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The judgment of the imaging quality of an optical system can be carried out by examining its through-focus
intensity distribution. It has been shown in a previous paper that a scalar-wave analysis of the imaging pro-
cess according to the extended Nijboer–Zernike theory allows the retrieval of the complex pupil function of the
imaging system, including aberrations as well as transmission variations. However, the applicability of the
scalar analysis is limited to systems with a numerical aperture (NA) value of the order of 0.60 or less; beyond
these values polarization effects become significant. In this scalar retrieval method, the complex pupil function
is represented by means of the coefficients of its expansion in a series involving the Zernike polynomials. This
representation is highly efficient, in terms of number and magnitude of the required coefficients, and lends
itself quite well to matching procedures in the focal region. This distinguishes the method from the retrieval
schemes in the literature, which are normally not based on Zernike-type expansions, and rather rely on point-
by-point matching procedures. In a previous paper [J. Opt. Soc. Am. A 20, 2281 (2003)] we have incorporated
the extended Nijboer–Zernike approach into the Ignatowsky–Richards/Wolf formalism for the vectorial treat-
ment of optical systems with high NA. In the present paper we further develop this approach by defining an
appropriate set of functions that describe the energy density distribution in the focal region. Using this more
refined analysis, we establish the set of equations that allow the retrieval of aberrations and birefringence
from the intensity point-spread function in the focal volume for high-NA systems. It is shown that one needs
four analyses of the intensity distribution in the image volume with different states of polarization in the en-
trance pupil. Only in this way will it be possible to retrieve the “vectorial” pupil function that includes the
effects of birefringence induced by the imaging system. A first numerical test example is presented that illus-
trates the importance of using the vectorial approach and the correct NA value in the aberration retrieval
scheme. © 2005 Optical Society of America

OCIS codes: 000.3860, 050.1960, 100.3190, 100.5070, 110.2990, 120.4820.
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. INTRODUCTION
he characterization and the control of the quality of op-
ical imaging systems with high numerical aperture (NA),
uch as microscope objectives and projection imaging sys-
ems, is of great practical importance. This type of high-
uality imaging system is encountered in a manufactur-
ng environment like that of the semiconductor industry
here very precise projection lenses are used to define

ines and spacings on silicon wafers well below 100 nm in
ateral size and that are crucial for the functioning of ad-
anced computer processors and memories. Once applied
o the silicon wafer, the characterization of these very fine
1084-7529/05/122635-16/$15.00 © 2
eatures also demands high-quality optical inspection de-
ices working well within the diffraction limit. A reliable
escription of the residual aberrations of these optical in-
pection systems is needed to successfully enable the pre-
ise reconstruction of the details of the features on the
afer. In practice, we also notice that the reliable produc-

ion of advanced integrated circuits requires a constant
uality monitoring of the optical projection lenses used in
icrolithography; this applies to the manufacturing pro-

ess itself but it also has to be repeated during the life-
ime of the apparatus in order to prevent any drift in the
anufacturing conditions.
005 Optical Society of America
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A widespread classical method for quality control of an
ptical system relies on interferometry to derive the
avefront function in the exit pupil of the optical system.1

practical drawback of this method is the special require-
ent on the source: An at-wavelength coherent source

hould be available, which is not always easily realized.
n interferometric method also demands the insertion of
pecial optical components to realize the wavefront or am-
litude splitting that is needed for interferometric mea-
urements.

An alternative to interferometry is the measurement of
he intensity impulse response of the imaging system. In
he literature many papers have been published in which
he intensity distributions in the image plane are mea-
ured in the presence of a known object. In some cases, a
imultaneous measurement of the intensity in the exit
upil is included. Using the a priori object information in
nalyzing the image, algorithms enable the reconstruc-
ion of the complex lens function, including the aberration
hase2–12 of the imaging system (inversion). The stability
f these algorithms is not always guaranteed because of
nherent nonuniqueness problems. Information obtained
rom a focal plane intensity pattern has to be transformed
nto a complex lens pupil function. Noise in the image
apturing process tends to make the inversion process un-
eliable and certain frequency bands can be irrevocably
ost. Wiener filtering is often used to stabilize the inver-
ion process but this method introduces an arbitrary pa-
ameter to the inversion process. Other approaches to re-
rieve the phase of the complex lens function use least-
quares method or other optimization methods13–17 to
ompute the complex lens function that best fits the prob-
em.

We propose an alternative method that is more practi-
al and easily adapted to, for example, the on-line quality
easurement of projection lenses: Starting from a quasi-

oint source, we directly analyze the spatial intensity in
he image volume of the imaging system. In some previ-
us papers, some of the present authors have described
his method, which enables the retrieval of the complex
ens function from intensity data collected through the fo-
al volume of the imaging system.18 To this end they de-
eloped and used a parametric semianalytic description of
he intensity in the focal region, the so-called extended
ijboer–Zernike theory19,20 of diffraction. While the ana-

ytic results from the classical Nijboer–Zernike theory
ere limited in practice to near-best-focus image planes,

he extended analysis yields analytic results that are
alid and computationally reliable in an extended focal
olume. By using this extended theory and the immediate
elationship that is established in this theory between the
omplex field in the exit pupil and the intensity distribu-
ion in the focal volume, we can establish a relatively
imple set of equations for the Zernike coefficients. These
quations use the measured intensity distribution in the
mage volume as an input for a “matching” operation with
espect to the analytically calculated intensity distribu-
ion determined by the still-unknown complex Zernike co-
fficients. The solution of this system of equations yields
n effective representation of the complex pupil function
f the imaging system even when a relatively small set of
ernike coefficients is used in the matching process.
. From Scalar-Wave to Vectorial-Wave Imaging in the
resence of an Aberrated Optical System
n the case of low-NA scalar imaging the retrieval of the
omplex Zernike coefficients enables a full description of
he wavefront aberration of the optical system as well as
f the possibly spatially varying transmission function of
he lens system. The treatment of the imaging by
igh–NA optical systems first requires the extension of
he forward calculated intensity pattern in the focal vol-
me from the scalar case to the high-NA vectorial case.
ith respect to the scalar imaging theory, several refine-
ents are needed:

The vectorial nature of the problem requires the calcu-
ation of the electromagnetic field vectors in the focal vol-
me. The aberration-free case has been thoroughly exam-

ned in two well-known publications.21,22 The case of
berrated imaging systems23–27 has been analytically ex-
ended to the Zernike formalism in a recent paper by the
resent authors.28

Apart from the vectorial nature, the high-NA case also
equires a more careful treatment of the effect of defocus-
ng where the originally chosen quadratic phase factor22

as to be refined.
The so-called radiometric effect22 has to be included.

his can be done either in the diffraction integrals them-
elves or it can be included through a nonuniform trans-
ission function of the imaging system.
For a full description in the vectorial case of the optical

ave exiting the imaging system, we have to specify the
omplex exit pupil function for two orthogonal polariza-
ion states. In practice, one will often use two orthogonal
inear states of polarization, e.g., along the x and y direc-
ions.

To carry out our forward calculations, we now define
he complex pupil function, using polar coordinates �� ,��
n the exit pupil sphere, according to

Bx��,�� = Ax��,��exp�i2�Wx��,���,

By��,�� = Ay��,��exp�i2�Wy��,���. �1�

he Ax and Ay in this expression are real-valued functions
nd describe the field strengths in the x and y directions.
x and Wy are also real-valued functions and they de-

cribe the wavefront aberration in units of �, the wave-
ength of the polarized light. The wavefront aberration
as been caused by geometrical and polarization-
ependent optical path length variation and birefringence
nd the aberration applies to linear polarization states
long the x and y directions in the exit pupil of the imag-
ng system. Different values of Wx and Wy are caused not
nly by material or stress birefringence but they can also
e originated by polarization-dependent phase jumps at
iscontinuities (e.g., air–glass transitions, optical surface
oatings) or by diffraction at structures with dimensions
f the order of the wavelength. Further on in this paper,
e will treat the more general case of elliptically polar-

zed light that is incident at the entrance pupil. Note that
n Ref. 28 we included the radiometric effect for a large-
eld imaging system [equal to �1−s0

2�2�−1/4 with s0=sin �
qual to the value of the geometrical NA] directly in the
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unctions Ax and Ay; this is because this radiometric effect
an be considered as an intrinsic property of the large-
eld imaging system, as it has to obey the Abbe sine
ondition.22 However, in this paper we will not follow this
onvention because it leads to nonzero aberration coeffi-
ients � in the perfect imaging case, and this is consid-
red a counterintuitive result.

