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Taking the classical Ignatowsky/Richards and Wolf formulae as our starting

point, we present expressions for the electric field components in the focal re-

gion in the case of a high numerical aperture optical system. The transmission

function, the aberrations and the spatially varying state of polarization of the

wave exiting from the optical system are represented in terms of a Zernike

polynomial expansion over the exit pupil of the system; a set of generally

complex coefficients is needed for a full description of the field in the exit

pupil. The field components in the focal region are obtained by means of the

evaluation of a set of basic integrals that all allow an analytical treatment;

the expressions for the field components show an explicit dependence on the

complex coefficients that characterize the optical system. The electric energy

density and the power flow in the aberrated 3D-distribution in the focal

region are obtained using the expressions for the electric and magnetic field

components. Some examples of aberrated focal distributions are presented

and some basic characteristics are discussed. c© 2003 Optical Society of

America

OCIS codes: 000.3860, 050.1960, 070.2580, 110.2990.
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1. Introduction

The study of the exact field distribution in the focal region of a high numerical aper-

ture optical system attracts much attention due to the numerous applications where

highly focused fields are used. We mention the study of biological specimens like liv-

ing cells, cell nuclei and genetic material using advanced high-resolution microscopy.

High-aperture focused fields are equally used in leading edge optical lithography op-

erating at a deep UV wavelength like 193 or 157 nm and using projection systems

with an image side numerical aperture as large as 0.90. In optical disk read-out, the

recently standardized Blu Ray Disc system1 uses a numerical aperture of 0.85 and a

wavelength of 400 nm. All these applications require a detailed knowledge of the field

distribution in the focal region in order to describe the interaction of the probe with

the unknown structure or to accurately predict the exposure in the recording layer2

(e.g. the photoresist layer in optical lithography).

It is the purpose of this paper to accurately describe the vector field in the focal

region, starting with the classical Ignatowsky/Richards and Wolf formulae,3,4 for the

aberration-free case, while maintaining the explicit correspondence between specific

properties of the imaging system and the field distribution in the focal region. The

standard method to calculate the optical field in the focal region uses a purely nu-

merical evaluation of the various diffraction integrals pertaining to the electric and

magnetic field components. Even in the case of an aberration-free optical system,

these integrals did not seem to admit an analytic solution. In two recent papers,5,6

an analytic evaluation of the diffraction integral has been proposed and assessed;
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this analysis concerned the scalar diffraction integral for a (heavily) aberrated optical

system. The method has been termed ’extended’ Nijboer-Zernike method because

it expands aberration and pupil functions in Zernike series and produces manage-

able expressions for the scalar field through the focal volume while the expressions

in the original Nijboer-Zernike method become awkward outside the focal plane. Al-

though the solution consists of an infinite summation, this summation can be safely

truncated when fulfilling some constraints regarding defocus and numerical aperture;

these constraints are met in most practical cases. We now go further and show that

the extended Nijboer-Zernike approach can also be applied to the more complicated

case of an aberrated system with high numerical aperture using the vectorial diffrac-

tion formalism. The combined effects of amplitude nonuniformity and aberrations are

mapped onto a set of generally complex Zernike coefficients that describe the field

distribution in the exit pupil; the field distribution in the focal region shows an ex-

plicit dependence on these coefficients. The relationship between the properties of

the imaging system and the focal field distribution paves the way for a possible in-

verse problem solution, viz. the retrieval of the complex pupil function from intensity

measurements in the focal region. A first step in this direction has been described in

Refs.7, 8 for the relatively low (say, below 0.8) numerical aperture scalar problem.

This paper is organized as follows. In Section 2, the representation of the field in the

entrance pupil of the optical system is discussed. Some specific field distributions are

treated, e.g. purely radial or azimuthal polarization9 and field distributions with an

intrinsic nonzero orbital momentum.10,11 In Section 3, the field in the entrance pupil,

including the radiometric effect, is described in terms of an expansion with the aid
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of Zernike polynomials. To allow for a general description, a complex set of Zernike

coefficients is proposed that can adequately represent both amplitude and phase vari-

ations of the incident field. In Section 4, we present the field distribution in the focal

region in terms of the Zernike coefficients, using the analytic approach for solving

the various diffraction integrals. The electric energy density and the Poynting vector

are evaluated using the expressions for the electric and magnetic field components.

Section 5 has been devoted to some practical examples. In the last section, we present

our conclusions and we formulate some suggestions for further research on the subject

of this paper.

2. Description of the components of the field in the pupil

In Fig. 1 we have depicted the general situation of an optical system with an entrance

pupil S0 and an exit pupil S1. The geometrical image plane is found at PI and a ray

has been drawn, representing the incident and focusing wave in the object and image

space. The incident wave, generated by a point source in the infinitely distant object

plane, produces a planar wavefront in the entrance pupil, the amplitude and phase

on the wavefront are denoted by the, in general, complex quantities Bx(ρ, θ) and

By(ρ, θ) for the x-polarization and y-polarization, respectively. The x-axis is defined

here by the polar angle θ = 0. The components Bx and By are needed to describe

the general situation when the incident field has been produced by e.g. a preceding

optical system, yielding an arbitrary complex amplitude distribution in the entrance

pupil. While propagating through the optical system, optical transmission and path

length variations over the cross-section of the wave will change the quantities Bx and
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By in an identical way. Birefringence effects and polarization-dependent phase jumps

at transitions between different optical media give rise to changes that are different

for Bx and By. The polar coordinates ρ, θ, together with the constant axial coordinate

z, are used to describe the field components on the entrance pupil plane S0; also, the

field components on the exit pupil sphere S1 are described with the aid of the polar

coordinates ρ, θ, together with the non-constant axial coordinate z. In both cases, we

normalize the radial coordinate with respect to the radii a0 and a1 of the images of

the diaphragm in object and image space that define the circular borders of entrance

and exit pupil. In the image plane we use the cylindrical coordinates (r, φ, f) with

f = 0 at the geometrical image plane location. Regarding the properties of the optical

system, we suppose that it satisfies Abbe’s sine condition12 and that, as it was stated

before, the object plane is located at infinity. Most optical systems obey Abbe’s sine

condition very closely (e.g. better than 0.1%) because this is a minimum requirement

for an aberration-free extended image field. The sine condition for a system with a

limited amount of spherical aberration is well approximated by the expression

ρ0 = R sin α , (1)

where ρ0 is the height of incidence of a particular ray on the entrance pupil plane, α

the angle with the optical axis in image space of the same ray and R the radius of

the exit pupil sphere.

