l(ﬁxngx) + iGl,l(ﬁx:By)

- iGl,l(By:Bx) + Gl,l(ﬁy?ﬁy)] + s%[G—l,—l(Bmﬂx) - iG—l,—l(ﬁx?By) + iG—l,—l(ﬂwa) + G—l,—l(ﬁy,ﬂy)]

+ 23(2) Re[_ Gl,—l(ﬁxugx) + iGl,—l(IBx’By) + iGl,—l(Byqu) + Gl,—l(ﬂy’ﬁy)]} . (13)
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3. APPROXIMATED G FUNCTIONS FOR
MODEST VALUES OF THE ZERNIKE
COEFFICIENTS

As in the scalar retrieval procedure, we now make the as-
sumption that the lens defects (amplitude and phase) are
sufficiently small and that the Strehl intensity Ig of the
imaging system is relatively high. With the (scalar) rela-

HMmax
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tionship Ig=|8)|2, we have found that in practice it is re-
quired that ,882 0.5. The basic functions occurring in the
energy density function (w,(r, ¢,/)) applying to the vecto-
rial case have been denoted by Gp;(«,B). In the case of a
dominating ag and ,88 term and, consequently, modest val-
ues of any of the remaining g, and S, terms, the gen-
eral expression for G;(«, 8) then reduces in good approxi-
mation to

Grila,B) = expli(k - l>¢](a8ﬂ8*V8,kV8§ + > [exp(=ium/2)exp(~ ind)(adBs VS VAT + ag"By VahViy)

=1

Vmax

+exp(+ ipm/2)exp(+ind) (aoBg" Vo, Vil + ab B0 Vi Vol + 2 | Bl VE Ve + abf Vi, Ve,

HMmax

+ > [exp(—inm/2)exp(-ipd)(adBL VS VY,

u=1

+ By Vi, Vo)) )

A more compact notation is possible according to

Vmax  *+Hmax(V)

Gula,B)=explilk -1 >, >,

)

v=1

+ "By V4V ) + exp(+ ium/2)exp(+ ind) ()8, Vo , Vi

(14)

{exp[- ium/2]exp[- iudladB V] VL, + (1 - €,,)explipm/2]explipmdla By VA,V ),

(15)
where ¢,, equals unity for v=u=0 and zero for any other combination of (v, u) values.
A special case arises when the coefficients « and B are equal and £=/. We then obtain
Vmax +“max(”)
Gl @) =|agP Ve, +22 X Refexplinm2lexplindlatal Vi VoL, (16)

v=0 p=—fiyax(V)

with the value u=0 excluded in the double summation.

Using the simplified expression for the functions Gp;(«, 8), we subsequently analyze a general state of polarization that

is incident on the optical system by setting

Brx=aBy,

B, 0B, am

with |a|?+|b|2=1 for normalization purposes. The generally complex quantities (a,b) allow us to specify the initial state of

polarization. Using the result of Eq. (13), we obtain

Eonfsg

4

<we(r7 ¢7f)>0 =

4

(Go,o(ﬁ,ﬁ) +spillal? - [b]%Re[ G o(B,8)] - 2 Re(ab ) Im[ G o(B, B)1} + sl |al® - |b|*IRe[Go _o(B, 8)]

e s ES ES
+2 Re(ad)Im[Go (B, 8)]} + 50{[1 - 2Im(ab )]Gy (B, 8) +[1+2Im(ab )]G 2(B,B)}

+50{[1-2Im(ab )]Gy 1(B,8) +[1+2 Im(ab)]G_; _1(B, B} - 2s§{[|al? - [b*IRe[G,1 _1(B,8)]

+2 Re(ab*)lm[Gu,_l(B,B)]}) .

(18)
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The index zero has been added to (w,(r, ¢,/)) to indicate
that no spatially varying birefringence is present in the
optical system.

Several special cases for the energy density function
arise when we choose special values for (a,b):

e linear polarization in the x or y direction, respectively,
(@,6)=(1,0) and (a,b)=(0,1), and 1n the diagonal dlrec-
tions, respectively, (a,b)= (1/\2 1/\2) and (a,b)= (1/\2

-1/ \2)

o left- or right-handed circular polarlzatlon respectively,
a= 1/\2 b=i/\2 and a= 1/\2 b=-i/\2,

e unpolarized or natural light, a summation in intensity
of the above mentioned orthogonal linear or circular
states,

e radial or tangential (azimuthal) states of polarization.