Using the complex amplitude functions Bx and By

bove, we can evaluate the complex field in the exit pupil
n the presence of a general superposition of two linear
olarization states in the entrance pupil (using complex
umbers a and b with �a�2+ �b�2=1 for normalization
uposes). This will lead to a distribution of, in general, el-
iptically polarized light in the exit pupil of the imaging
ystem.

For the vectorial treatment of the imaging by an aber-
ated imaging system we have expanded the complex exit
upil functions from Eq. (1) with the aid of a set of com-
lex Zernike coefficients �n,x

m or �n,y
m for the Zernike terms

xp�im��Rn
�m����. It was shown28 that the three Cartesian

lectric field components in the focal region corresponding
o an initially linearly x-polarized incident wave are given
y

x�r,�,f� = − i�s0
2 exp�− if

u0
��

n,m
im�n,x

m exp�im��

		�Vn,0
m +

s0
2

2
Vn,2

m exp�2i�� +
s0

2

2
Vn,−2

m exp�− 2i���
−

is0
2

2
Vn,2

m exp�2i�� +
is0

2

2
Vn,−2

m exp�− 2i��

�− is0Vn,1
m exp�i�� + is0Vn,−1

m exp�− i��� .



�2�

or a y-polarized incident field a similar expression is
ound as

y�r,�,f� = − i�s0
2 exp�− if

u0
��

n,m
im�n,y

m exp�im��

		�− i
s0

2

2
Vn,2

m exp�2i�� + i
s0

2

2
Vn,−2

m exp�− 2i��Vn,0
m �

−
s0

2

2
Vn,2

m exp�2i�� −
s0

2

2
Vn,−2

m exp�− 2i��

� − s0Vn,1
m exp�i�� − s0Vn,−1

m exp�− i��� .



�3�

he functions Vn,j
m �r , f� have been given in Ref. 28. A minor

odification is introduced here concerning the radiomet-
ic effect [equivalent to a factor of �1−s0

2�2�−1/4 in the in-
egrand]. The functions are now given by

Vn,j
m =�

0

1 ��j��1 + �1 − s0
2�2�−�j�+1

�1 − s0
2�2�1/4

exp� if

u0
�1 − �1 − s0

2�2��
	 Rn

�m����Jm+j�2�r���d�. �4�
In the formulas above �r ,� , f� are normalized cylindri-
al coordinates in the image space with the origin located
t the geometrical focus, see Fig. 1, with f being the nor-
alized axial coordinate and �r ,�� the lateral polar coor-

inates. The normalization has been carried out with re-
pect to the diffraction unit � /NA in the radial r direction
nd f=−2�u0z /� in the axial direction with u0=1
�1−s0

2. As mentioned before, the quantity s0=sin �
quals the (geometrical) NA of the imaging system �u0
1−cos ��. The coefficients �n,x

m pertain to the Zernike
ircle polynomials Rn

�m���� and are sufficient to describe
he complex pupil function (both amplitude and phase) of
he lens system under study in the case of incident light
inearly polarized in the x direction. The integers n, m
atisfy n− �m�
0 and even. An analytical approach to
valuate the Vn,j

m integral has been developed28 in the
ramework of the extended Nijboer–Zernike theory and
he evaluation with the radiometric effect included is car-
ied out along the same lines.

. Procedure for the Retrieval of the Complex Pupil
unction of a High-NA Imaging System
n the present paper, we use the results of the forward
alculation according to Eqs.(2)–(4) to obtain semianalytic
xpressions for the intensity distribution through the fo-
al volume as a function of the cylindrical coordinates
r ,� , f�. Although the squaring operation of the complex
mplitudes of the electric field components leads to rather
omplicated expressions, a systematic notation has
urned out to be possible. From this notation it becomes
lear that each separate aberration term with an azi-
uthal dependence of order m gives rise to azimuthal

omponents in the resulting intensity distribution of or-
ers m−2, m, and m+2. If more than one aberration type

ig. 1. Propagation of light in a high-NA optical system. The in-
ident field is specified in the entrance pupil S0 of the system [po-
ar coordinates �� ,��] with the aid of the amplitude and phase of,
.g., the tangential and radial field vectors (g�0 and e�0) and the
nit propagation vector s�0. After traversal of the optical system,
he field vectors and the propagation direction on the exit pupil
phere S1 [cylindrical co-ordinates �r ,� ,z�] are specified by, re-
pectively, the vectors g�1, e�1, s�1. The NA of the imaging system is
iven by NA=n sin �, with n equal to the refractive index of the
mage space. The nominal image plane position is given by PI.
he description of the field vectors according to the scheme in the
aper requires a distance R that is rather large so that the aber-
ations of the system do not significantly influence the directions
f the electric field vectors g� and e� in image space.
1 1
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s present in the pupil function, cross terms are present
ith sum and difference orders m1±m2±0, 2, 4 of the azi-
uthal dependence. The complete path to the reconstruc-

ion of the complex pupil function uses the basic ideas de-
eloped in a former publication18 on scalar retrieval, but
ow extended to the high-NA case. First, in Section 2, we
erive the expression for the electric energy density in the
ocal region in the presence of aberrations and nonuni-
orm pupil transmission, using the Zernike coefficients
hat correspond to the specific exit pupil function. The ex-
ression for the Poynting vector can be obtained also but
ill not be used here. This paper focuses on the aberra-

ion retrieval process. In Section 3 we introduce the en-
rgy density formulas that arise when the lens defects are
elatively small and not too far beyond the so-called dif-
raction limit, both regarding the lens aberration and lens
ransmission defects. These formulas are derived in the
resence of an arbitrary state of polarization of the inci-
ent light and we present some special cases and combi-
ations of intensity patterns that enable a stable retrieval
cheme for the complex lens pupil function. In Section 4
e extend our analysis to the practical case where the op-

ical system under study exhibits residual (linear) bire-
ringence. The explicit dependence of the detected inten-
ity patterns is derived in the presence of geometrical
berrations, transmission defects, and polarization-
ensitive “aberrations” due to linear birefringence that is
patially varying over the exit pupil. In Section 5 we
resent the basic steps that have to be taken to retrieve
he complex lens function from a three-dimensional ag-
regate of intensity data in the focal volume. In Section 6
e present a detailed analysis of the functions that are
sed to describe the complex amplitude and intensity dis-
ribution in the focal region. Apart from the aberration-
ree case we also present graphs of the focal intensity dis-
ribution in the presence of typical aberrations that
llustrate the interaction between vectorial image forma-
ion effects and aberrational image degradation. Finally,
e present a numerical retrieval example that is relevant

n practice, viz., the high-NA retrieval of the lens function
n the presence of illumination with natural (unpolarized)
ight. This case is frequently encountered in projection
ystems for lithography and it leads to a simplified ver-
ion of our analysis, closely resembling the one we get in
he scalar case. Finally, Section 7 is devoted to some con-
lusions on this theoretical and numerical study about
he retrieval of lens data in high-NA imaging systems.

