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Abstract: The Ohtsuka–Vălean sum is extended to evaluate an extensive number of trigonometric
and hyperbolic sums and products. The sums are taken over finite and infinite domains defined in
terms of the Hurwitz–Lerch zeta function, which can be simplified to composite functions in special
cases of integer values of the parameters involved. The results obtained include generalizations
of finite and infinite products and sums of tangent, cotangent, hyperbolic tangent and hyperbolic
cotangent functions, in certain cases raised to a complex number power.
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1. Introduction

In the work of Ohtsuka [1] and Vălean [2] the sum involving the difference of two
divergent series featuring the cosecant and hyperbolic cosecant functions was introduced,
called the Ohtsuka–Vălean sum. In their work the integral over an infinite product with
factors containing the secant and the hyperbolic secant with powers of two was studied.
The study of divergent series is of high interest to the scientific community. Historically,
studies on divergent series started in the work of Euler, Poisson, Fourier and Ramanjuan
to name a few, and although it was not until Cauchy that the definitions of convergence
were formally stated, these mathematicians were knowledgeable enough to know when a
series converged and when it did not. Divergent series have been studied in the works of
Silverman [3], Hardy [4], Candelpergher [5] and Mitschi et al. [6]. The product involving
trigonometric functions have been studied in the works by Sommen [7] and Zotev [8].

In this paper, we apply the contour integral method in [9] to the Ohtsuka–Vălean
sum to produce analogous sums involving the Hurwitz–Lerch zeta function. These sums
will be used to derive new products and sums involving trigonometric functions. Double
infinite sums in terms mathematical constants are also evaluated. The general flavour of
this work is that we are able to write down both finite and infinite sums and products
involving special functions and their composite functions. We are also able to compare
the infinite form of a series and its partial sum, which could have interesting analysis
properties. Our preliminaries start with a contour integral method and a few formulae. Let
a, k, m and w be general complex numbers and n ∈ [1, ∞), the contour integral form [9] of
the Ohtsuka–Vălean sums are given by

1
2πi

∫
C

∞

∑
n=1

aww−k−1(csc
(
2−n(m + w)

)
− csch

(
2−n(m + w)

))
dw

=
1

2πi

∫
C

aww−k−1
(

coth
(

m + w
2

)
− cot

(
m + w

2

))
dw, (1)
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1
2πi

∫
C

n

∑
j=0

aww−k−1
(

csc
(

2−j(m + w)
)
− csch

(
2−j(m + w)

))
dw

=
1

2πi

∫
C

aww−k−1
(

cot
(

2−n−1(m + w)
)
− coth

(
2−n−1(m + w)

)
− cot(m + w) + coth(m + w))dw. (2)

The derivations follow the method used by us in [9]. This method involves using a
form of the generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw, (3)

where y, w ∈ C and C is in general an open contour in the complex plane where the bilinear
concomitant [9] has the same value at the end points of the contour. This method involves
using a form of Equation (3), multiplying both sides by a function and then taking the sum
of both sides. This yields a sum in terms of a contour integral. Then, we multiply both
sides of Equation (3) by another function and take the infinite sum of both sides such that
the contour integral of both equations are the same.

2. The Hurwitz–Lerch Zeta Function

We use Equation (1.11.3) in [10] where Φ(z, s, v) is the Hurwitz–Lerch zeta function,
which is a generalization of the Hurwitz zeta ζ(s, v) and polylogarithm functions Lin(z).
The Lerch function has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, v 6= 0,−1,−2,−3, . . . , and is continued analytically by its integral represen-
tation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z 6= 1 and Re(s) > 0, or z = 1 and Re(s) > 1. Almost
all Hurwitz–Lerch zeta functions have an asymmetrical zero distribution [11].

3. Derivation of the Infinite Sums of the Contour Integral Representation

In this section, we use the Cauchy integral formula and the stated contour integral
method to derive the infinite sum of the Hurwitz–Lerch zeta functions in terms of its
contour integral representation.