A. Linear Polarization in the x Direction,

(a,b)=(1,0)

Note that in the absence of birefringence the coefficients
B, equal the corresponding S, and with this assump-
tion

Wi(r, 6,0 = Goo(B,B) + sg Re[Go o(B, B) + Go (B, B)]

4

S
+ 5°[G2,2<ﬁ, B) +G_y_o(B,B)]+52G11(B, B)

+G_1_1(B,B)]-2s5 Re[G,1 1(B,)].  (19)

B. Linear Polarization in the y Direction,
((1 ) b) = (0 s 1)
For the energy, there holds

Wi(r, d,0) = Goo(B,B) - sg Re[Go o(B, B) + Go (B, B)]
4
S

+ EO[G2,2(5, B +G_g _o(B,B)]+ Sg[Gl,l(ﬁ, B)

+G_11(B,B]+2s3 Re[G,1 1(B,B]. (20)

Again assuming the absence of (linear) birefringence ef-
fects, the subtraction of the two exposure patterns in re-
lations (19) and (20) yields

Au)l,O = <w:(r7 ¢af)>0 - <w3e)(r’ ¢;f)>0
=255 Re[Go (B, B) + Go_o(B, B) = 2G1_1(B, B)].
(21)

The subtraction of two exposure patterns resulting from
orthogonal diagonal linear polarization states yields

AZ'Ul,71'/4 = <wg(r’ ¢’f)>3’n’/4 - <wg(r’ ¢yf)>77/4

=253 Im[G o(B, ) - Go_o(B, B) + 2G.1,1(B, B)].
(22)

C. Circular Polarization (LC and RC)

We follow a similar procedure to calculate the exposure
patterns in the case of circular polarization. With our con-
vention exp[i(kz-wt)] for an outgoing plane wave in the
positive z direction we find the relations b=ia for left-
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handed circular polarization (LC) and b=-ia for the
right-handed case (RC). A straightforward calculation
shows

WE(r, d,0)0 = Go.0(B, B) +55G2.5(B, ) + 253G 1 1(B,B),
(23)

and, in a corresponding way,

W, ¢,0)o = Go,o(B, B) +sG- 2,-2(B, B) +2s5G-_ 1,-1(8,B).
(24)

The difference between right- and left-handed polariza-
tion exposure distributions is thus

Awe o =85[G.9(B,8) — G_g (B, B)] + 255[G1.1(B, B)
-G_114(B,8)]. (25)

D. Natural Light

Finally, the exposure with natural light gives rise to the
summation of either both linear orthogonal or both circu-
lar orthogonal polarization states and this yields, apart
from a factor of 2 due to the normalization of the circular
eigenstates,

WY (r,¢,0)) = Go.o(B,B) + s G11(B,B) + G_1_1(B,B)]
4

S
+ f[Gz,zw,ﬂ) +G_y_5(B.B)]. (26)

Recall again that in this analysis we have excluded any
birefringence effect, which implies that ', and g are
related by a simple factor of proportionality to the coeffi-
cients 3, that are uniquely defined by the geometrical
lens properties.

The general case of partially polarized light can be ac-
counted for by defining a total exposure that is a weighted
sum of a fully polarized exposure pattern and an unpolar-
ized pattern according to the degree of partial polariza-
tion.

4. INCORPORATION OF BOTH
POLARIZATION AND BIREFRINGENCE
EFFECTS

The propagation of a polarized wave through a general
optical system leads to a perturbation of the initial state
of polarization due to the polarization-dependent ampli-
tude and phase changes on transmission through the
(coated) air—glass interfaces. On top of this, anisotropy of
the lens materials, induced by structural properties or,
e.g., by residual stresses in the lens materials, leads to a
gradual change of the state of polarization on propaga-
tion. In this section we first describe the cumulative effect
of the birefringence on the polarization state in the exit
pupil. In the next step, we incorporate the amplitude and
phase effects due to the birefringence in our description of
the complex exit pupil function for x and y polarization
using an extra set of complex Zernike coefficients and we
point out how a set of exposures with different polariza-
tion states at the entrance of the optical system yields the
unknown birefringence data in the exit pupil.
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A. Field Components E, and E,, in the Exit Pupil

We approximate the cumulative effects of birefringence in
the optical system by defining at each point in the exit pu-
pil a certain value of the retardation due to the birefrin-
gence, A, and the azimuths of the orthogonal principal
axes, e.g., by defining the angle « of the “slow” axis of the
birefringence. In practical cases, one may neglect the di-
chroism introduced by an optical system and for this rea-
son we will limit ourselves to the influence of the phase
retardation on the strength of the x and y field compo-
nents in the exit pupil of the optical system.

To analyze the state of polarization in the exit pupil in
the presence of a sequence of birefringent elements and
surfaces effects we use the Jones matrix analysis.>® The
matrix relation between the x and y components of the in-
put and output electric fields is in general given by>!