. EXPLICIT EXPRESSION FOR THE
LECTRIC ENERGY DENSITY
or the retrieval of lens data we need the expression for
he light intensity in the focal volume of the imaging sys-
em. To this end we consider the time-averaged value of
he electric field energy density 
we� and, for a harmonic
eld in a homogeneous medium with a dielectric constant
=nr

2, we obtain [see Eq. (2) above]


we� =
�0

4
nr

2�E�2. �5�

he electric field components in the presence of aberra-
ions in a high-NA system are used to compute the scalar
roduct E* ·E.
To examine the energy flow through the focal region, we
hould evaluate the time-averaged values of the Carte-
ian components of the Poynting vector S. This leads to
he expression


S� =
�0c2

2
Re�E 	 B*�, �6�

ith B the magnetic induction for which a similar expres-
ion holds as for the electric field strength.28 Although the
ivergence of the Poynting vector would also allow us to
olve the retrieval problem, we prefer to use the expres-
ion for the electric energy density because 
we� is the
lectromagnetic quantity directly relevant for the calcula-
ion of the locally absorbed electromagnetic energy
exposure).29

A straightforward notation of 
we� leads to a rather
engthy expression involving a quadruple sum over the
ndices m, n, m� and n� that occur in the expressions for
he products of electric field components as derived from
q. (2). In general, we encounter expressions that can be
ritten as

Gkl��,�� = �
n,m

im exp�im���n
mVn,k

m �r,f�exp�ik��

	 �
n�,m�

i−m� exp�− im����n�
m�*Vn�,l

m� *�r,f�exp�− il��

= �
n,m,n�,m�

exp�i�m − m���/2�exp�i�m − m� + k

− l����n
m�n�

m�*Vn,k
m �r,f�Vn�,l

m� *�r,f�, �7�

here the function Gkl has the sets of Zernike coefficients
n
m and �n

m as variables (in shorthand notation written as
and � in the argument of Gkl).
For the retrieval of Zernike coefficients, it is important

o make explicit the azimuthal dependence of the inten-
ity distribution in the focal region. To this end, we write
quadruple series �n,m,n�,m�an,m,n�,m� as in Eq. (7) accord-

ng to the following diagonal summation scheme:

�
m,m�,n,n�

am,m�;n,n� = �
n=n1

n2 � �
m=m1

m2

am,m;n,n + �
�=1

�max

�
m

�am,m+�;n,n

+ am+�,m;n,n�� + �

=1


max��
n

�
m

�am,m;n,n+


+ am,m;n+
,n� + �
�=1

�max

�
n

�
m

�am,m+�;n,n+


+ am+�,m;n,n+
 + am,m+�;n+
,n

+ am+�,m;n+
,n�� , �8�

here the various summation ranges determined by m1,
2, n1, n2, �max, and 
max are derived from the transfor-
ation from a rectangular summation scheme to a sum-
ation scheme along diagonals. After some rearrange-
ent, the following expression is obtained:
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Gkl��,�� = exp�i�k − l�����
n

�
m

�n
m�n

m*Vn,k
m Vn,l

m* + �
�=1

�max �exp�− i��/2�exp�− i����
m

�
n

��n
m�n

m+�*Vn,k
m Vn,l

m+�*�

+ exp�i��/2�exp�i����
m

�
n

��n
m+��n

m*Vn,k
m+�Vn,l

m*�� + �

=1


max ��
n

�
m

��n
m�n+


m* Vn,k
m Vn+
,l

m* + �n+

m �n

m*Vn+
,k
m Vn,l

m*�

+ �
�=1

�max �exp�− i��/2�exp�− i�����
n

�
m

��n
m�n+


m+�*Vn,k
m Vn+
,l

m+�* + �n+

m �n

m+�*Vn+
,k
m Vn,l

m+�*�� + exp�+ i��/2�exp�+ i���

	��
n

�
m

��n
m+��n+


m* Vn,k
m+�Vn+
,l

m* + �n+

m+��n

m*Vn+
,k
m+� Vn,l

m*����� , �9�

here we have suppressed the �r , f�-dependence of the V functions.
With the G function notation above, the electric energy density is readily written as


we�r,�,f�� =
�0nr

2s0
4

4
�G0,0��x,�x� + s0

2 Re�G0,2��x,�x − i�y� + G0,−2��x,�x + i�y�� +
s0

4

4
�G2,2��x − i�y,�x − i�y� + G−2,−2��x + i�y,�x

+ i�y�� +
s0

4

2
Re�G2,−2��x − i�y,�x + i�y�� + G0,0��y,�y� − s0

2 Re�G0,2��y,i�x + �y� + G0,−2��y,− i�x + �y�� +
s0

4

4
�G2,2�i�x

+ �y,i�x + �y� + G−2,−2�− i�x + �y,− i�x + �y�� +
s0

4

2
Re�G2,−2�i�x + �y,− i�x + �y�� + s0

2�G1,1�i�x + �y,i�x + �y�

+ G−1,−1�− i�x + �y,− i�x + �y�� + 2s0
2 Re�G1,−1�i�x + �y,− i�x + �y��� , �10�

here the indices x, y of � in the arguments of the Gkl functions refer to the sets of Zernike coefficients to be used, cor-
esponding to either x- or y-linearly polarized light (to be denoted by �n,x

m and �n,y
m , respectively).

Using the summation property

Gkl��1 + �2,�1 + �2� = Gkl��1,�1� + Gkl��1,�2� + Gkl��2,�1� + Gkl��2,�2� �11�

nd the property

Gkl��,�� = Glk
* ��,��, �12�

e write for the electric energy density


we�r,�,f�� =
�0nr

2s0
4

4
�G0,0��x,�x� + G0,0��y,�y� + s0

2 Re�G0,2��x,�x� + iG0,2��x,�y� + iG0,2��y,�x� − G0,2��y,�y��

+ s0
2 Re�G0,−2��x,�x� − iG0,−2��x,�y� − iG0,−2��y,�x� − G0,−2��y,�y�� +

s0
4

2
�G2,2��x,�x� + iG2,2��x,�y� − iG2,2��y,�x�

+ G2,2��y,�y�� +
s0

4

2
�G−2,−2��x,�x� − iG−2,−2��x,�y� + iG−2,−2��y,�x� + G−2,−2��y,�y�� + s0

2�G1,1��x,�x� + iG1,1��x,�y�

− iG1,1��y,�x� + G1,1��y,�y�� + s0
2�G−1,−1��x,�x� − iG−1,−1��x,�y� + iG−1,−1��y,�x� + G−1,−1��y,�y��

+ 2s0
2 Re�− G1,−1��x,�x� + iG1,−1��x,�y� + iG1,−1��y,�x� + G1,−1��y,�y��� . �13�
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. APPROXIMATED G FUNCTIONS FOR
ODEST VALUES OF THE ZERNIKE
OEFFICIENTS

s in the scalar retrieval procedure, we now make the as-
umption that the lens defects (amplitude and phase) are
ufficiently small and that the Strehl intensity IS of the

maging system is relatively high. With the (scalar) rela- m
ionship IS= ��0
0�2, we have found that in practice it is re-

uired that �0
0
0.5. The basic functions occurring in the

nergy density function 
we�r ,� , f�� applying to the vecto-
ial case have been denoted by Gkl�� ,��. In the case of a
ominating �0