We follow the analysis given in Ref.13 to accommodate the most general field distribu-

tion that can be encountered in the entrance or exit pupil of an optical system. The

general coherent field is written as the superposition of two orthogonal polarization
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states. In our case, we take the linear polarization states along, respectively, the x-

and y-axis as basic orthogonal states; a general elliptical state of polarization is ob-

tained via a linear superposition of the two basic linear states with relative amplitude

weights and a certain phase difference. The electric field components on the entrance

pupil along the x- and y-axes can be written

Bx(ρ, θ) = Ax(ρ, θ) exp [i2πW (ρ, θ)]

By(ρ, θ) = Ay(ρ, θ) exp [i2πW (ρ, θ) + iε(ρ, θ)] , (2)

where Ax and Ay are real-valued functions and describe the field strengths in the x-

and y-direction, W (ρ, θ) is also real-valued and describes the wavefront aberration in

units of λ, the wavelength of the light, due to optical path length variation common

to both polarization states. The angle ε(ρ, θ) is the spatially varying phase difference

that we have chosen to appear in the y-component. Nonzero values of ε are caused

by birefringence in the optical system or by polarization-dependent phase jumps at

discontinuities in the optical system (e.g. air-glass transitions, optical surface coatings

etc.). Note that ε can be restricted to the range [−π, +π].

As it was mentioned above, uniform values of Ax, Ay and ε lead to a uniform polar-

ization state of, in general, an elliptical nature. For various reasons, some other po-

larization distributions recently attracted much attention, viz. radial and azimuthal

polarization distributions,9 or, more generally, cylindrical distributions. In terms of

the linear polarization states we write these distributions as

Bx = A0 cos(θ + θ0)

By = A0 sin(θ + θ0) exp [iε] , (3)
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for the radially (θ0 = 0, π) or azimuthally (θ0 = 1
2
π, 3

2
π) oriented linear (ε = 0) polar-

ization state. This combination of x- and y-polarized states leads to a distribution in

the pupil as illustrated in Fig. 2.

It is easily shown that a cylindrical distribution of elliptically polarized light is ob-

tained by defining the polarization angle ε �= nπ, where n equals an integer value. An

optical system introducing such a polarization distribution imparts orbital angular

momentum to the incident wave; this momentum is preserved and should be detected

in the image plane.

3. Radiometric effect and Zernike expansions

An essential ingredient in our method for the computation of the field components

in the focal region is the Zernike expansion of aberrations in which the radiometric

effect is properly accounted for. The radiometric effect appears in an aplanatic optical

system, conjugated at infinity on the object side, that obeys Abbe’s sine condition,

see Ref.14, Subsec. 8.6.3(b). As a consequence, the modulus of the complex ampli-

tude in the exit pupil contains an intrinsic factor involving the numerical aperture

NA = sin α = s0 and a factor B(ρ, θ) that is specific for the pupil filling at the en-

trance of the optical system and for its transmission properties. Note that the pupil

function has been described here in terms of the polar coordinates (ρ, θ), where ρ

is the perpendicular distance of a point on the exit pupil sphere (radius R) to the

optical axis. The intrinsic factor is given explicitly as (1−s2
0ρ

2)−1/4, i.e. the aberration

factor B(ρ, θ) should be divided by the square root of a cosine. Had we used spherical
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coordinates (ζ, θ) for denoting a general point on the pupil sphere, the radiometric

factor due to the sine condition would appear as a (cos ζ)1/2 in the numerator.

We thus expand for the x-polarized field component

Bx(ρ, θ)

(1 − s2
0ρ

2)1/4
=

Ax(ρ, θ)

(1 − s2
0ρ

2)1/4
exp [i2πW (ρ, θ)]

=
∑
n,m

βx
nmR|m|

n (ρ) exp [imθ] , (4)

where the summation is over all integer n, m with n − |m| ≥ 0 and even. We refer

to .14, Sec. 9.2 and App. VII, for general information about the Zernike polynomials

R|m|
n (ρ) and their use in the theory of optical aberrations. We may point out here

that we use Zernike expansions involving the complex exponential exp [imθ], integer

m, rather than expansions involving the real trigonometric functions cos mθ, sin mθ,

integer m ≥ 0. The latter type of expansions is appropriately used when the real phase

function W (ρ, θ) is to be expanded into a Zernike series as in Ref.14, Sec. 9.2. Since

we expand the full aberration, corrected for the radiometric effect, complex values

enter naturally the scene and there is no reason to insist on real expansion functions.

The formulas that result in the sequel by using complex exponentials rather than

trigonometric functions are more concise and convenient.

The βx
nm in Eq.(4) are given by

βx
nm =

n + 1

π

∫ 1

0

∫ 2π

0

Bx(ρ, θ)

(1 − s2
0ρ

2)1/4
R|m|

n (ρ) exp [−imθ]ρdρdθ , (5)

where the factor n + 1 in front of the double integral is a consequence of the normal-

ization R|m|
n (1) = 1 so that

∫ 1

0
R

|m|
n′ (ρ)R|m|

n (ρ)ρdρ =
δnn′

2(n + 1)
. (6)
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Similar considerations hold for the y-polarized field component By(ρ, θ) which yields

Zernike coefficients βy
nm as in Eq.(5) by replacing Bx by By. Note that the Zernike

expansion can also include other systematic effects, such as known aberrations of

the imaging system or restrictions imposed on the illumination source regarding its

dimension.