E .
( x) _ [mu m12:| (a]), @7)
Ey Mg1 Moy bj
where the complex amplitudes of the x and y components
of the incident electric field at the jth exposure have been
denoted by (a;,b;). Note that the field components (E,,E,)
are a function of the position in the pupil; the functions
describing their locally varying complex amplitude can be
expanded with the aid of Zernike polynomials. The field
components (E,,E,) affected by the birefringence of the
optical system formally replace the original components
(a;,b;) related to the entrance pupil. The Zernike expan-
sion corresponding to (E,,E,) is used to determine the
vector components of the field on the exit pupil sphere;
these are then used to evaluate the field in the focal re-
gion; see Egs. (2) and (3).

B. Procedure for Evaluation of the Birefringence of the
Optical System

Basically, we need to evaluate the four complex matrix el-
ements m,; for each sample point in the exit pupil, leading
to eight independent quantities to be determined. But
since we have excluded dichroism, the matrix above has a

special structure®?3® and can be written as
myy My
M = * ES P (28)
—Mig My

with the property |mq1|2+|mq3/?=1. The eigenstates of this
matrix are elliptical in general. Once the eigenvalues and
eigenstates have been found, the orientation « of the slow
and fast axes and the value A of the phase birefringence
are known.

Because of the special structure of the unitary matrix
M, three independent quantities need to be determined in
addition to the geometrical wavefront aberration and
transmission defects of the system. We thus need four re-
trieval operations to determine the complex quantities
m1; and mqg plus the polarization-independent geometri-
cal defects of the system. Preferred polarization states
(a;,b;) are two orthogonal linear polarization states, e.g.,
(1, 0) and (0, 1), and the circular ones, viz., (1,i)/\e““2 for
left-circularly polarized and (1,-i)/V2 for right-circularly
polarized light. The four exposures with the preferred po-
larization states lead, after retrieval, to four different sets
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of B coefficients: B 1 o), By:0.1) By and By 1 ;) Note
that the coefficients ', and B, used previously in Eqgs.
(2) and (3), correspond to the first two sets that we discuss
here in the framework of birefringence retrieval. From
the four sets of B coefficients we obtain the complex am-
plitude in a general point of the exit pupil for four differ-
ent polarization states. This is basically sufficient to
“uniquely determine” the size and the orientation of the
cumulative birefringence of the optical system in that
specific point of the exit pupil. In addition, we obtain the
geometrical defects of the system that are independent of
the state of polarization of the incident light.

5. OUTLINE OF THE BASIC RETRIEVAL
SCHEME

The various expressions that have been obtained for the
electric field density constitute the intensity pattern de-
tected by a sensor or the exposure profile in a storage
layer (e.g., a photoresist layer in lithography). These mea-
sured data, collected from a set of axially displaced (defo-
cused) planes, serve as the input for the retrieval scheme
that will yield the complex Bnm;(aj’bj) coefficients that de-
scribe the high-NA imaging system. The basic term that
appears in the expressions is the real or imaginary part of
G},1(B,B); if k=1 the function is real anyhow. We now want
to sketch the basic approach for retrieval of the complex 3
coefficients.

Following our retrieval approach for the low-NA scalar
case™® we first detect the azimuthal periodicities in the
measured intensity patterns according to

1 [+
v (r,f) = ;Tf I(r, ¢,f)exp(im ¢)d ¢, (29)

where I(r, ¢,f) is the measured intensity function in the
focal volume.

In our retrieval scheme, the measured through-focus
intensity pattern will be matched by the linearized inten-
sity distribution according to Eq. (18). In compact nota-
tion we write this approximated analytical expression as

Wan(ry ) = 2 Fri(r, o), (30)
k,l

and the various functions F},; are, apart from a constant
factor, given by

Foo=Goo(B,8),

Foz=s5{(la® - [b]*Re[Go (8, 8)]
-2 Re(ab")Im[Gy (8,81},

Fo_3=st{lal* - [b|*IRe[Gy (8, B)]
+2Re(ab")Im[G, _5(8,8)]},

F,1_1=-2s{(al® - [b|)Re[G,1 _1(B,8)]
+2Re(ab")Im[G,; (8,81},

Fiq= sgll-2 Im(ab")1G11(B,8),
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F—l,—l = 8(2)[1 +2 Im(ab*)]G—l,—l(ﬁs B)’

4
S
Fyy= 50[1 — 2 Im(ab")]Ga4(8.8),

4
S
Flpo=1+2Im@)l0o 560, (D)

The general expression for G;; (linearized approximation
for dominating ,88) reads

Gri(B,B) = Blexplilk - 1) 1>, X, [BWE, (r,exp(-iud)

®
+ (1 - Evu)ﬁl;\yg;l,k(r>f)exp(+ I’M¢)]7 (32)

where €,, has been defined in Eq. (15) and where we also
introduced the shorthand notation

Wi i) = (+ DV AV (). (33)
A harmonic decomposition applied to the general terms
Gy, of this analytic function yields the result

1 +7
ﬂf Gk,l(r? d),f)exp(zmd))dd)

_ * _ %
=ﬂ82 [ﬁg,+k l+m) \I,S:If,lhm) (I”,f)
14

+ (1= €, pur ) BRI, AT, (34)

where we have used the property that, without loss of
generality, ,88 can be taken to be real (reference phase of
the pupil function is zero). We ultimately need the har-
monic decomposition of the full analytic expression
Wyn(r,d,f); because of the rather lengthy expression in-
volved, we give the result for the various harmonic func-
tions V7 (r,f) that arise from this decomposition in Ap-
pendix A.