0 and �0
0 term and, consequently, modest val-

es of any of the remaining �n,x
m and �n,y

m terms, the gen-
ral expression for Gkl�� ,�� then reduces in good approxi-

ation to
Gkl��,�� = exp�i�k − l�����0
0�0

0*V0,k
0 V0,l

0* + �
�=1

�max

�exp�− i��/2�exp�− i�����0
0�0

u*V0,k
0 V0,l

�* + �0
−��0

0*V0,k
−�V0,l

0* �

+ exp�+ i��/2�exp�+ i�����0
0�0

−�*V0,k
0 V0,l

−�* + �0
��0

0*V0,k
� V0,l

0* �� + �

=1


max��0
0�


0*V0,k
0 V
,l

0* + �

0�0

0*V
,k
0 V0,l

0*

+ �
�=1

�max

�exp�− i��/2�exp�− i�����0
0�


�*V0,k
0 V
,l

�* + �

−��0

0*V
,k
−�V0,l

0* � + exp�+ i��/2�exp�+ i�����0
0�


−�*V0,k
0 V
,l

−�*

+ �

��0

0*V
,k
� V0,l

0* ���� . �14�

more compact notation is possible according to

Gkl��,�� = exp�i�k − l��� �

=0


max

�
�=−�max�
�

+�max�
�

�exp�− i��/2�exp�− i����0
0�


�*V0,k
0 V
,l

�* + �1 − �
��exp�i��/2�exp�i����

��0

0*V
,k
� V0,l

0* �,

�15�

here �
� equals unity for 
=�=0 and zero for any other combination of �
 ,�� values.
A special case arises when the coefficients � and � are equal and k= l. We then obtain

Gkk��,�� = ��0
0�2�V0,k

0 �2 + 2 �

=0


max

�
�=−�max�
�

+�max�
�

Re�exp�i��/2�exp�i����

��0

0*V
,k
� V0,k

0* �, �16�

ith the value �=0 excluded in the double summation.
Using the simplified expression for the functions Gkl�� ,��, we subsequently analyze a general state of polarization that

s incident on the optical system by setting

�n,x
m = a�n

m, �n,y
m = b�n

m, �17�

ith �a�2+ �b�2=1 for normalization purposes. The generally complex quantities �a ,b� allow us to specify the initial state of
olarization. Using the result of Eq. (13), we obtain


we�r,�,f��0 =
�0nr

2s0
4

4
�G0,0��,�� + s0

2���a�2 − �b�2�Re�G0,2��,��� − 2 Re�ab*�Im�G0,2��,���� + s0
2���a�2 − �b�2�Re�G0,−2��,���

+ 2 Re�ab*�Im�G0,−2��,���� +
s0

4

2
��1 − 2 Im�ab*��G2,2��,�� + �1 + 2 Im�ab*��G−2,−2��,���

+ s0
2��1 − 2 Im�ab*��G1,1��,�� + �1 + 2 Im�ab*��G−1,−1��,��� − 2s0

2���a�2 − �b�2�Re�G+1,−1��,���

+ 2 Re�ab*�Im�G+1,−1��,����� . �18�
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he index zero has been added to 
we�r ,� , f�� to indicate
hat no spatially varying birefringence is present in the
ptical system.

Several special cases for the energy density function
rise when we choose special values for �a ,b�:

linear polarization in the x or y direction, respectively,
a ,b�= �1,0� and �a ,b�= �0,1�, and in the diagonal direc-
ions, respectively, �a ,b�= �1/�2,1/�2� and �a ,b�= �1/�2,
1/�2�,
left- or right-handed circular polarization, respectively,

=1/�2, b= i /�2 and a=1/�2, b=−i /�2,
unpolarized or natural light, a summation in intensity

f the above mentioned orthogonal linear or circular
tates,

radial or tangential (azimuthal) states of polarization.

. Linear Polarization in the x Direction,
a ,b…= „1,0…
ote that in the absence of birefringence the coefficients
n,x
m equal the corresponding �n,y

m and with this assump-
ion


we
x�r,�,f��0 � G0,0��,�� + s0

2 Re�G0,2��,�� + G0,−2��,���

+
s0

4

2
�G2,2��,�� + G−2,−2��,��� + s0

2�G1,1��,��

+ G−1,−1��,��� − 2s0
2 Re�G+1,−1��,���. �19�

. Linear Polarization in the y Direction,
a ,b…= „0,1…
or the energy, there holds


we
y�r,�,f��0 � G0,0��,�� − s0

2 Re�G0,2��,�� + G0,−2��,���

+
s0

4

2
�G2,2��,�� + G−2,−2��,��� + s0

2�G1,1��,��

+ G−1,−1��,��� + 2s0
2 Re�G+1,−1��,���. �20�

gain assuming the absence of (linear) birefringence ef-
ects, the subtraction of the two exposure patterns in re-
ations (19) and (20) yields

�wl,0 = 
we
x�r,�,f��0 − 
we

y�r,�,f��0

= 2s0
2 Re�G0,2��,�� + G0,−2��,�� − 2G+1,−1��,���.

�21�

he subtraction of two exposure patterns resulting from
rthogonal diagonal linear polarization states yields

�wl,�/4 = 
we
x�r,�,f��3�/4 − 
we

y�r,�,f���/4

= 2s0
2 Im�G0,2��,�� − G0,−2��,�� + 2G+1,−1��,���.

�22�

. Circular Polarization (LC and RC)
e follow a similar procedure to calculate the exposure

atterns in the case of circular polarization. With our con-
ention exp�i�kz−�t�� for an outgoing plane wave in the
ositive z direction we find the relations b= ia for left-
anded circular polarization (LC) and b=−ia for the
ight-handed case (RC). A straightforward calculation
hows


we
RC�r,�,f��0 � G0,0��,�� + s0

4G2,2��,�� + 2s0
2G1,1��,��,

�23�

nd, in a corresponding way,


we
LC�r,�,f��0 � G0,0��,�� + s0

4G−2,−2��,�� + 2s0
2G−1,−1��,��.

�24�

he difference between right- and left-handed polariza-
ion exposure distributions is thus

�wC,0 = s0
4�G2,2��,�� − G−2,−2��,��� + 2s0

2�G1,1��,��

− G−1,−1��,���. �25�

. Natural Light
inally, the exposure with natural light gives rise to the
ummation of either both linear orthogonal or both circu-
ar orthogonal polarization states and this yields, apart
rom a factor of 2 due to the normalization of the circular
igenstates,


we
N�r,�,f�� = G0,0��,�� + s0

2�G1,1��,�� + G−1,−1��,���

+
s0

4

2
�G2,2��,�� + G−2,−2��,���. �26�

ecall again that in this analysis we have excluded any
irefringence effect, which implies that �n,x

m and �n,y
m are

elated by a simple factor of proportionality to the coeffi-
ients �n

m that are uniquely defined by the geometrical
ens properties.

The general case of partially polarized light can be ac-
ounted for by defining a total exposure that is a weighted
um of a fully polarized exposure pattern and an unpolar-
zed pattern according to the degree of partial polariza-
ion.

. INCORPORATION OF BOTH
OLARIZATION AND BIREFRINGENCE
FFECTS
he propagation of a polarized wave through a general
ptical system leads to a perturbation of the initial state
f polarization due to the polarization-dependent ampli-
ude and phase changes on transmission through the
coated) air–glass interfaces. On top of this, anisotropy of
he lens materials, induced by structural properties or,
.g., by residual stresses in the lens materials, leads to a
radual change of the state of polarization on propaga-
ion. In this section we first describe the cumulative effect
f the birefringence on the polarization state in the exit
upil. In the next step, we incorporate the amplitude and
hase effects due to the birefringence in our description of
he complex exit pupil function for x and y polarization
sing an extra set of complex Zernike coefficients and we
oint out how a set of exposures with different polariza-
ion states at the entrance of the optical system yields the
nknown birefringence data in the exit pupil.
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. Field Components Ex and Ey in the Exit Pupil
e approximate the cumulative effects of birefringence in

he optical system by defining at each point in the exit pu-
il a certain value of the retardation due to the birefrin-
ence, �, and the azimuths of the orthogonal principal
xes, e.g., by defining the angle � of the “slow” axis of the
irefringence. In practical cases, one may neglect the di-
hroism introduced by an optical system and for this rea-
on we will limit ourselves to the influence of the phase
etardation on the strength of the x and y field compo-
ents in the exit pupil of the optical system.
To analyze the state of polarization in the exit pupil in

he presence of a sequence of birefringent elements and
urfaces effects we use the Jones matrix analysis.30 The
atrix relation between the x and y components of the in-

ut and output electric fields is in general given by31

�Ex

Ey
� = �m11 m12

m21 m22
��aj

bj
� , �27�

here the complex amplitudes of the x and y components
f the incident electric field at the jth exposure have been
enoted by �aj ,bj�. Note that the field components �Ex ,Ey�
re a function of the position in the pupil; the functions
escribing their locally varying complex amplitude can be
xpanded with the aid of Zernike polynomials. The field
omponents �Ex ,Ey� affected by the birefringence of the
ptical system formally replace the original components
aj ,bj� related to the entrance pupil. The Zernike expan-
ion corresponding to �Ex ,Ey� is used to determine the
ector components of the field on the exit pupil sphere;
hese are then used to evaluate the field in the focal re-
ion; see Eqs. (2) and (3).