We now present some examples of Zernike expansions of pupil functions under certain

polarization conditions as we have them in Section 6.

i) For a constant state of polarization and in the absence of aberrations we have

Bx = By = A0. Hence

βx
nm = βy

nm =
(n + 1)A0

π

∫ 1

0

R|m|
n (ρ)

(1 − s2
0ρ

2)1/4
ρdρ

∫ 2π

0
exp [−imθ]dθ

= 2(n + 1)A0δm0

∫ 1

0

R0
n(ρ)

(1 − s2
0ρ

2)1/4
ρdρ . (7)

In Appendix A we present a numerically tractable form for the remaining inte-

gral in Eq.(7).

ii) For the field distribution described by Eq.(3), non-uniform x- and y-components

are found. We get (assuming θ0 = 0, ε = 0 and no aberrations, Bx = By = A0)

in a similar way as given above

βx
n,±1 = ∓iβy

n,±1 = (n + 1)A0

∫ 1

0

R1
n(ρ)

(1 − s2
0ρ

2)1/4
ρdρ , (8)

and βx
nm = βy

nm = 0 when m �= ±1. For the remaining integral, see Appendix

A.

iii) We consider a linearly increasing phase function, linearly polarized so that for
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some real parameter a

Bx(ρ, θ) = By(ρ, θ) = A0 exp [iaθ] . (9)

We now find that

βx
nm = βy

nm = (n + 1)A0
exp [i2πa] − 1

iπ(a − m)

∫ 1

0

R|m|
n (ρ)

(1 − s2
0ρ

2)1/4
ρdρ , (10)

where the factor (exp [i2πa]− 1)/iπ(a−m) is to be interpreted as 2δma when a

is an integer. See Appendix A for the remaining integral

An optical system introducing such a discontinuous phase function imparts orbital

angular momentum to the incident wave; this momentum is also preserved and should

be detected in the image plane.

4. Expressions for the complex amplitudes of the Cartesian field compo-

nents

In this section we present the basic formulas to be used for the computation of the

complex field components Ex, Ey and Ez in the focal region. Using these components,

the Poynting vector can be calculated at an arbitrary point in the focal region. With

the aid of the Poynting vector, the energy flow through the focal region is obtained.

When we use the expression for the electric field energy density, the image plane

exposure is obtained in the case of, for instance, a lithographic projection system or,

alternatively, the spatially varying detector signal is found when a CCD-camera is

used for detection.

We start by expanding the x-polarized field component of the exit pupil function
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into a series involving Zernike polynomials, see Eq.(4), taking the radiometric effect

into account. We follow the developments in Ref.4 for an aberration free system, and

make the transformation from spherical coordinates (θ, φ) to cylindrical coordinates

(ρ, θ) on the exit pupil for calculation of the diffraction integral. Next, we transform

the Cartesian coordinate system (x, y, z) into a cylindrical coordinate system (r, φ, f)

in the focal region. Explicitly we substitute sin θ = s0ρ and cos θ = (1 − s2
0ρ

2)1/2,

sin θ(cos θ)1/2dθ = s2
0ρ(1−s2

0ρ
2)−1/4dρ and k·x = 2πrρ cos [θ − φ]+(f/u0)(1−s2

0ρ
2)1/2

in Eq.(2.26) from Ref.4. Next we perform the integration with respect to θ using

Eq.(2.29) from Ref.4 to obtain the field components for the general case

Ex
x(r, φ, f) = −iγs2

0 exp

[−if

u0

]∑
n,m

imβx
nm exp [imφ]

∫ 1

0
R|m|

n (ρ) ×

exp

[
if

u0

(
1 −

√
1 − s2

0ρ
2

)]{(
1 +

√
1 − s2

0ρ
2

)
Jm(2πrρ)

+
1

2

(
1 −

√
1 − s2

0ρ
2

)(
Jm+2(2πrρ) exp [2iφ]

+Jm−2(2πrρ) exp [−2iφ]
)}

ρdρ , (11)

Ex
y (r, φ, f) = −iγs2

0 exp

[−if

u0

]∑
n,m

imβx
nm exp [imφ]

∫ 1

0
R|m|

n (ρ) ×

−i

2
exp

[
if

u0

(
1 −

√
1 − s2

0ρ
2

)](
1 −

√
1 − s2

0ρ
2

)
(
Jm+2(2πrρ) exp [2iφ] − Jm−2(2πrρ) exp [−2iφ]

)
ρdρ , (12)

Ex
z (r, φ, f) = −iγs2

0 exp

[−if

u0

]∑
n,m

imβx
nm exp [imφ]

∫ 1

0
R|m|

n (ρ) ×

−is0ρ exp

[
if

u0

(
1 −

√
1 − s2

0ρ
2

)]
(
Jm+1(2πrρ) exp [iφ] − Jm−1(2πrρ) exp [−iφ]

)
ρdρ , (13)

where the quantity γ = πR
λ

is a proportionality constant. In the formulae above,

the upper index of each field component is related to the polarization component of
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the light in the entrance pupil. The radial image plane coordinate r is expressed in

units of λ/s0, the diffraction unit in the image plane. The quantity f is the defocus

parameter, related to the real-space axial coordinate z by

f = −2πu0

λ
z , (14)

u0 = 1 −
√

1 − s2
0 . (15)

The integral expressions in Eqs.(11-13) have common characteristics and, using (1−

(1− s2
0ρ

2)1/2)(1 + (1− s2
0ρ

2)1/2) = s2
0ρ

2, the resulting electric field vector in the image

space is given by

Ex(r, φ, f) = −iγs2
0 exp

[−if

u0

]∑
n,m

imβx
nm exp [imφ] ×




Vnm,0 +
s2
0

2
Vnm,2 exp [2iφ] +

s2
0

2
Vnm,−2 exp [−2iφ]

− is2
0

2
Vnm,2 exp [2iφ] +

is2
0

2
Vnm,−2 exp [−2iφ]

−is0Vnm,1 exp [iφ] + is0Vnm,−1 exp [−iφ]




. (16)