Having available now the harmonic azimuthal depen-
dence of order m both from the measurement data
[¥™(r,f)] and from the analytical functions [V] (r,f)]
with which the measurement data have to be matched,
the relation to be solved for each azimuthal order number
m reads

W (rf) =¥ (r,f). (35)

Here, the right-hand side function has been obtained by
measurement values in a large number of lateral and
axial positions in the focal volume. The left-hand side con-
tains the unknown B coefficients that have to be calcu-
lated and the = sign expresses that the linearized version
of the analytical intensity distribution has been used.
The approximate equality in Eq. (35) can be solved for
the unknown g coefficients in various ways. Our preferred
method uses the fact that the functions W%, ,(r,f) that im-
plicitly appear in the left-hand side of relation (35) are
close to being orthogonal. By applying inner products
with the involved W/, ; on either side of relation (35), we
obtain an approximate linear system in the B coefficients
that produces estimates of these B coefficients upon solv-
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ing it. The inner product that we choose here is defined
for functions ¥(r,f) and ®(r,f) as

R +F
(P, D) = f f Y(r,HD (r,Hrdrdf. (36)
0 -F

The integration limits R and +F formally should be infi-
nitely large, but in practice they are determined by the
lateral and axial extent of the measured data set. The in-

ner products of the form (\If'v’fk,l,\lf’ﬁ;k,’l,) are calculated
just once and their numerical values serve to fill the ma-
trix corresponding to the system of linear equations. In
general, the procedure is to first calculate the best fit 8
values without the birefringence included. Given the re-
sidual error of this solution for the various polarization
states, the full set of Bnm;(aj’bj) coefficients is then taken into
account to evaluate the birefringence effects of the optical
system.

6. GRAPHICAL ILLUSTRATION OF THE
BASIC FUNCTIONS V.(r,f), G,(,8) AND A
HIGH-NA RETRIEVAL EXAMPLE

In this section we present some typical examples of the
amplitude function V;';(r,f) that plays a basic role in the
calculation of the complex amplitude of the Cartesian
electric field components in the focal region. We also
present some examples of the analytical function G;(8, 8)
that plays an important role when evaluating the energy
density in the focal region and when the inverse problem
is solved for retrieving aberrational lens properties. Some
characteristic aberrations like coma and astigmatism will
be treated in more detail and the subtle interplay be-
tween the state of polarization in the exit pupil and the
azimuth of a noncircularly symmetrical aberration will be
discussed.

A. Aberration-Free V;l" Functions

In Fig. 2 we have plotted the functions Vg o(r,0),
V8’+1(r,0), Vg,_l(r,O), and Vg’iz(r,O) in the upper row. The
same functions have been represented in the middle row
for a value of the defocus parameter equal to 27. In both
cases, the numerical aperture of the imaging system was
0.95. These functions with n=m=0 are generally the
dominant ones that determine the complex amplitude of
the electric field components. If there are no aberrations
at all, they are the only ones needed for the calculation of
the intensity in the focal region (the coefficient ,88 equals
unity and all other g coefficients are zero). Some remarks
follow from inspection of the Vg . functions for the
aberration-free case. The amplitude at the central point of
the diffraction image (r=f=0) is given by the value of Vg 0
only. We also note that for equal values of |j| the V func-
tions change sign for odd j. In the defocused case, we see
that the on-axis amplitude does not vanish for a value of
the defocusing parameter of 277. In the scalar diffraction
case at low NA, the Vg function is zero precisely at this
defocusing value. At high NA the on-axis amplitude is
nonvanishing because of the nonquadratic defocus phase
and the nonuniform amplitude distribution over the exit
pupil (radiometric effect). In the lower row of Fig. 2 we
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j=0 j=1
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Fig. 2. Functions Vg J-(r,f) (upper row, f=0, middle row, f/=27) for the aberration-free case (NA=0.95, linear polarization along the x
direction). The horizontal coordinate r is expressed in the diffraction unit A/s, with s, the numerical aperture of the imaging system. The
solid and dotted curves in the first and second rows apply to, respectively, the real and imaginary part of the Vg ; functions. Lower row:
contour plots of the three electric field components |E,|, |E,|, |E.| and of the electric energy density X|E,[?. The contour lines for the electric
field components have been chosen at 0.5, 0.09, and 0.025; for the electric energy density the levels are 0.75, 0.50, 0.25, 0.017, and 0.005.
In the latter contour plot, the dotted circle indicates the circular 0.50 contour of the hypothetical in-focus scalar intensity distribution.