3.1. Left-Hand Side First Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
i2−n(2y + 1), then multiply both sides by −2ieim2−n(2y+1) and take the infinite sums over
y ∈ [0, ∞) and n ∈ [1, ∞) and finally, we simplify in terms of the Hurwitz–Lerch zeta
function to get



Symmetry 2022, 14, 1551 3 of 19

−
∞

∑
n=1

i2k+1(i2−n)
keim2−n

Φ
(

ei21−nm,−k, 1
2 (1− i2n log(a))

)
Γ(k + 1)

= − 1
2πi

∞

∑
n=1

∞

∑
y=0

∫
C

2iaww−k−1ei2−n(2y+1)(m+w)dw

= − 1
2πi

∫
C

∞

∑
n=1

∞

∑
y=0

2iaww−k−1ei2−n(2y+1)(m+w)dw

=
1

2πi

∫
C

∞

∑
n=1

aww−k−1 csc
(
2−n(m + w)

)
dw (6)

from Equation (1.232.3) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sums to converge. We apply Tonelli’s theorem for multiple sums, see page 177 in [13] as
the summands are of bounded measure over the space C× [1, ∞)× [0, ∞).

3.2. Left-Hand Side Second Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
2−n(2y + 1), then multiply both sides by 2em2−n(2y+1) and take the infinite sums over
y ∈ [0, ∞) and n ∈ [1, ∞) and finally, we simplify in terms of the Hurwitz–Lerch zeta
function to get

∞

∑
n=1

2k+1(2−n)
kem2−n

Φ
(

e21−nm,−k, 1
2 (2

n log(a) + 1)
)

Γ(k + 1)

=
1

2πi

∞

∑
n=1

∞

∑
y=0

∫
C

2aww−k−1e2−n(2y+1)(m+w)dw

=
1

2πi

∫
C

∞

∑
n=1

∞

∑
y=0

2aww−k−1e2−n(2y+1)(m+w)dw

= − 1
2πi

∫
C

∞

∑
n=1

aww−k−1csch
(
2−n(m + w)

)
dw (7)

from Equation (1.232.3) in [12] where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sums to converge. We apply Tonelli’s theorem for multiple sums, see page 177 in [13], as
the summands are of bounded measure over the space C× [1, ∞)× [0, ∞).

3.3. Right-Hand Side First Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
i(y + 1), then multiply both sides by 2ieim(y+1) and take the infinite sums over y ∈ [0, ∞)
and finally, we simplify in terms of the Hurwitz–Lerch zeta function to get

2ie
1
2 i(πk+2m)Φ

(
eim,−k, 1− i log(a)

)
Γ(k + 1)

=
1

2πi

∞

∑
y=0

∫
C

2iaww−k−1ei(y+1)(m+w)dw

=
1

2πi

∫
C

∞

∑
y=0

2iaww−k−1ei(y+1)(m+w)dw

=
1

2πi

∫
C

(
−aww−k−1 cot

(
m + w

2

)
− iaww−k−1

)
dw (8)
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from Equation (1.232.1) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sum to converge. We apply Fubini’s theorem for integrals and sums, see page 178 in [13],
as the summand is of bounded measure over the space C× [0, ∞).

Derivation of the Additional Contour

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a),
then multiply both sides by −i and simplify to get

− i logk(a)
Γ(k + 1)

= − 1
2πi

∫
C

iaww−k−1dw (9)

3.4. Right-Hand Side Second Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
y + 1, then multiply both sides by −2em(y+1) and take the infinite sums over y ∈ [0, ∞) and
finally, we simplify in terms of the Hurwitz–Lerch zeta function to get

− 2emΦ(em,−k, log(a) + 1)
Γ(k + 1)

= − 1
2πi

∞

∑
y=0

∫
C

2aww−k−1e(y+1)(m+w)dw

= − 1
2πi

∫
C

∞

∑
y=0

2aww−k−1e(y+1)(m+w)dw

=
1

2πi

∫
C

(
aww−k−1 coth

(
m + w

2

)
+ aww−k−1

)
dw (10)

from Equation (1.232.1) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sum to converge. We apply Fubini’s theorem for integrals and sums, see page 178 in [13],
as the summand is of bounded measure over the space C× [0, ∞).