Here we have introduced, for j = −2,−1, 0, 1, 2, the integral

Vnm,j =
∫ 1

0
ρ|j|

(
1 +

√
1 − s2

0ρ
2

)−|j|+1

exp

[
if

u0

(
1 −

√
1 − s2

0ρ
2

)]
×

R|m|
n (ρ)Jm+j(2πrρ)ρdρ . (17)

The above integral shows a resemblance with a basic integral Vnm(r, f) appearing in

the scalar treatment of the diffraction problem as given in Refs.5 and 6,

Vnm(r, f) =
∫ 1

0
exp [ifρ2]R|m|

n (ρ)Jm(2πrρ)ρdρ , (18)

with the Bessel series representation

Vnm(r, f) = εm exp [if ]
∞∑
l=1

(−2if)l−1
p∑

j=0

vlj

J|m|+l+2j(2πr)

l (2πr)l . (19)
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In Eq.(19) we have εm = −1 for odd m < 0 and εm = 1 otherwise, and with p =

(n − |m|)/2, q = (n + |m|)/2 the coefficients vlj are given as

vlj = (−1)p(|m|+ l+2j)

(|m| + j + l − 1

l − 1

)(
j + l − 1

l − 1

)(
l − 1

p − j

)/(
q + l + j

l

)
, (20)

for l = 1, 2, . . . , j = 0, 1, . . . , p. To be accurate within an absolute value of 10−6, the

summation can be truncated after a maximum of l = |3f | terms.

In the limiting case of a vanishing numerical aperture (s0 → 0), the expressions for

the field components Ey and Ez result in a value of zero and we observe that the field

component Ex then yields the value corresponding to scalar diffraction.

In the general case, compared to Vnm(r, f), the integrand of Vnm,j(r, f) shows a

more complicated dependence on ρ and f because of the appearance of ρ|j| and

the other two factors containing s0. Moreover, the upper index of the Zernike poly-

nomial and the order of the Bessel function are not identical; this was an essen-

tial condition for arriving at the series expression for Vnm(r, f). In Appendix B

we will show in detail how the integral Vnm,j(r, f) can be written systematically

as a series of integrals Vnm(r, f) by finding a suitable expansion for the functions

ρ|j|(1 + (1− s2
0ρ

2)1/2)−|j|+1 exp [ if
u0

(1 − (1 − s2
0ρ

2)1/2)] in Eq.(17). Here we just outline

the successive steps to be taken for finding the coefficients of the expansion.

• We start by formally writing

(
1 +

√
1 − s2

0ρ
2

)−|j|+1

exp

[
if

u0

(
1 −

√
1 − s2

0ρ
2

)]
=

exp
[
gj + ifjρ

2
] ∞∑

k=0

hkjR
0
2k(ρ) , (21)

where the coefficients gj and fj are defined by requiring the best fit for the

constant and the quadratic term in ρ. The series of Zernike polynomials with
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coefficients hkj will be normally limited to a constant term h0j close to unity,

and, a relatively small higher order term h2j . If the value of s0, the geometrical

numerical aperture, approaches a value of, say, 0.90, or the defocus parameter

exceeds the value of 2π, higher order coefficients hkj are needed.

• To reduce the integral Vnm,j(r, f) to the analytically known result Vnm(r, f),

the upper index of the Zernike polynomial and the order of the Bessel function

should be identical. To achieve this goal, we note that in general the following

relationships between Zernike polynomials can be established

ρ|j|R|m|
n (ρ) =

|j|∑
s=0

cn|m|jsR
|m|+j
n+|j|−2s(ρ) . (22)

These relations were already derived in Ref.15 for |j| = 1, 2 and they are repro-

duced in Appendix B.

• Having determined the two or three new Zernike polynomials that we denote

by R
|m|+j
n+|j|−2s(ρ), we need to evaluate products of these Zernike polynomials with

a general polynomial R0
2k(ρ) that appeared in the first step. We will write in

Appendix B

R0
2k(ρ)R

|m|+j
n+|j|−2s(ρ) =

∞∑
t=0

dn|m|jsktR
|m|+j
n+|j|−2s+2t(ρ) , (23)

and we will show that the number of terms t in this summation is normally

limited to three.

Combining the above steps it thus appears that Vnm,j can be written as a linear com-

bination of a modest number of terms of the form Vn+|j|−2s+2t,m+j(r, fj) exp [gj].
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Having indicated the way to reduce the integrals Vnm,j(r, f) to the known type

Vnm(r, f), we now return to the expressions for the electric field components. The

y-polarized component Ey of the electric field in the entrance pupil yields an electric

vector in image space according to

Ey(r, φ, f) = −iγs2
0 exp

[−if

u0

]∑
n,m

imβy
nm exp [imφ] ×




− is2
0

2
{Vnm,2 exp [2iφ] − Vnm,−2 exp [−2iφ]}

Vnm,0 − s2
0

2
{Vnm,2 exp [2iφ] + Vnm,−2 exp [−2iφ]}

−s0 {Vnm,1 exp [iφ] + Vnm,−1 exp [−iφ]}




. (24)

The magnetic induction components B are obtained from the electric components

according to

B =
s ×E

v
, (25)

where s is the unit propagation vector from a point in the exit pupil to the focal plane

and v is the speed of propagation of the light (equal to c in vacuum). Using Eq.(24)

the magnetic induction vector components are written as

B(r, φ, f) = −inrγs2
0

c
exp

[−if

u0

]∑
n,m

im exp[imφ] ×



−βy
nmVnm,0 − s2

0

2
(βy

nm + iβx
nm)Vnm,2 exp[2iφ]

−s2
0

2
(βy

nm − iβx
nm) Vnm,−2 exp[−2iφ]

βx
nmVnm,0 − s2

0

2
(βx

nm − iβy
nm) Vnm,2 exp[2iφ]

−s2
0

2
(βx

nm + iβy
nm)Vnm,−2 exp[−2iφ]

−s0 (βx
nm − iβy

nm) Vnm,1 exp[iφ] − s0 (βx
nm + iβy

nm)Vnm,−1 exp[−iφ]




, (26)

where nr denotes the refractive index of the dielectric medium.
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Formal expressions for the electric energy density and the Poynting vector

When we focus our attention to the electric energy per unit volume in the focal re-

gion, we do not explicitly need the magnetic induction components. For light energy

detection purposes (photographic plate, photoresist, CCD-detector etc.) the time av-

eraged value of the electric field energy density 〈We〉 has to be considered and for a

harmonic field in a homogeneous medium with a dielectric constant ε this yields

〈We〉 =
ε0

2
n2

r|E|2 . (27)

The electric field components from Eqs.(16) and (24) are used to compute the scalar

product E∗ · E.