have produced contour plots of the absolute value of the
three electric field components and of the resulting total
energy density (or intensity) in optimum focus. The inci-
dent state of polarization was linear and oriented along
the x axis [see Eq. (2) for the expressions for the field com-
ponents in the focal region]. The E, field is the sum of the
dominant V(o),o function and the smaller contributions
from the V8,¢2 functions (with zero azimuth offset), which
tend to reduce the field value along the azimuths ¢=0,n
(x axis) and lead to an increase along the azimuths ¢
=m/2,37/2. The E, component consists only of a 2¢) com-
ponent with a phase shift of 7/4 and is the weakest of all
three. In the intensity plot we have also given the 50%
level of the scalar Airy distribution with the transverse
position expressed in units of N/NA. It is clearly visible
from the contour plot that the FWHM of the high-NA in-
tensity distribution is slightly smaller in the y cross sec-
tion but drastically increased along the x cross section.
From the contour plots of the three field components, it
can be seen that this effect is created by the E, field com-
ponent that constitutes the most prominent extra feature
at high-NA values with respect to the scalar case.

B. Definition of Strehl Intensity at High NA

A close inspection of the upper-left graph of Fig. 2, repre-
senting the function Vg,o(r,O) at NA=0.95, reveals that
the on-axis amplitude in the nominal focal plane is not
equal to unity but slightly larger because of the vector ad-

dition and the radiometric effect. In the absence of aber-
rations we define the Strehl intensity by

1 27 1
- f f Alp,0)pdpd o
mJo Jo

1 27 1 .
- f J |A(p, 6)|>pdpd 6
mJo Jo

With the amplitude function

1 1+ (1-s2p?)'2
(1 _ s(2)p2)1/4 2 ’ (38)

2

Ig= 37

Alp,0) =

we find the following expression for the Strehl intensity:

8 \[8-5(1-s2)¥ - 3(1 - 52542
o= (39)

75s%) 4 +3s2—(1-s3)V?{4- 52}

For the value of s9=0.95, the on-axis intensity is 1.05856
[numerator of Eq. (37)] and, after normalization to the in-
cident power (1.060075), we find a Strehl intensity
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Ig equal to 0.99857. All calculated intensity values in the
remainder of this paper have been normalized according
to this definition.

C. Field Components and Intensity Belonging to an
Aberrated System (Coma)

In Fig. 3 we have plotted the set of graphs belonging to a
wavefront in the exit pupil (linear polarization along the x
direction) that has a comatic aberration of the lowest or-
der. The wavefront aberration is given by 27W¥(p, 6)
=d(p, 0)=a§R§(p)cos 0 and the corresponding coefficients
B, have been calculated by the insertion of this expres-
sion in Eq. (1). In the upper row we have now plotted the
radial cross sections of functions V% J(r, 0); in the graphs of
the middle row, the same functions appear with a defocus
value of f=27. The functions now show a more general be-
havior and there is no identity or change of sign, respec-
tively, for indices j that are even or odd. The field compo-
nents (moduli) and the intensity pattern are given in the
lower row and they show the typical cos(¢) asymmetry.
But on top of this basic azimuthal frequency, we expect
higher-frequency components because of the presence of
azimuthal components with ranges from -3¢ to +3¢ for
the E, and E, components and from -2¢ to +2¢ for the E,
component. After the squaring operation, we thus can ex-
pect a highest azimuthal frequency of 6¢ in the intensity
pattern of the lower-right graph. In this graph, for com-
parison, we have again plotted the FWHM contour (dot-
ted) of the hypothetical scalar diffraction pattern at the
same value of the NA (aberration-free case).

j=0 j=1
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D. Construction of the Image Intensity from the G
Functions
In the retrieval procedure that was presented in Section
5, the functions G,(r,f) play a key role. The ranges of val-
ues of (k,l) are limited by the condition |%|, |/|<2 and
there are in total eight G functions that occur in the ex-
pression for the energy density in the focal region; see Eq.
(13). In Fig. 4 we have plotted these eight functions ac-
cording to their relative importance in the expression for
the energy density (weight factor containing sg); the im-
aging system is free of any aberration. The dominating G
function is Gy and this is the only one that remains in
the limiting case of very small numerical aperture (s
—0). In the nominally aberration-free focus, this function
equals |V) ,(r,/)|? and it closely resembles the basic Airy
diffraction’pattern if we neglect the influence of the radio-
metric effect and an average increase in lateral size due
to the vectorial image formation. The functions in the
lower row with equal £ and / indices have a central zero in
the nominal focal plane. They lead to a further “blurring”
of the diffraction image because of the vectorial effects.
The functions in the upper row with |k-[|=2 lead to the
absence of rotational symmetry in image formation with,
e.g., linearly polarized light. These functions are not ev-
erywhere positive as were the functions with £=1. The
contributions to the focal plane intensity of the G func-
tions with |k-[|=2 are proportional to Re[Ggq+Go s
-2G4 _1] if we have linearly polarized light along the x di-
rection in the entrance pupil [see Eq. (13) with 8,=0].
From Fig. 4 we see that the contributions from the

j=-1 j=2 j=-2
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0.5 0.5
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IE.I IE | IE.I S IER