Derivation of the Additional Contour

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a),
then simplify to get

logk(a)
Γ(k + 1)

=
1

2πi

∫
C

aww−k−1dw (11)

4. Derivation of the Finite Sums of the Contour Integral Representation

In this section, we use the Cauchy integral formula and the stated contour integral
method to derive the finite sum of the Hurwitz–Lerch zeta function in terms of its contour
integral representation.

4.1. Left-Hand Side First Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
i2−j(2y + 1), then multiply both sides by −2iei2−jm(2y+1) and take the infinite and finite
sums over y ∈ [0, ∞) and j ∈ [0, n] and finally, we simplify in terms of the Hurwitz–Lerch
zeta function to get
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−
n

∑
j=0

i2k+1(i2−j)kei2−jmΦ
(

ei21−jm,−k, 1
2
(
1− i2j log(a)

))
Γ(k + 1)

= − 1
2πi

n

∑
j=0

∞

∑
y=0

∫
C

2iaww−k−1ei2−j(2y+1)(m+w)dw

= − 1
2πi

∫
C

n

∑
j=0

∞

∑
y=0

2iaww−k−1ei2−j(2y+1)(m+w)dw

=
1

2πi

∫
C

n

∑
j=0

aww−k−1 csc
(

2−j(m + w)
)

dw (12)

from Equation (1.232.3) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sums to converge. We apply Tonelli’s theorem for multiple sums, see page 177 in [13], as
the summands are of bounded measure over the space C× [0, n]× [0, ∞).

4.2. Left-Hand Side Second Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
2−j(2y + 1), then multiply both sides by 2e2−jm(2y+1) and take the infinite sums over
y ∈ [0, ∞) and j ∈ [0, n] and finally, we simplify in terms of the Hurwitz–Lerch zeta
function to get

n

∑
j=0

2k+1(2−j)ke2−jmΦ
(

e21−jm,−k, 1
2
(
2j log(a) + 1

))
Γ(k + 1)

=
1

2πi

n

∑
j=0

∞

∑
y=0

∫
C

2aww−k−1e2−j(2y+1)(m+w)dw

=
1

2πi

∫
C

n

∑
j=0

∞

∑
y=0

2aww−k−1e2−j(2y+1)(m+w)dw

= − 1
2πi

∫
C

n

∑
j=0

aww−k−1csch
(

2−j(m + w)
)

dw (13)

from Equation (1.232.3) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sums to converge. We apply Tonelli’s theorem for multiple sums, see page 177 in [13], as
the summand is of bounded measure over the space C× [0, n]× [0, ∞).

4.3. Right-Hand Side First Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
2i(y + 1), then multiply both sides by 2ie2im(y+1) and take the infinite sum over y ∈ [0, ∞)
and finally, we simplify in terms of the Hurwitz–Lerch zeta function to get

(2i)k+1e2imΦ
(

e2im,−k, 1− 1
2 i log(a)

)
Γ(k + 1)

=
1

2πi

∞

∑
y=0

∫
C

2iaww−k−1e2i(y+1)(m+w)dw

=
1

2πi

∫
C

∞

∑
y=0

2iaww−k−1e2i(y+1)(m+w)dw

= − 1
2πi

∫
C

(
aww−k−1 cot(m + w) + iaww−k−1

)
dw (14)
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from Equation (1.232.1) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sum to converge. We apply Fubini’s theorem for integrals and sums, see page 178 in [13],
as the summand is of bounded measure over the space C× [0, ∞).