To examine the energy flow through the focal region, we have to evaluate the time

averaged values of the Cartesian components of the Poynting vector S and this leads

to the expression

〈S〉 =
ε0c

2

2
Re[E× B∗] . (28)

Because of their lengths, we do not present here the explicit analytic expressions for

〈We〉 and 〈S〉.

5. High-NA focal field distributions

In this section we present some illustrative examples of the electromagnetic field

distribution in the focal region that have been obtained using our analytical approach.

We also briefly comment on the computational aspects of the method.
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A. Focal field distributions

We start by considering the aberration-free case and a linear state of polarization in

the entrance pupil. At low numerical aperture values, a uniform amplitude and phase

distribution in the exit pupil results in the well known Airy distribution in the focal

region. To study the high-NA effects in the aberration-free case, we first evaluate the

Zernike coefficients due to the radiometric effect for a numerical aperture of 0.95, see

Eq.(7). In order to have an acceptable accuracy and demonstrate the strength of our

method, we have considered Zernike coefficients with m = 0 and a maximum lower

index up to n = 16 and up to k = 12 coefficients in the expansion of Eq.(7) (more

exactly: N = 4 in Eq.(B26) and a third order Taylor expansion of Eq.(B25)).

In Fig. 3 we have plotted the in-focus energy density at the high NA value of 0.95

as a function of the radial coordinate r; the incident field is linearly polarized along

the x-axis (θ = 0). The dotted curve corresponds to the energy density distribution

along the x-axis, the dashed curve applies to the y-axis (θ = π/2). As a comparison,

the scalar intensity distribution (Airy-function) has been shown (full curve). As it

is well-known from previous publications Ref.4, the distribution in the cross-section

with θ = 0 is significantly broader than the Airy distribution. The calculations show

that in the cross-section θ = π/2 the FWHM of the energy density function becomes

slightly smaller than the FWHM of the Airy distribution and that the side lobes are

more pronounced. This would be consistent with the observation that the amplitude

distribution on the exit pupil in terms of the radial coordinate ρ increases towards

the rim of the pupil due to the radiometric effect.
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We also executed a numerical evaluation of the solution as given by Ref.4 and com-

pared this result with our quasi-analytical solution. A discrepancy of less than 10−6

in intensity was observed, depending on the point density when carrying out the nu-

merical integration.

In Figs. 4 and 5, we show the logarithm of the modulus of the x-component of the

electric field along, respectively, the x- and y-axis (the incident field is polarized along

the x-axis). Considering the positions of the first zeros in the focal plane along the

y-axis and the x-axis, we again observe a ratio of the widths of these energy density

cross-sections of typically 80%. As we noted above, this asymmetrical effect is well-

known and has been numerically evaluated before.4,16

In Figs. 6 and 7, the corresponding y- and z-components (moduli) of the electric field

have been shown along the diagonal x = y and the x-axis, respectively. As it was to

be expected, the electric field on the optical axis is zero.

The next example applies to an entrance pupil distribution with in each point a ra-

dially oriented linear state of polarization; the modulus of the amplitude and the

phase of the wave are uniform. The resulting Poynting vector distribution is shown

in Fig. 8. The Zernike coefficients describing the electric field in the exit pupil have

been given in Eq.(7). Again the numerical aperture is as high as 0.95. It is interesting

to note that the Poynting vector distributions for azimuthally and radially polarized

light distributions in the entrance pupil are identical. This is understood by the inter-

changeability of the electric field and magnetic induction for the radial and azimuthal

linear polarization states.

The third example is related to the helical phase distribution as defined by the coef-
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ficients calculated in Eq.(9). The helical structure of the incoming wave front carries

orbital angular momentum and from Fig. 9 it can be concluded that this angular mo-

mentum is still present in the focal plane (a detailed analysis should show that it is

effectively preserved). The Poynting vector distribution is given for a 0.95 numerical

aperture imaging system.

It can be proven that, within the approximations of the model and for the chosen

aberrations, all shown distributions are either symmetric with respect to the focal

plane or with respect to the geometrical focal point; therefore, we have chosen to plot

only the values along the positive z-axis.

B. Further aspects of our approach

We have not yet optimized our computational schemes with respect to computation

time, neither did we make yet an extensive comparison in this respect with existing

numerical software packages. For a list of advantages of our analytic approach over

strictly numerical methods, we refer to Ref.6, Subsec. 4.B. In particular, we may point

out that the variables and coefficients r, φ, f and β all occur in a separated form in

our formulas for the field components. This means, for instance, that the computa-

tional load is reduced substantially when one or more of the variables r, φ, f is fixed.

Our method for evaluating the Zernike coefficients is based on the computation of

individual inner products. More efficient and stable methods employing global Fourier

techniques are possible but have not been implemented yet.17 We intend to use

these potential high-speed computational method so as to achieve near real-time

3D-visualization of the focal fields such as shown in Figs. 4-9. Varying states of po-
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larization and aberration could be effectively handled by fully exploiting the basic

separation of variables and coefficients in our analysis.