. Procedure for Evaluation of the Birefringence of the
ptical System
asically, we need to evaluate the four complex matrix el-
ments mij for each sample point in the exit pupil, leading
o eight independent quantities to be determined. But
ince we have excluded dichroism, the matrix above has a
pecial structure32–36 and can be written as

M = � m11 m12

− m12
* m11

* � , �28�

ith the property �m11�2+ �m12�2=1. The eigenstates of this
atrix are elliptical in general. Once the eigenvalues and

igenstates have been found, the orientation � of the slow
nd fast axes and the value � of the phase birefringence
re known.
Because of the special structure of the unitary matrix
, three independent quantities need to be determined in

ddition to the geometrical wavefront aberration and
ransmission defects of the system. We thus need four re-
rieval operations to determine the complex quantities

11 and m12 plus the polarization-independent geometri-
al defects of the system. Preferred polarization states
aj ,bj� are two orthogonal linear polarization states, e.g.,
1, 0) and (0, 1), and the circular ones, viz., �1, i� /�2 for
eft-circularly polarized and �1,−i� /�2 for right-circularly
olarized light. The four exposures with the preferred po-
arization states lead, after retrieval, to four different sets
f � coefficients: �n;�1,0�
m , �n;�0,1�

m , �n;�1,i�
m , and �n;�1,−i�

m . Note
hat the coefficients �n,x

m and �n,y
m , used previously in Eqs.

2) and (3), correspond to the first two sets that we discuss
ere in the framework of birefringence retrieval. From
he four sets of � coefficients we obtain the complex am-
litude in a general point of the exit pupil for four differ-
nt polarization states. This is basically sufficient to
uniquely determine” the size and the orientation of the
umulative birefringence of the optical system in that
pecific point of the exit pupil. In addition, we obtain the
eometrical defects of the system that are independent of
he state of polarization of the incident light.

. OUTLINE OF THE BASIC RETRIEVAL
CHEME
he various expressions that have been obtained for the
lectric field density constitute the intensity pattern de-
ected by a sensor or the exposure profile in a storage
ayer (e.g., a photoresist layer in lithography). These mea-
ured data, collected from a set of axially displaced (defo-
used) planes, serve as the input for the retrieval scheme
hat will yield the complex �n;�aj,bj�

m coefficients that de-
cribe the high-NA imaging system. The basic term that
ppears in the expressions is the real or imaginary part of
k,l�� ,��; if k= l the function is real anyhow. We now want

o sketch the basic approach for retrieval of the complex �
oefficients.

Following our retrieval approach for the low-NA scalar
ase18 we first detect the azimuthal periodicities in the
easured intensity patterns according to

�m�r,f� =
1

2�
�

−�

+�

I�r,�,f�exp�im��d�, �29�

here I�r ,� , f� is the measured intensity function in the
ocal volume.

In our retrieval scheme, the measured through-focus
ntensity pattern will be matched by the linearized inten-
ity distribution according to Eq. (18). In compact nota-
ion we write this approximated analytical expression as

wan�r,�,f� = �
k,l

Fk,l�r,�,f�, �30�

nd the various functions Fk,l are, apart from a constant
actor, given by

F0,0 = G0,0��,��,

F0,2 = s0
2���a�2 − �b�2�Re�G0,2��,���

− 2 Re�ab*�Im�G0,2��,����,

F0,−2 = s0
2���a�2 − �b�2�Re�G0,−2��,���

+ 2 Re�ab*�Im�G0,−2��,����,

F+1,−1 = − 2s0
2���a�2 − �b�2�Re�G+1,−1��,���

+ 2 Re�ab*�Im�G+1,−1��,����,

F1,1 = s0
2�1 − 2 Im�ab*��G1,1��,��,



T
f

w
i

A
G

w
g
t
m
w
v
t
p

d
�
w
t
m

H
m
a
t
l
o

t
m
p
c
w
o
t

i
f

T
n
l

n
j
t
g
v
s
s
a
s

6
B
H
I
a
c
e
p
t
d
i
c
b
t
a
d

A
I
V
s
f
c
0
d
t
a
t
u
f
a
t
o
t
t
t
c
d
n
a
p

Braat et al. Vol. 22, No. 12 /December 2005 /J. Opt. Soc. Am. A 2643
F−1,−1 = s0
2�1 + 2 Im�ab*��G−1,−1��,��,

F2,2 =
s0

4

2
�1 − 2 Im�ab*��G2,2��,��,

F−2,−2 =
s0

4

2
�1 + 2 Im�ab*��G−2,−2��,��. �31�

he general expression for Gk,l (linearized approximation
or dominating �0

0) reads

Gk,l��,�� = �0
0exp�i�k − l����



�

�

��

�*�
;k,l

�* �r,f�exp�− i���

+ �1 − �
���

��
;l,k

� �r,f�exp�+ i����, �32�

here �
� has been defined in Eq. (15) and where we also
ntroduced the shorthand notation

�
;k,l
� �r,f� = �+ i��V0,k

0* �r,f�V
,l
� �r,f�. �33�

harmonic decomposition applied to the general terms
k,l of this analytic function yields the result

1

2�
�

−�

+�

Gk,l�r,�,f�exp�im��d�

= �0
0�




��

�+k−l+m�*�
;k,l

�+k−l+m�*�r,f�

+ �1 − �
,−k+l−m��

�−k+l−m��
;l,k

�−k+l−m��r,f��, �34�

here we have used the property that, without loss of
enerality, �0

0 can be taken to be real (reference phase of
he pupil function is zero). We ultimately need the har-
onic decomposition of the full analytic expression
an�r ,� , f�; because of the rather lengthy expression in-
olved, we give the result for the various harmonic func-
ions �an

m �r , f� that arise from this decomposition in Ap-
endix A.
Having available now the harmonic azimuthal depen-

ence of order m both from the measurement data
�m�r , f�� and from the analytical functions ��an

m �r , f��
ith which the measurement data have to be matched,

he relation to be solved for each azimuthal order number
reads

�an
m �r,f� � �m�r,f�. �35�

ere, the right-hand side function has been obtained by
easurement values in a large number of lateral and

xial positions in the focal volume. The left-hand side con-
ains the unknown � coefficients that have to be calcu-
ated and the � sign expresses that the linearized version
f the analytical intensity distribution has been used.

The approximate equality in Eq. (35) can be solved for
he unknown � coefficients in various ways. Our preferred
ethod uses the fact that the functions �
;k,l

� �r , f� that im-
licitly appear in the left-hand side of relation (35) are
lose to being orthogonal. By applying inner products
ith the involved �
;k,l

� on either side of relation (35), we
btain an approximate linear system in the � coefficients
hat produces estimates of these � coefficients upon solv-
ng it. The inner product that we choose here is defined
or functions ��r , f� and ��r , f� as

��,�� =�
0

R�
−F

+F

��r,f��*�r,f�rdrdf. �36�

he integration limits R and ±F formally should be infi-
itely large, but in practice they are determined by the

ateral and axial extent of the measured data set. The in-

er products of the form ��
;k,l
m ,�
�;k�,l�

m� � are calculated
ust once and their numerical values serve to fill the ma-
rix corresponding to the system of linear equations. In
eneral, the procedure is to first calculate the best fit �
alues without the birefringence included. Given the re-
idual error of this solution for the various polarization
tates, the full set of �n;�aj,bj�

m coefficients is then taken into
ccount to evaluate the birefringence effects of the optical
ystem.