Derivation of the Additional Contour

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a),
then multiply both sides by −i and simplify to get

− i logk(a)
Γ(k + 1)

= − 1
2πi

∫
C

iaww−k−1dw (15)

4.4. Right-Hand Side Second Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
i2−n(y + 1), then multiply both sides by −2ieim2−n(y+1) and take the infinite sum over
y ∈ [0, ∞) and finally, we simplify in terms of the Hurwitz–Lerch zeta function to get

−
2i(i2−n)

keim2−n
Φ
(

ei2−nm,−k, 1− i2n log(a)
)

Γ(k + 1)

= − 1
2πi

∞

∑
y=0

∫
C

2iaww−k−1ei2−n(y+1)(m+w)dw

= − 1
2πi

∫
C

∞

∑
y=0

2iaww−k−1ei2−n(y+1)(m+w)dw

=
1

2πi

∫
C

(
aww−k−1 cot

(
2−n−1(m + w)

)
+ iaww−k−1

)
dw (16)

from Equation (1.232.1) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sum to converge. We apply Fubini’s theorem for integrals and sums, see page 178 in [13],
as the summand is of bounded measure over the space C× [0, ∞).

Derivation of the Additional Contour

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a),
then multiply both sides by i and simplify to get

i logk(a)
Γ(k + 1)

=
1

2πi

∫
C

iaww−k−1dw (17)

4.5. Right-Hand Side Third Contour Integral

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a) +
2(y + 1), then multiply both sides by −2e2m(y+1) and take the infinite sum over y ∈ [0, ∞)
and finally, we simplify in terms of the Hurwitz–Lerch zeta function to get

−
2k+1e2mΦ

(
e2m,−k, log(a)

2 + 1
)

Γ(k + 1)

= − 1
2πi

∞

∑
y=0

∫
C

2aww−k−1e2(y+1)(m+w)dw

= − 1
2πi

∫
C

∞

∑
y=0

2aww−k−1e2(y+1)(m+w)dw

=
1

2πi

∫
C

(
aww−k−1 coth(m + w) + aww−k−1

)
dw (18)



Symmetry 2022, 14, 1551 7 of 19

from Equation (1.232.1) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sum to converge. We apply Fubini’s theorem for integrals and sums, see page 178 in [13],
as the summand is of bounded measure over the space C× [0, ∞).

Derivation of the Additional Contour

Using a generalization of Cauchy’s integral Formula (3), we first replace y→ log(a),
then simplify to get

logk(a)
Γ(k + 1)

=
1

2πi

∫
C

aww−k−1dw (19)

4.6. Right-Hand Side Fourth Contour Integral

Using a generalization of Cauchy’s integral Formula (3) we first replace y→ log(a) +
2−n(y + 1), then multiply both sides by 2em2−n(y+1) and take the infinite sums over y ∈
[0, ∞) and finally, we simplify in terms of the Hurwitz–Lerch zeta function to get

2(2−n)
kem2−n

Φ
(

e2−nm,−k, 2n log(a) + 1
)

Γ(k + 1)

=
1

2πi

∞

∑
y=0

∫
C

2aww−k−1e2−n(y+1)(m+w)dw

=
1

2πi

∫
C

∞

∑
y=0

2aww−k−1e2−n(y+1)(m+w)dw

= − 1
2πi

∫
C

(
aww−k−1 coth

(
2−n−1(m + w)

)
+ aww−k−1

)
dw (20)

from Equation (1.232.1) in [12], where Re(m + w) > 0 and Im(m + w) > 0 in order for the
sum to converge. We apply Fubini’s theorem for integrals and sums, see page 178 in [13],
as the summand is of bounded measure over the space C× [0, ∞).

Derivation of the Additional Contour

Using a generalization of Cauchy’s integral Formula (3) we first replace y→ log(a),
then multiply both sides by −1 and simplify to get

− logk(a)
Γ(k + 1)

= − 1
2πi

∫
C

aww−k−1dw (21)

5. Finite and Infinite Sums of the Hurwitz–Lerch Zeta Functions in Terms of the
Hurwitz–Lerch Zeta Functions

In this section, we develop the main theorems used in this work to evaluate special
cases and produce double sum formulae and a Table of infinite products of trigonometric
functions.