Finally we would like to draw the attention to another aspect of our analysis: the

explicit dependence of e.g. the field energy density on our β-coefficients. The latter

represent the particularities of the optical system, e.g. its aberration and transmission

non-uniformity. In Ref.7, a method has been pointed out to retrieve the aberrational

data of an optical system from the through-focus intensity distribution. This method

is based on a scalar treatment of the diffraction problem but the radiometric effect

arising at high NA-values can be included, see Ref.8. The method is based on the

Zernike expansion of the unknown complex pupil function whose coefficients have to

be found by a matching procedure. In a future paper we will extend the method from

Ref.8 to the fully vectorial diffraction problem. The method being based again on a

matching of the β-coefficients, it can only be conceived in an analytical framework

like the one we have described in this paper.

6. Conclusions

We have demonstrated that it is possible to extend the application of an analytic

result applying to Nijboer-Zernike diffraction integrals from the scalar case to the

fully vectorial case. The radiometric amplitude effects, the wave aberration and the

polarization state of the wave in the exit pupil are included in an analytic procedure

that makes multiple use of our ’extended’ Nijboer-Zernike expression for the diffrac-

tion integral. Two sets of complex Zernike coefficients, one for each orthogonal state

of polarization, is sufficient to describe the electromagnetic field in the focal region.
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The feasibility of our method is proven by the calculation of extremely high numerical

aperture examples over a large range of both the radial as well as the axial coordinate.

Although the examples in this paper do not contain a large amount of aberration,

the Zernike-coefficients describing the system have large values of the indices n and

m, caused by the inclusion of the radiometric effect. Practical limits for the radial

and total axial excursion are of the order of 20 diffraction units in both orthogonal

directions; a simple convergence criterion determines to what extent the analytic se-

ries expansion of the diffraction integral has to be continued.

A comparison of computational speed between our analytic approach and purely

numerical methods has been planned for the near future. We also intend to further

exploit the analytic nature of our solution in order to obtain a retrieval scheme for the

aberration and transmission defects of an optical system using the complex Zernike

coefficients. Earlier work on a retrieval scheme for the scalar diffraction problem has

shown promising results; the next step is its extension to the fully vectorial case.
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Appendix A: The radiometric effect and Zernike

integrals

In this Appendix we evaluate the integral

Im
m+2p =

∫ 1

0

Rm
m+2p(ρ)

(1 − s2
0ρ

2)1/4
ρdρ , m, p = 0, 1, . . . , (A1)

in a form that is convenient for numerical computation.

We start from the result, valid for α > −1,

∫ 1

0
ραRm

m+2p(ρ)ρdρ = (−1)p (m − α)(m − α + 2) · . . . · (m − α + 2p − 2)

(m + α + 2)(m + α + 4) · . . . · (m + α + 2p + 2)

=
1

2
(−1)p (1

2
m − 1

2
α)p

(1
2
m + 1

2
α + 1)p+1

, (A2)

where we have used Pochhammer’s symbol, see Ref.18, Eq.(6.1.21) on p. 256,

(a)0 = 1 ; (a)n = a(a + 1) · . . . · (a + n − 1) , n = 1, 2, . . . . (A3)

This result is readily proven as follows. It is well-known, see Ref.14, App. VII, Sec. 2,

that

Rm
m+2p(ρ) = ρmP (0,m)

p (2ρ2 − 1) , (A4)

where P
(α,β)
k is the Jacobi polynomial in the notation of Ref.19, Chap. 4. Substituting

z = 2ρ2 − 1 in the integral in Eq.(A2) and noting Rodrigues’ formula

P (0,m)
p (z) =

(−1)p

2pp!

(
d

dz

)p [
(1 − z)p(1 + z)p+m

]
, (A5)

we obtain Eq.(A2) by p partial integrations and some administration.

From the Taylor expansion of (1 − x)−1/4 around x = 0,

(1 − x)−1/4 =
∞∑

k=0

(1
4
)k

k!
xk , (A6)
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it follows from Eq.(A2) that

Im
m+2p =

∞∑
k=0

(1
4
)k

k!
s2k
0

∫ 1

0
ρ2kRm

m+2p(ρ)ρdρ

=
1

2
(−1)p

∞∑
k=0

(1
4
)k

k!

(1
2
m − k)p

(1
2
m + k + 1)p+1

s2k
0 . (A7)

We observe that

0 ≤ (1
4
)k

k!
≤ 1

Γ(1
4
)k3/4

, k = 1, 2, . . . (A8)

and that

∣∣∣∣∣ (1
2
m − k)p

(1
2
m + k + 1)p+1

∣∣∣∣∣ ≤ 1

k + 1
2
m + p + 1

, k, m, p = 0, 1, . . . . (A9)

Hence when s0 is not very close to 1, a modest number of terms in Eq.(A7) is required

for accurate evaluation of Im
m+2p.

From Eq.(A7) the integrals in Eqs.(7,8,10) are readily obtained in a numerically

convenient form.
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Appendix B: Reduction of integrals to basic form

In this Appendix, we give the detailed derivation that is needed to transform the

integral Vnm,j(r, f) into a series of integrals Vnm(r, f).

We shall first show that

√
1 − s2

0ρ
2 = −1

2
u0

∞∑
n=0

(
dn−1

0

2n − 1
− dn+1

0

2n + 3

)
R0

2n (ρ) , (B1)

ln
[
1 +

√
1 − s2

0ρ
2

]
=

1

2
d0 + ln [

u0

d0

] − 1

2

∞∑
n=1

(
dn

0

n
− dn+1

0

n + 1

)
R0

2n (ρ) , (B2)

where

u0 = 1 −
√

1 − s2
0 , (B3)

d0 =
(

u0

s0

)2

. (B4)

For this we use the generating functions of R0
2n and R1

2n+1 in the form

∞∑
n=0

znR0
2n (ρ) =

1√
(1 + z)2 − 4zρ2

, (B5)

∞∑
n=0

znR1
2n+1 (ρ) =

2ρ√
(1 + z)2 − 4zρ2

(
1 + z +

√
(1 + z)2 − 4zρ2

) , (B6)

see Ref.14, App. VII, Eq.(30) on p. 771. We may note here that the generating function

as given in Ref.14, Sec. 9.2, Eq.(7) on p. 465, is incorrect due to two minus signs that

should be plus signs. By taking z = d0, so that

4z

(1 + z)2
= s2

0 , (B7)

we can write Eq.(B5) as

ρ√
1 − s2

0ρ
2

= (1 + d0)
∞∑

n=0

dn
0ρR0

2n (ρ) , (B8)
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and we can write Eq.(B6) as

d

dρ

(
ln
[
1 +

√
1 − s2

0ρ
2

])
=

−s2
0ρ√

1 − s2
0ρ

2

(
1 +

√
1 − s2

0ρ
2

)