X p4

2 2 2
Y7,
a0

0 0 S0 0
\S

2 2

2 o 2 2 o 2 2 0o 2

Fig. 3. Same as Fig. 2 but now with comatic aberration of lowest order (a3=1). The values of the relevant By, coefficients (second-order
approx1mat10n of the phase aberration function) are BOx_15/16 ,ng——l/SO B4x——1/16 ng:—9/80 ,83JC ng_1/2 ,823C ,8' =-1/20,
,86x ,Bsx——S/ 40; all g, identical zero. In the contour plot of the energy densrcy (lower row, rlght hand ﬁgure) the contour levels have
been chosen at 0 5,0.1, °0. 05, 0.01, 0.005, and 0.002. For comparison, we have also included the dotted contour plot in the center corre-
sponding to the 50% relatlve height for the hypothetical scalar diffraction image (same comatic aberration value).
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Fig. 4. Eight Gy(r,f) functions that contribute to the energy density in the focal volume and that are used in the aberration retrieval
scheme. The unit along the axes is the diffraction unit. The contour plots apply to the aberration-free case in the nominal focal plane
(f=0, NA=0.95). To visualize the features of the various functions, the contour levels have been changed from plot to plot. G, o: 0.75, 0.5,
0.25, 0.10, 0.07, 0.05, 0.02, 0.01, 0.005, and 0.001; Re[Gy 3], Re[G, ], and 2 Re[G, _4]: 0.055, 0.015, 0.005, 0.001, 0, —0.001, —0.005,
-0.015, —0.055 (contours with negative values are dotted); Gy 1, G_; _1, G99, and G_y _5: 0.12, 0.06, 0.005, 0.002, 0.001, 0.0005. Note that
the functions Gy 1, G_; _1, Go s, and G_y 5 all have a doughnut shape with a zero on axis.

Fig. 5. Gray-scale plots of the G functions for the aberration-free case in the nominal focal plane. The order of representation is the
same as in Fig. 4. The plots of the functions Re[G 5], Re[G( 5], and 2 Re[G; _1] have been coded with gray for zero level and with white
and black shades for posmve and negative values, respectively. Note the doughnut shape of the functions Gy 1, G_; _1, G2 9, and G_5 5 in
the lower row. There is no relationship between the gray levels in the various graphs; all levels are relative with respect to the local

maximum or the zero level.

three noncircularly symmetric G functions lead to a
broadening of the central lobe along the x cross section
(FWHM is 34% larger than that of the hypothetical scalar
profile). Their negative contributions along the y cross
section lead to a narrowing of the intensity profile and a
reduced FWHM value (-7% with respect to the “scalar”
profile). The asymmetry effect leads to an elliptic 50% in-
tensity contour and the ratio of the long and short axis
amounts to 1.44.

In Fig. 5 we have plotted the G functions in the same

order but now using gray-scale levels to represent the in-
tensity contributions. This is especially useful for a com-
parison of the intensity levels of the G, functions and to
make clear the doughnut shape of the G functions with
k=1#0. Note that in image formation with natural light
or circularly polarized light the expression for the energy
density contains exclusively Gy, functions. This means
that for these cases the vectorial image formation will al-
ways lead to larger FWHM values than those given by the
scalar extrapolation.
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E. Application of the G Functions to a General
Aberrated System

In this subsection we discuss the G functions for a general
aberrated case with linearly polarized illumination in the
x direction. As the aberration function we choose lowest
order astigmatism with 27W*(p, 0)=D(p, 6)
=a§R§(p)cos 2(6-6y). For the offset angle we take 6,
=7/6 and the amplitude of the phase aberration is given
by a%: 1. A first approximation of the main aberration co-
efficients is given by f3,=i(1/4-i\3/4) and By%=i(1/4
+iV3/4), and the remaining B, coefficients are found from
the Zernike expansion of the function exp{i®(p, )}, ap-
proximated up to the second order; all 8, coefficients are
identical zero.