. GRAPHICAL ILLUSTRATION OF THE
ASIC FUNCTIONS Vn,j

m
„r ,f…, Gkl„� ,�… AND A

IGH-NA RETRIEVAL EXAMPLE
n this section we present some typical examples of the
mplitude function Vn,j

m �r , f� that plays a basic role in the
alculation of the complex amplitude of the Cartesian
lectric field components in the focal region. We also
resent some examples of the analytical function Gkl�� ,��
hat plays an important role when evaluating the energy
ensity in the focal region and when the inverse problem
s solved for retrieving aberrational lens properties. Some
haracteristic aberrations like coma and astigmatism will
e treated in more detail and the subtle interplay be-
ween the state of polarization in the exit pupil and the
zimuth of a noncircularly symmetrical aberration will be
iscussed.

. Aberration-Free Vn,j
m Functions

n Fig. 2 we have plotted the functions V0,0
0 �r ,0�,

0,+1
0 �r ,0�, V0,−1

0 �r ,0�, and V0,±2
0 �r ,0� in the upper row. The

ame functions have been represented in the middle row
or a value of the defocus parameter equal to 2�. In both
ases, the numerical aperture of the imaging system was
.95. These functions with n=m=0 are generally the
ominant ones that determine the complex amplitude of
he electric field components. If there are no aberrations
t all, they are the only ones needed for the calculation of
he intensity in the focal region (the coefficient �0

0 equals
nity and all other � coefficients are zero). Some remarks
ollow from inspection of the V0,j

0 functions for the
berration-free case. The amplitude at the central point of
he diffraction image �r= f=0� is given by the value of V0,0

0

nly. We also note that for equal values of �j� the V func-
ions change sign for odd j. In the defocused case, we see
hat the on-axis amplitude does not vanish for a value of
he defocusing parameter of 2�. In the scalar diffraction
ase at low NA, the V0

0 function is zero precisely at this
efocusing value. At high NA the on-axis amplitude is
onvanishing because of the nonquadratic defocus phase
nd the nonuniform amplitude distribution over the exit
upil (radiometric effect). In the lower row of Fig. 2 we



h
t
e
d
t
p
d
f
t
(
=
p
t
l
p
f
t
t
F
c
p
a

B
A
s
t
e

d
r

W

w

F
[
c

F
d
s
c
fi
I

2644 J. Opt. Soc. Am. A/Vol. 22, No. 12 /December 2005 Braat et al.
ave produced contour plots of the absolute value of the
hree electric field components and of the resulting total
nergy density (or intensity) in optimum focus. The inci-
ent state of polarization was linear and oriented along
he x axis [see Eq. (2) for the expressions for the field com-
onents in the focal region]. The Ex field is the sum of the
ominant V0,0

0 function and the smaller contributions
rom the V0,±2

0 functions (with zero azimuth offset), which
end to reduce the field value along the azimuths �=0,�
x axis) and lead to an increase along the azimuths �
� /2 ,3� /2. The Ey component consists only of a 2� com-
onent with a phase shift of � /4 and is the weakest of all
hree. In the intensity plot we have also given the 50%
evel of the scalar Airy distribution with the transverse
osition expressed in units of � /NA. It is clearly visible
rom the contour plot that the FWHM of the high-NA in-
ensity distribution is slightly smaller in the y cross sec-
ion but drastically increased along the x cross section.
rom the contour plots of the three field components, it
an be seen that this effect is created by the Ez field com-
onent that constitutes the most prominent extra feature
t high-NA values with respect to the scalar case.

. Definition of Strehl Intensity at High NA
close inspection of the upper-left graph of Fig. 2, repre-

enting the function V0,0
0 �r ,0� at NA=0.95, reveals that

he on-axis amplitude in the nominal focal plane is not
qual to unity but slightly larger because of the vector ad-

ig. 2. Functions V0,j
0 �r , f� (upper row, f=0, middle row, f=2�)

irection). The horizontal coordinate r is expressed in the diffract
olid and dotted curves in the first and second rows apply to, res
ontour plots of the three electric field components �Ex�, �Ey�, �Ez� a
eld components have been chosen at 0.5, 0.09, and 0.025; for the
n the latter contour plot, the dotted circle indicates the circular
ition and the radiometric effect. In the absence of aber-
ations we define the Strehl intensity by

IS =

� 1

�
�

0

2��
0

1

A��,���d�d��2

1

�
�

0

2��
0

1

�A��,���2�d�d�

. �37�

ith the amplitude function

A��,�� =
1

�1 − s0
2�2�1/4�1 + �1 − s0

2�2�1/2

2
� , �38�

e find the following expression for the Strehl intensity:

IS = � 8

75s0
2� �8 − 5�1 − s0

2�3/4 − 3�1 − s0
2�5/4�2

4 + 3s0
2 − �1 − s0

2�1/2�4 − s0
2�

. �39�

or the value of s0=0.95, the on-axis intensity is 1.05856
numerator of Eq. (37)] and, after normalization to the in-
ident power (1.060075), we find a Strehl intensity

aberration-free case (NA=0.95, linear polarization along the x
t � /s0 with s0 the numerical aperture of the imaging system. The
ly, the real and imaginary part of the V0,j

0 functions. Lower row:
e electric energy density ��Ei�2. The contour lines for the electric

ic energy density the levels are 0.75, 0.50, 0.25, 0.017, and 0.005.
ontour of the hypothetical in-focus scalar intensity distribution.
for the
ion uni
pective
nd of th
electr
0.50 c
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S equal to 0.99857. All calculated intensity values in the
emainder of this paper have been normalized according
o this definition.

. Field Components and Intensity Belonging to an
berrated System (Coma)

n Fig. 3 we have plotted the set of graphs belonging to a
avefront in the exit pupil (linear polarization along the x
irection) that has a comatic aberration of the lowest or-
er. The wavefront aberration is given by 2�Wx�� ,��
��� ,��=�3

1R3
1���cos � and the corresponding coefficients

n,x
m have been calculated by the insertion of this expres-
ion in Eq. (1). In the upper row we have now plotted the
adial cross sections of functions V3,j

1 �r ,0�; in the graphs of
he middle row, the same functions appear with a defocus
alue of f=2�. The functions now show a more general be-
avior and there is no identity or change of sign, respec-
ively, for indices j that are even or odd. The field compo-
ents (moduli) and the intensity pattern are given in the

ower row and they show the typical cos��� asymmetry.
ut on top of this basic azimuthal frequency, we expect
igher-frequency components because of the presence of
zimuthal components with ranges from −3� to +3� for
he Ex and Ey components and from −2� to +2� for the Ez
omponent. After the squaring operation, we thus can ex-
ect a highest azimuthal frequency of 6� in the intensity
attern of the lower-right graph. In this graph, for com-
arison, we have again plotted the FWHM contour (dot-
ed) of the hypothetical scalar diffraction pattern at the
ame value of the NA (aberration-free case).

ig. 3. Same as Fig. 2 but now with comatic aberration of lowes
pproximation of the phase aberration function) are �0,x

0 =15/16
6,x
2 =�6,x

−2 =−3/40; all �n,y
m identical zero. In the contour plot of the

een chosen at 0.5, 0.1, 0.05, 0.01, 0.005, and 0.002. For compari
ponding to the 50% relative height for the hypothetical scalar d
. Construction of the Image Intensity from the G
unctions
n the retrieval procedure that was presented in Section
, the functions Gkl�r , f� play a key role. The ranges of val-
es of �k , l� are limited by the condition �k�, �l��2 and
here are in total eight G functions that occur in the ex-
ression for the energy density in the focal region; see Eq.
13). In Fig. 4 we have plotted these eight functions ac-
ording to their relative importance in the expression for
he energy density (weight factor containing s0); the im-
ging system is free of any aberration. The dominating G
unction is G0,0 and this is the only one that remains in
he limiting case of very small numerical aperture �s0