= −2d0

∞∑
n=0

dn
0R

1
2n+1 (ρ) , (B9)

respectively. By integrating Eq.(B8) from 0 to ρ we get

1

s2
0

(
1 −

√
1 − s2

0ρ
2

)
= (1 + d0)

∞∑
n=0

dn
0

∫ ρ

0
�R0

2n (�) d� , (B10)

and by integrating Eq.(B9) from ρ to 1 we get

ln
[
1 +

√
1 − s2

0ρ
2

]
− ln

[
u0

d0

]
= 2d0

∞∑
n=0

dn
0

∫ 1

ρ
R1

2n+1 (�) d� . (B11)

It remains to evaluate the integrals

∫ ρ

0
�R0

2n (�) d� ,
∫ 1

ρ
R1

2n+1 (�) d� . (B12)

As to the first integral in Eq.(B12) we note that R0
2n(�) = P2n(2�2 − 1) with Pn the

nth Legendre polynomial. By Ref.20, Eq.(10.10) on p.190, we have

(2n + 1)Pn(x) = P ′
n+1(x) − P ′

n−1(x) , n = 1, 2, . . . . (B13)

Hence

∫ ρ

0
�R0

2n (�) d� =
1

4(2n + 1)

(
R0

2n+2(ρ) − R0
2n−2(ρ)

)
, (B14)

for n= 1, 2, . . . , where we have used that R0
2n+2(0) = R0

2n−2(0) = (−1)n+1. Also

∫ ρ

0
�R0

0 (�) d� =
1

2
ρ2 =

1

4

(
R0

2(ρ) + R0
0(ρ)

)
. (B15)
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As to the second integral in Eq.(B12) we note Ref.15, Eq.(2,32) on p. 30, which implies

that

R1
2n+1(ρ) =

1

4(n + 1)

d

dρ

(
R0

2n+2(ρ) − R0
2n(ρ)

)
, (B16)

for n= 0, 1, . . .. Hence

∫ 1

ρ
R1

2n+1 (�) d� =
−1

4(n + 1)

(
R0

2n+2(ρ) − R0
2n(ρ)

)
, (B17)

for n= 0, 1, . . . , where we have used that R0
2n+2(1) = R0

2n(1) = 1. Inserting (Eqs.

B14-B15) into Eq.(B10) and Eq.(B17) into Eq.(B11), we easily obtain the results in

Eqs.(B1) and (B2).

Step I

Using the results obtained in the derivation above, we first write

(−|j| + 1) ln
[
1 +

√
1 − s2

0ρ
2

]
+

if

u0

(
1 −

√
1 − s2

0ρ
2

)
=

(−|j| + 1)
∞∑

n=0

bnR0
2n(ρ) + if

∞∑
n=0

anR0
2n(ρ) =

gj + ifjρ
2 +

∞∑
n=2

τnjR
0
2n(ρ) . (B18)

The various coefficients are given by

a0 =
1

2
− 1

6
d0

an =
1

2

(
dn−1

0

2n − 1
− dn+1

0

2n + 3

)
, n = 1, 2, . . . , (B19)

b0 =
1

2
d0 + ln

[
u0

d0

]

bn = −1

2

(
dn

0

n
− dn+1

0

n + 1

)
, n = 1, 2, . . . , (B20)

and

gj = (−|j| + 1)(b0 − b1) + if(a0 − a1) , (B21)
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fj = 2fa1 − 2i(−|j| + 1)b1 , (B22)

τnj = (−|j| + 1)bn + ifan , n = 2, 3, . . . (B23)

We now obtain for the original expression

(
1 +

√
1 − s2

0ρ
2

)−|j|+1

exp

[
if

u0

(
1 −

√
1 − s2

0ρ
2

)]
= exp

[
gj + ifjρ

2
]
Gj(ρ) (B24)

with

Gj(ρ) = exp

[ ∞∑
n=2

τnjR
0
2n(ρ)

]
. (B25)

We remark that the function Gj(ρ) is what remains after splitting off an exponential

factor comprising the best quadratic approximation to the left-hand side function of

ρ in Eq.(B18). Consequently, the function Gj(ρ) can be expected to be numerically

small, typically significantly less than unity. In that case we write

Gj(ρ) ≈ 1 +
N∑

n=2

τnjR
0
2n(ρ) , N = 2, 3 or 4 . (B26)

Inspection of Eq.(B23) shows that the coefficients τnj depend linearly on f and in a

more complicated way on s0. For large values of s0 and large f it may be necessary

to include the quadratic term

1

2

(
N∑

n=2

τnjR
0
2n(ρ)

)2

(B27)

into the approximation of Gj(ρ). This occurs only for s0 as large as 0.90 and |f | = 2π

or larger. In that case one may use the formula Ref.21, Corollary 6.8.3 on p.320,

R0
2n′R0

2n =
n
′∑

r=0

An
′−rArAn−r

An′+n−r

2n
′
+ 2n − 4r + 1

2n′ + 2n − 2r + 1
R0

2n′+2n−4r (B28)

for 0 ≤ n
′ ≤ n with

An =
1

n!
1 · 3 · . . . · (2n − 1) =

1

2n

(
2n

n

)
, (B29)
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to write the products of Zernike polynomials with upper index zero in Eq.(B24) as

linear combinations of these Zernike polynomials. Note that now the expansion co-

efficients of Gj depend quadratically on f . The function Gj can of course also be

expanded directly into a Zernike series (n = 0), but then the dependence of the coef-

ficients on f is awkward.