In Fig. 6 we have plotted the corresponding Gy; func-
tions for a defocus value f=0. We see that the G, function
resembles the intensity profile we would expect in the
case of astigmatic aberration with an azimuth of 7/6. The
Gy, functions with £# 0 in the middle row also show the
astigmatic behaviour with maximum azimuthal periodici-
ties of 4¢. The functions G;; and G_;_;, as well as G
and G_y _y, show a mutual rotation of #/2. This follows
from, e.g., Eq. (16) for the astigmatic case because the in-
tensity contribution with periodicity 2¢ in these functions
changes sign when the % index of the Gy, functions
changes sign. The three G functions (Re[Gy 2], Re[Gy o],
and Re[G; _;]), which introduce by themselves an extra
periodicity of 2¢ in the intensity pattern due to the linear
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state of polarization, show the most complicated patterns
because of the summation of periodicities with an azi-
muthal offset of /6. The intensity distributions can show
periodicities up to a frequency of 8. In the retrieval ap-
proach we have chosen to select the azimuthal periodici-
ties from the through-focus intensity distribution because
these periodicities have a virtually straightforward rela-
tionship with the azimuthal periodicities we encounter in
the aberration function.

Finally, in the lower row of Fig. 6, we have plotted the
intensity distribution in three focal planes, respectively,
with f parameters of —7/3, 0, and +7/3. The axial settings
f=xm/3 correspond well with the positions of the astig-
matic focal lines according to scalar diffraction theory.
The focal lines are clearly visible as well as their distor-
tion due to the nonparallellism of the linear state of po-
larization and the astigmatic principal cross sections. The
orientation of the elliptic shape in focus due to the linear
state of polarization is preserved on both sides of focus;
the two astigmatic focal lines are perpendicular to each
other. The combined effect at an angular offset of #/6
leads to the typical pattern in the last row of the figure.

F. Retrieval at High NA with Unpolarized Light

Finally, we present in this subsection a relatively simple
numerical example that shows the importance of includ-
ing the high-NA imaging effects in the retrieval scheme.
We consider the frequently occurring situation, e.g., as in

-1.5 -1.5

-1.5

Fig. 6. Same as Fig. 4 for the upper and middle row. The graphs apply to a system with astigmatic wavefront aberration and the 8
coefficients (second-order approximation of the aberration function) are given by the following values: B).=11/12, B) .=-1/8, B},
=-1/24, ﬁ§x=1/4(\53+i), B§i=1/4(—€3+i), Bﬁx=1/16(1+i€3), BZi:l/lG(l—i\B). In the lower row, contour plots are given for the astig-
matic focal distribution with defocus values f of —7/3, 0 and +/3, respectively, where the defocus values f= + /3 approximately corre-
spond to the image positions of the two focal lines of the astigmatic pencil. The choice of the various contour levels is identical to that in

Fig. 4.
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Fig. 7. Variation in the retrieved value of optical aberration co-
efficients when an incorrect value of the numerical aperture is
used and the vectorial imaging effects are not correctly applied.
Forward calculation at an NA value of 0.95. Retrieval of the g ab-
erration coefficients (comatic wavefront aberration of 3rd, 5th,
and 7th order, respectively, with Zernike coefficients of +0.1,
-0.02, and -0.02 radis) at various values of NA. The correct ab-
erration values are retrieved only when the NA value at retrieval
is chosen identical to the value used in the forward calculation
scheme. The retrieved values for the scalar scheme, +0.088,
—-0.050, and —0.042, respectively, are found in the graph at the
abscissa value NA=0.

a lithographic projection system, that the illumination is
unpolarized (natural light). Unpolarized light is repre-
sented in our analysis by adding incoherently two or-
thogonal polarization states; for the sake of simplicity, we
select linearly polarized light along the x and y directions.
If we turn to Eq. (Al) and carry out the summation of
both orthogonally polarized contributions with, respec-
tively, (a,b)=(1,0) and (a,b)=(0,1), we find

I = B2 BT'*[‘I'%,O + sV + W )
4
So m* m* —m -m
+ E(\PV;QQ + \I,v;—2,—2) + :By (1 - Ev,m) ;0,0

4
So
+so(W + W )+ E(‘I';;rg,z + ‘I';;’fz,-z)l )
(40)

and this function is then used to construct the linear sys-
tem of equations as given by Eq. (35).

In this numerical experiment, we used an asymmetric
set of Zernike coefficients according to ,Bgl:ﬁ'gl:O.li,
Btr=B51=-0.02i, and Bi'=B;1=-0.02i. The fact that the
(small) coefficients are purely imaginary implies that the
lens defect can be attributed to wavefront aberration, of
comatic nature in this case. The through-focus intensity
distribution has been calculated using the basic result
from Eqgs. (2)—(4) with a value of the numerical aperture
equal to 0.95 (refractive index n equals unity). The
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retrieval scheme is then applied using values of the nu-
merical aperture in the range from 0.001 to 0.95. In Fig. 7
we show that the correct values are retrieved only if the
exact value of the NA is used and thus the influence of the
vectorial effects is correctly included. The scalar case
(NA—0) shows a substantial deviation from the correct
lens values of the order of 10 to even 100%, especially for
the higher order B coefficients.