0�. In the nominally aberration-free focus, this function
quals �V0,0

0 �r , f��2 and it closely resembles the basic Airy
iffraction pattern if we neglect the influence of the radio-
etric effect and an average increase in lateral size due

o the vectorial image formation. The functions in the
ower row with equal k and l indices have a central zero in
he nominal focal plane. They lead to a further “blurring”
f the diffraction image because of the vectorial effects.
he functions in the upper row with �k− l�=2 lead to the
bsence of rotational symmetry in image formation with,
.g., linearly polarized light. These functions are not ev-
rywhere positive as were the functions with k=1. The
ontributions to the focal plane intensity of the G func-
ions with �k− l�=2 are proportional to Re�G0,2+G0,−2
2G1,−1� if we have linearly polarized light along the x di-
ection in the entrance pupil [see Eq. (13) with �y=0].

From Fig. 4 we see that the contributions from the

��3
1=1�. The values of the relevant �n,x

m coefficients (second-order
−1/80, �4,x

0 =−1/16, �6,x
0 =−9/80, �3,x

1 =�3,x
−1 = i /2, �2,x

2 =�2,x
−2 =−1/20,

y density (lower row, right-hand figure) the contour levels have
e have also included the dotted contour plot in the center corre-
ion image (same comatic aberration value).
t order
, �2,x

0 =
energ

son, w
iffract
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hree noncircularly symmetric G functions lead to a
roadening of the central lobe along the x cross section
FWHM is 34% larger than that of the hypothetical scalar
rofile). Their negative contributions along the y cross
ection lead to a narrowing of the intensity profile and a
educed FWHM value (−7% with respect to the “scalar”
rofile). The asymmetry effect leads to an elliptic 50% in-
ensity contour and the ratio of the long and short axis
mounts to 1.44.
In Fig. 5 we have plotted the G functions in the same

ig. 4. Eight Gkl�r , f� functions that contribute to the energy de
cheme. The unit along the axes is the diffraction unit. The con
f=0, NA=0.95). To visualize the features of the various functions
.25, 0.10, 0.07, 0.05, 0.02, 0.01, 0.005, and 0.001; Re�G0,2�, Re
0.015, −0.055 (contours with negative values are dotted); G1,1, G
he functions G1,1, G−1,−1, G2,2, and G−2,−2 all have a doughnut sh

ig. 5. Gray-scale plots of the G functions for the aberration-fr
ame as in Fig. 4. The plots of the functions Re�G0,2�, Re�G0,−2�, a
nd black shades for positive and negative values, respectively. N
he lower row. There is no relationship between the gray levels
aximum or the zero level.
rder but now using gray-scale levels to represent the in-
ensity contributions. This is especially useful for a com-
arison of the intensity levels of the Gkk functions and to
ake clear the doughnut shape of the G functions with
= l�0. Note that in image formation with natural light
r circularly polarized light the expression for the energy
ensity contains exclusively Gkk functions. This means
hat for these cases the vectorial image formation will al-
ays lead to larger FWHM values than those given by the

calar extrapolation.

n the focal volume and that are used in the aberration retrieval
ots apply to the aberration-free case in the nominal focal plane
ontour levels have been changed from plot to plot. G0,0: 0.75, 0.5,
, and 2 Re�G1,−1�: 0.055, 0.015, 0.005, 0.001, 0, −0.001, −0.005,

2,2, and G−2,−2: 0.12, 0.06, 0.005, 0.002, 0.001, 0.0005. Note that
ith a zero on axis.

e in the nominal focal plane. The order of representation is the
e�G1,−1� have been coded with gray for zero level and with white
e doughnut shape of the functions G1,1, G−1,−1, G2,2, and G−2,−2 in
various graphs; all levels are relative with respect to the local
nsity i
tour pl
, the c
�G0,−2�
−1,−1, G
ape w
ee cas
nd 2 R
ote th
in the
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. Application of the G Functions to a General
berrated System

n this subsection we discuss the G functions for a general
berrated case with linearly polarized illumination in the
direction. As the aberration function we choose lowest

rder astigmatism with 2�Wx�� ,��=��� ,��
�2

2R2
2���cos 2��−�0�. For the offset angle we take �0

� /6 and the amplitude of the phase aberration is given
y �2

2=1. A first approximation of the main aberration co-
fficients is given by �2,x

2 = i�1/4− i�3/4� and �2,x
−2 = i�1/4

i�3/4�, and the remaining �x coefficients are found from
he Zernike expansion of the function exp�i��� ,���, ap-
roximated up to the second order; all �y coefficients are
dentical zero.

In Fig. 6 we have plotted the corresponding Gkl func-
ions for a defocus value f=0. We see that the G00 function
esembles the intensity profile we would expect in the
ase of astigmatic aberration with an azimuth of � /6. The
kk functions with k�0 in the middle row also show the
stigmatic behaviour with maximum azimuthal periodici-
ies of 4�. The functions G1,1 and G−1,−1, as well as G2,2
nd G−2,−2, show a mutual rotation of � /2. This follows
rom, e.g., Eq. (16) for the astigmatic case because the in-
ensity contribution with periodicity 2� in these functions
hanges sign when the k index of the Gkk functions
hanges sign. The three G functions (Re�G0,2�, Re�G0,−2�,
nd Re�G1,−1�), which introduce by themselves an extra
eriodicity of 2� in the intensity pattern due to the linear

ig. 6. Same as Fig. 4 for the upper and middle row. The grap
oefficients (second-order approximation of the aberration func
−1/24, �2,x

2 =1/4��3+ i�, �2,x
−2 =1/4�−�3+ i�, �4,x

4 =1/16�1+ i�3�, �4,
−4

atic focal distribution with defocus values f of −� /3, 0 and +� /
pond to the image positions of the two focal lines of the astigmat
ig. 4.
tate of polarization, show the most complicated patterns
ecause of the summation of periodicities with an azi-
uthal offset of � /6. The intensity distributions can show

eriodicities up to a frequency of 8�. In the retrieval ap-
roach we have chosen to select the azimuthal periodici-
ies from the through-focus intensity distribution because
hese periodicities have a virtually straightforward rela-
ionship with the azimuthal periodicities we encounter in
he aberration function.

Finally, in the lower row of Fig. 6, we have plotted the
ntensity distribution in three focal planes, respectively,
ith f parameters of −� /3, 0, and +� /3. The axial settings

= ±� /3 correspond well with the positions of the astig-
atic focal lines according to scalar diffraction theory.
he focal lines are clearly visible as well as their distor-

ion due to the nonparallellism of the linear state of po-
arization and the astigmatic principal cross sections. The
rientation of the elliptic shape in focus due to the linear
tate of polarization is preserved on both sides of focus;
he two astigmatic focal lines are perpendicular to each
ther. The combined effect at an angular offset of � /6
eads to the typical pattern in the last row of the figure.