Theorem 1. For all k, a, m ∈ C then,

∞

∑
n=1

2k+1
((

2−n)kem2−n
Φ
(

e21−nm,−k,
1
2
(2n log(a) + 1)

)
−i
(
i2−n)keim2−n

Φ
(

ei21−nm,−k,
1
2
(1− i2n log(a))

))
= 2ie

1
2 i(πk+2m)Φ

(
eim,−k, 1− i log(a)

)
− 2emΦ(em,−k, log(a) + 1) + (−1 + i) logk(a) (22)



Symmetry 2022, 14, 1551 8 of 19

Proof. Since the addition of the right-hand sides of Equations (6) and (7) is equivalent to the
addition of the right-hand sides of Equations (8)–(11), we may equate the left-hand sides,
apply Equation (3.303) in [2] and simplify the Gamma function to yield the stated result.

Theorem 2. For all k, a, m ∈ C, n ∈ Z+ then,

n

∑
j=0

2k+1
((

2−j
)k

e2−jmΦ
(

e21−jm,−k,
1
2

(
2j log(a) + 1

))
−i
(

i2−j
)k

ei2−jmΦ
(

ei21−jm,−k,
1
2

(
1− i2j log(a)

)))

= (2i)k+1e2imΦ
(

e2im,−k, 1− 1
2

i log(a)
)
− 2
(

i
(
i2−n)keim2−n

Φ
(

ei2−nm,−k, 1− i2n log(a)
)

−
(
2−n)kem2−n

Φ
(

e2−nm,−k, 2n log(a) + 1
)
+ 2ke2mΦ

(
e2m,−k,

log(a)
2

+ 1
))

(23)

Proof. Since the addition of the right-hand sides of Equations (12) and (13) is equivalent to
the addition of the right-hand sides of Equations (14)–(21), we may equate the left-hand
sides, apply Equation (3.303) in [2] and simplify the Gamma function to yield the stated
result.

6. Special Cases and Table of Infinite Products of Trigonometric Functions

In this section, we will evaluate Equations (22) and (23) for various values of the
parameters to derive special cases of the Hurwitz–Lerch zeta function in terms of composite
functions.

Example 1. The degenerate infinite case.

∞

∑
n=1

(
csc
(
m2−n)− csch

(
m2−n)) = coth

(m
2

)
− cot

(m
2

)
(24)

Proof. Use Equation (22), set k = 0 and simplify using entry (2) in Table of Section (64:12)
in [14].

Example 2. The degenerate finite case.

n

∑
j=0

(
csc
(

2−jm
)
− csch

(
2−jm

))
= cot

(
m2−n−1

)
− coth

(
m2−n−1

)
− cot(m) + coth(m) (25)

Proof. Use Equation (23), set k = 0 and simplify using entry (2) in Table of
Section (64:12) in [14].

Example 3. A sum in terms of the exponential function.

∞

∑
n=1

2−n−2
(
− csc2

(
2−n−2

)
+ sec2

(
2−n−2

)
+ 2 sinh

(
2−n)csch3

(
2−n−1

))
=

1
2

csc2
(

1
4

)
− 2

√
e(√

e− 1
)2 (26)

Proof. Use Equation (22), set k = 1, a = 1, m = 1/2 and simplify using entry (3) in Table of
Section (64:12) in [14].

Example 4. A double sum in terms of the product hyperbolic functions.
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∞

∑
j=1

∞

∑
n=1

2−2(j+n+1)
(
−4 csc3

(
π2−j

)
+ 2 csc

(
π2−j

)
+
(

cosh
(

π21−j
)
+ 3
)

csch3
(

π2−j
))

((
cos
(

π21−n
)
+ 3
)

csc3(π2−n)− (cosh
(

π21−n
)
+ 3
)

csch3(π2−n))
= − 1

16
sinh2(π)csch8

(π

2

)
(27)

Proof. Form two equations using (22) by setting k = 2, a = 1, m = π, and k = 2, a = 1, m =
−π, replace n→ j, then multiply both equations and simplify using entry (2) in Table of
Section (64:12) in [14].

Example 5. A double sum in terms of the product hyperbolic functions raised to a power.