Data sets taken from intensity patterns in the focal vol-
ume at different incident states of polarization could not
be studied. These data sets at high NA are not easily cre-
ated in a lithographic projection system since the stan-
dard illumination system has not been provided with spe-
cial polarization means. For this reason, a complete check
of the vectorial retrieval scheme, including the birefrin-
gence effects of the projection lens, could not be carried
out. With respect to the sensitivity of the method and the
range of aberration that can be covered, we refer to two
recent publications®”®® for the scalar case. There it is first
shown that retrieval operations remain stable down to
Strehl intensity levels as small as 0.30, or, equivalently,
rms wavefront aberration values are allowed up to twice
the diffraction limit (150 m\). The robustness of the re-
trieval method in the presence of noise and offsets has
also been studied in these references. When using a basi-
cally identical retrieval scheme as that described in Sec-
tion 5, signal-to-noise ratios in the intensity patterns as
low as 10 to 5 can be allowed without compromising the
retrieved lens data.

7. CONCLUSION AND OUTLOOK

We have presented a high-NA analysis of the intensity
distribution in the focal volume of an imaging system us-
ing the vectorial version of the extended Nijboer—Zernike
approach. The three-dimensional intensity distribution
has been obtained by means of a series expansion of basic
functions in the Nijboer—Zernike theory using generalized
aberration coefficients related to both the amplitude and
the phase of the complex pupil function. For high-NA im-
aging systems, the original scalar theory has been ex-
tended to the vectorial case and an extended set of aber-
ration coefficients has been introduced, describing the
behavior of the optical system as a function of the state of
polarization of the incident light. It has been shown that
the intensity distribution in the focal region can be con-
structed from a set of elementary functions that give rise
to the basically noncircularly symmetric intensity profile
in the focal region and to the relative increase in spot size
at high NA as compared with the scalar prediction.

Our theoretical approach has also shown that the col-
lection of focal intensity data from four exposures with
well-selected polarization states of the incident light en-
ables the retrieval of the “polarization” aberration coeffi-
cients. They represent the geometrical aberrations and
the spatial distribution of birefringence (azimuth and
size) in the exit pupil of the optical system. A first numeri-
cal exercise to illustrate our theoretical approach has
shown that, even in the case of illumination with unpolar-
ized light, the correct aberration coefficients are retrieved
only when the vectorial formulation of image formation is
correctly included. Future experimental work should con-
centrate on the collection of through-focus intensity data
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for various incident polarization states in a high-NA im-
aging system; with such experimental data, the retrieval
of polarization aberrations becomes possible along the
lines described in this paper.

APPENDIX A: EXPRESSION FOR THE
AZIMUTHAL HARMONIC COMPONENTS OF
THE ANALYTICALLY DERIVED
INTENSITY DISTRIBUTION IN THE FOCAL
VOLUME

To solve the basic “retrieval” problem as represented by
Eq. (35), we need analytic expressions for the azimuthal

0
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harmonic components that are present in the linearized
intensity distribution through the focal volume of an ab-
errated imaging system. The incident illumination is a
linear superposition of two orthogonal linear states of po-
larization (with complex amplitudes a and b, respectively,
for the x- and y-polarized states). The intensity distribu-
tion in the focal region is given by Eq. (30). In this appen-
dix we give the expression for the harmonic components
pertaining to the general functions Gy ,(8,B) that are
found in the terms F},; from Eq. (31). After some straight-
forward manipulation one obtains for the harmonic com-
ponents gx, and gf;, with upper index m of, respectively,
the functions Re[G}, (8, 8)] and Im[G}, (3, B)]

i . . .
o= 2 (Rel A= WG e Rel B WU T (1= € ) ReLB W]

+ (1 _ Ev,—k+l—m)Re[ﬁgz_k”_m)qfi?l]fgl_m)] _ Z{Im[ﬁs)k -1l-m) \I’Efkal -m) ] _ Im[B(Vk —-1l+m) q’g;}fkjll +m) ]

+ (1= € _popem) I BTG (1 €, ) ) Im[ B Gy

BO

0 7 * 7 * _ ® _ * _ _
8Im= EE (Im[ﬁ(vk e \I’(V]fk,zl ™1+ Im[ﬁ(vk bem) \I’Efk,zl (1 fv,-k+z+m)1m[ﬁ£, k”*’”)‘lfi;l’f;:“’")]

v

+ (1= €, pap)Im[ B MW 4 (Re[ g~ 1~ WS- T - Re[ g 1 Wit

+ (1= €, _psrom)Re[BSFTMWCRI™] (1€, ) Re[ I mmy, (A1)

where the function ¥ has been defined in Eq. (33).

The summation of all harmonic components with their
appropriate multiplying factors according to Eqgs. (30) and
(31) then yields the function ¥’ (r,f) that was required in
Eq. (35).
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