. Retrieval at High NA with Unpolarized Light
inally, we present in this subsection a relatively simple
umerical example that shows the importance of includ-

ng the high-NA imaging effects in the retrieval scheme.
e consider the frequently occurring situation, e.g., as in

ly to a system with astigmatic wavefront aberration and the �
re given by the following values: �0,x

0 =11/12, �2,x
0 =−1/8, �4,x

0

�1− i�3�. In the lower row, contour plots are given for the astig-
ectively, where the defocus values f= ±� /3 approximately corre-
cil. The choice of the various contour levels is identical to that in
hs app
tion) a

x=1/16
3, resp
ic pen
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lithographic projection system, that the illumination is
npolarized (natural light). Unpolarized light is repre-
ented in our analysis by adding incoherently two or-
hogonal polarization states; for the sake of simplicity, we
elect linearly polarized light along the x and y directions.
f we turn to Eq. (A1) and carry out the summation of
oth orthogonally polarized contributions with, respec-
ively, �a ,b�= �1,0� and �a ,b�= �0,1�, we find

�an
m �r,f� = �0

0�


��


m*��
;0,0
m* + s0

2��
;1,1
m* + �
;−1,−1

m* �

+
s0

4

2
��
;2,2

m* + �
;−2,−2
m* �� + �


−m�1 − �
,m���
;0,0
−m

+ s0
2��
;1,1

−m + �
;−1,−1
−m � +

s0
4

2
��
;2,2

−m + �
;−2,−2
−m ��� ,

�40�

nd this function is then used to construct the linear sys-
em of equations as given by Eq. (35).

In this numerical experiment, we used an asymmetric
et of Zernike coefficients according to �3

+1=�3
−1=0.1i,

5
+1=�5

−1=−0.02i, and �7
+1=�7

−1=−0.02i. The fact that the
small) coefficients are purely imaginary implies that the
ens defect can be attributed to wavefront aberration, of
omatic nature in this case. The through-focus intensity
istribution has been calculated using the basic result
rom Eqs. (2)–(4) with a value of the numerical aperture
qual to 0.95 (refractive index n equals unity). The

ig. 7. Variation in the retrieved value of optical aberration co-
fficients when an incorrect value of the numerical aperture is
sed and the vectorial imaging effects are not correctly applied.
orward calculation at an NA value of 0.95. Retrieval of the � ab-
rration coefficients (comatic wavefront aberration of 3rd, 5th,
nd 7th order, respectively, with Zernike coefficients of +0.1,
0.02, and −0.02 radis) at various values of NA. The correct ab-
rration values are retrieved only when the NA value at retrieval
s chosen identical to the value used in the forward calculation
cheme. The retrieved values for the scalar scheme, +0.088,
0.050, and −0.042, respectively, are found in the graph at the
bscissa value NA=0.
etrieval scheme is then applied using values of the nu-
erical aperture in the range from 0.001 to 0.95. In Fig. 7
e show that the correct values are retrieved only if the
xact value of the NA is used and thus the influence of the
ectorial effects is correctly included. The scalar case
NA→0� shows a substantial deviation from the correct
ens values of the order of 10 to even 100%, especially for
he higher order � coefficients.

Data sets taken from intensity patterns in the focal vol-
me at different incident states of polarization could not
e studied. These data sets at high NA are not easily cre-
ted in a lithographic projection system since the stan-
ard illumination system has not been provided with spe-
ial polarization means. For this reason, a complete check
f the vectorial retrieval scheme, including the birefrin-
ence effects of the projection lens, could not be carried
ut. With respect to the sensitivity of the method and the
ange of aberration that can be covered, we refer to two
ecent publications37,38 for the scalar case. There it is first
hown that retrieval operations remain stable down to
trehl intensity levels as small as 0.30, or, equivalently,
ms wavefront aberration values are allowed up to twice
he diffraction limit �150 m��. The robustness of the re-
rieval method in the presence of noise and offsets has
lso been studied in these references. When using a basi-
ally identical retrieval scheme as that described in Sec-
ion 5, signal-to-noise ratios in the intensity patterns as
ow as 10 to 5 can be allowed without compromising the
etrieved lens data.

. CONCLUSION AND OUTLOOK
e have presented a high-NA analysis of the intensity

istribution in the focal volume of an imaging system us-
ng the vectorial version of the extended Nijboer–Zernike
pproach. The three-dimensional intensity distribution
as been obtained by means of a series expansion of basic
unctions in the Nijboer–Zernike theory using generalized
berration coefficients related to both the amplitude and
he phase of the complex pupil function. For high-NA im-
ging systems, the original scalar theory has been ex-
ended to the vectorial case and an extended set of aber-
ation coefficients has been introduced, describing the
ehavior of the optical system as a function of the state of
olarization of the incident light. It has been shown that
he intensity distribution in the focal region can be con-
tructed from a set of elementary functions that give rise
o the basically noncircularly symmetric intensity profile
n the focal region and to the relative increase in spot size
t high NA as compared with the scalar prediction.
Our theoretical approach has also shown that the col-

ection of focal intensity data from four exposures with
ell-selected polarization states of the incident light en-
bles the retrieval of the “polarization” aberration coeffi-
ients. They represent the geometrical aberrations and
he spatial distribution of birefringence (azimuth and
ize) in the exit pupil of the optical system. A first numeri-
al exercise to illustrate our theoretical approach has
hown that, even in the case of illumination with unpolar-
zed light, the correct aberration coefficients are retrieved
nly when the vectorial formulation of image formation is
orrectly included. Future experimental work should con-
entrate on the collection of through-focus intensity data
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or various incident polarization states in a high-NA im-
ging system; with such experimental data, the retrieval
f polarization aberrations becomes possible along the
ines described in this paper.

PPENDIX A: EXPRESSION FOR THE
ZIMUTHAL HARMONIC COMPONENTS OF
HE ANALYTICALLY DERIVED

NTENSITY DISTRIBUTION IN THE FOCAL
OLUME

o solve the basic “retrieval” problem as represented by
q. (35), we need analytic expressions for the azimuthal
1

1

1

1

1

1

1

1

1

1

2

armonic components that are present in the linearized
ntensity distribution through the focal volume of an ab-
rrated imaging system. The incident illumination is a
inear superposition of two orthogonal linear states of po-
arization (with complex amplitudes a and b, respectively,
or the x- and y-polarized states). The intensity distribu-
ion in the focal region is given by Eq. (30). In this appen-
ix we give the expression for the harmonic components
ertaining to the general functions Gk,l�� ,�� that are
ound in the terms Fk,l from Eq. (31). After some straight-
orward manipulation one obtains for the harmonic com-
onents gRe

m and gIm
m with upper index m of, respectively,

he functions Re�G �� ,��� and Im�G �� ,���
k,l k,l
gRe
m =

�0
0

2 �



„Re��

�k − l − m�*

�
;k,l
�k − l − m�*

� + Re��

�k − l + m�*

�
;k,l
�k − l + m�*

� + �1 − �
,−k+l+m�Re��

�−k+l+m��
;l,k

�−k+l+m��

+ �1 − �
,−k+l−m�Re��

�−k+l−m��
;l,k

�−k+l−m�� − i�Im��

�k − l − m�*

�
;k,l
�k − l − m�*

� − Im��

�k − l + m�*

�
;k,l
�k − l + m�*

�

+ �1 − �
,−k+l+m�Im��

�−k+l+m��
;l,k

�−k+l+m�� − �1 − �
,−k+l−m�Im��

�−k+l−m��
;l,k

�−k+l−m���…,

gIm
m =

�0
0

2 �



„Im��

�k − l − m�*

�
;k,l
�k − l − m�*

� + Im��

�k − l + m�*

�
;k,l
�k − l + m�*

� + �1 − �
,−k+l+m�Im��

�−k+l+m��
;l,k

�−k+l+m��

+ �1 − �
,−k+l−m�Im��

�−k+l−m��
;l,k

�−k+l−m�� + i�Re��

�k − l − m�*

�
;k,l
�k − l − m�*

� − Re��

�k − l + m�*

�
;k,l
�k − l + m�*

�

+ �1 − �
,−k+l+m�Re��

�−k+l+m��
;l,k

�−k+l+m�� − �1 − �
,−k+l−m�Re��

�−k+l−m��
;l,k

�−k+l−m���…, �A1�
here the function � has been defined in Eq. (33).
The summation of all harmonic components with their

ppropriate multiplying factors according to Eqs. (30) and
31) then yields the function �an

m �r , f� that was required in
q. (35).
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