Step II

In order to reduce the expressions for the field components to a form that is ana-

lytically tractable, we need to be able to adapt the upper index m ≥ 0 of Zernike

polynomials according to the recursion formulae given by Nijboer.15 The starting

point are the formulae

ρRm
n (ρ) =

q + 1

n + 1
Rm+1

n+1 (ρ) +
p

n + 1
Rm+1

n−1 (ρ) , (B30)

ρRm
n (ρ) =

p + 1

n + 1
Rm−1

n+1 (ρ) +
q

n + 1
Rm−1

n−1 (ρ) , (B31)

where, as usually, p = (n−m)/2 and q = (n+m)/2, that permit us to raise or to lower

the upper index by one unit. A straightforward calculation yields the expressions to

induce a change of ±2 in the upper index,

ρ2Rm
n (ρ) =

(p + 1)(p + 2)

(n + 1)(n + 2)
Rm−2

n+2 (ρ)

+
2(p + 1)q

n(n + 2)
Rm−2

n (ρ) +
q(q − 1)

n(n + 1)
Rm−2

n−2 (ρ) , (B32)

ρ2Rm
n (ρ) =

(q + 1)(q + 2)

(n + 1)(n + 2)
Rm+2

n+2 (ρ)

+
2p(q + 1)

n(n + 2)
Rm+2

n (ρ) +
p(p − 1)

n(n + 1)
Rm+2

n−2 (ρ) . (B33)

The coefficients cn|m|js in Section 4 are easily extracted from the formulae above.

Step III
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We finally need to write any product R0
2kR

m
n as a linear combination of Rm

n+2t. From

the formulae above and with R0
2(ρ) = 2ρ2 − 1 we derive

R0
2(ρ)Rm

n (ρ) = 2
(p + 1)(q + 1)

(n + 1)(n + 2)
Rm

n+2(ρ)+
m2

n(n + 2)
Rm

n (ρ)+2
pq

n(n + 1)
Rm

n−2(ρ) (B34)

with, again, p = (n − m)/2 and q = (n + m)/2.

Higher order polynomials R0
2k(ρ) can be written as a polynomial having the argument

R0
2(ρ) = 2ρ2 − 1 according to

R0
2k(ρ) = Pk

[
R0

2(ρ)
]

=

[ 1
2
k]∑

l=0

(−1)l

2k

(
k

l

)(
2k − 2l

k

)(
R0

2(ρ)
)k−2l

. (B35)

Here Pk is the kth Legendre polynomial and [x] is the largest integer ≤ x. Using

Eq.(B35) and then Eq.(B34) repeatedly, we can write any product R0
2k(ρ)Rm

n (ρ) as

a linear combination of at most 2k + 1 terms Rm
n+2t(ρ). Accordingly, we can write in

general

R0
2k(ρ)R

|m|+j
n+|j|−2s(ρ) =

∑
t

dn|m|jsktR
|m|+j
n+|j|−2s+2t(ρ) . (B36)

In practice, we will observe that the number of required terms in the series
∑

k hkjR
0
2k(ρ)

at the right-hand side of Eq.(21) is limited to k = 2 and that we have to proceed to

values of k=3 or 4 only at extremely high values of the numerical aperture or at very

large defocusing values. Therefore, the computational task does not get out of hand

in practical cases.
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Figure captions

Figure 1: The propagation of the incident wave from the entrance pupil S0 through the

optical system towards the exit pupil S1 and the focal region at the image

plane PI . The incident wave has a planar wave front. The unit propagation

vector has been denoted by s0, the meridional and tangential field components

are directed along, respectively, the unit vectors e0 and g0. After propagation

through the optical system, the field components in the exit pupil are projected

onto the unit vectors e1 and g1, that form an orthogonal basis with the local

propagation vector s1. The position on the exit pupil sphere is defined by means

of the cylindrical coordinates (ρ, θ); the position in the image plane region is

defined by the cylindrical coordinate system (r, φ, f). The maximum aperture

(NA) of the imaging pencil is represented by s0 = sin αmax.

Figure 2: The distribution of polarization states over e.g. the entrance pupil for a certain

value of the coordinate ρ. The angle ε is constant over the pupil and equals 0;

θ0 = 1
3
π.

Figure 3: A comparison of the energy density function in the high-NA focus (f=0) and

the scalar Airy distribution as a function of the radial coordinate r. The energy

density function in the cross-section θ = 0 is represented by the dotted line, the

one in the cross-section θ = π/2 by the dashed line. The scalar Airy distribution

is shown by the full curve. The fact that the dashed high-aperture curve does

not reach very low levels is due to the sampling density used in plotting this

curve.
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Figure 4: The modulus of the x-polarization component of the electric field distribution in

the focal region along the x-axis (θ = 0). The amplitude of the field component

is indicated by a graylevel on a logarithmic scale, the contours denote equi-

phase lines. The radial coordinate r has been normalized with respect to the

diffraction unit, λ/s0, the axial coordinate with respect to the quantity u0, see

Eq.(15).

Figure 5: The modulus of the x-polarization component of the electric field distribution in

the focal region along the y-axis (θ = π
2
).The amplitude of the field component

is indicated by a graylevel on a logarithmic scale, the contours denote equi-phase

lines.

Figure 6: The modulus of the y-polarization component of the electric field distribution

in the focal region along the diagonal x = y (θ = π
4
).

Figure 7: The modulus of the z-polarization component of the electric field distribution

in the focal region along the x-axis (θ = 0).

Figure 8: A radially polarized entrance pupil distribution yields a radially symmetric

Poynting vector distribution in the focal region. The absolute value of the Poynt-

ing vector is indicated by a graylevel on a logarithmic scale, the direction is given

by arrows. Note that the value in the geometrical focus equals zero.

Figure 9: A helical phase distribution in the presence of a linear polarization state in the

entrance pupil yields a rotating Poynting vector field in the focal region. The

absolute value of the Poynting vector is indicated by a graylevel on a logarithmic
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scale, its direction is given by a set of arrows.
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Figure 6:
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Figure 7:
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Figure 8:
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Figure 9:
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