∞

∑
j=1

∞

∑
n=1

2−j−n−2
(
− csc2

(
π2−j−3

)
+ sec2

(
π2−j−3

)
+ 4 coth

(
π2−j−2

)
csch

(
π2−j−2

))
(

coth
(

π2−n−2
)

csch
(

π2−n−2
)
− cot

(
π2−n−2

)
csc
(

π2−n−2
))

=

(
2 +
√

2− 1
2

csch2
(π

8

))2
(28)

Proof. Form two equations using (22) by setting k = 2, a = 1, m = π
4 and k = 2, a = 1, m =

−π
4 , replace n→ j, then multiply both equations and simplify using entry (3) in Table of

Section (64:12) in [14].

Example 6. A double sum in terms of the product hyperbolic functions raised to a power.

∞

∑
j=1

∞

∑
n=1

2−j−n−4
(
− csc2

(
π2−j−2

)
+ sec2

(
π2−j−2

)
+ 2 sinh

(
π2−j

)
csch3

(
π2−j−1

))
(
− csc2

(
π2−n−2

)
+ sec2

(
π2−n−2

)
+ 2 sinh

(
π2−n)csch3

(
π2−n−1

))
=

1
4

(
csch2

(π

4

)
− 2
)2

(29)

Proof. Form two equations using (22) by setting k = 1, a = 1, m = πi
2 and k = 1, a = 1, m =

−πi
2 , replace n→ j, then multiply both equations and simplify using entry (3) in Table of

Section (64:12) in [14].

Example 7. An infinite product involving the exponential of trigonometric functions.

∞

∏
n=1

exp
(

csc
(

2−nx
β

)
− csch

(
2−nx

β

)
− csc

(
2−nx

)
+ csch

(
2−nx

))
(

cot
(

2−n−1x
)

tanh
(

2−n−1x
)

tan
(

2−n−1x
β

)
coth

(
2−n−1x

β

))2n log(a)

= a
(1+i)(β−1)x

β e− cot
(

x
2β

)
+coth

(
x

2β

)
+cot( x

2 )−coth( x
2 )(

e−
( 1

2 +
i
2 )(β−1)x

β sin
( x

2

)
csch

( x
2

)
csc
(

x
2β

)
sinh

(
x

2β

))2 log(a)

(30)

Proof. Use Equation (22), set k = 1, m = x and apply the method in Section (8) in [15].
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Example 8. Extended Vălean forms. We write down two forms used to evaluate the preceding
infinite products. This equation can be considered an extended form of Equation (23) in [16].

∞

∏
n=1

(
cot
(

m2−n−1
)

tanh
(

m2−n−1
)

tan
(

2−n−1r
)

coth
(

2−n−1r
))2n

=

(
−1 + eim)2

(er − 1)2

(em − 1)2(−1 + eir
)2 (31)

or
∞

∏
n=1

(
tan(2−nr) tanh(2−nm)

tan(2−nm) tanh(2−nr)

)2n

=

(
sin(m) sinh(r)
sin(r) sinh(m)

)2

(32)

Proof. Use Equation (22) and form a second equation by replacing m by r, then take
their difference and set k = −1, a = 1 and finally, simplify using entry (3) in Table of
Section (64:12) in [14]. The second Equation (32) is derived by multiplying Equation (31) by
itself after replacing m→ −m, r → −r and simplifying.

Example 9. Product of trigonometric functions raised to a power expressed in terms of a hyperbolic
function.

∞

∏
n=1

(
tan
(

π2−n−2
)

cot
(

π2−n−3
)

tanh
(

π2−n−3
)

coth
(

π2−n−2
))2n+1

= 8
(

3− 2
√

2
)

cosh4
(π

8

)
(33)

Proof. Use Equation (32) and set m = π
4 , r = π

2 ; simplify to yield the stated result.

Example 10. Product of trigonometric functions raised to a power expressed in terms of a hyperbolic
functions.

∞

∏
n=1

(
tan
(

π2−n−2
)

cot
(

1
3

π2−n−1
)

tanh
(

1
3

π2−n−1
)

coth
(

π2−n−2
))2n+1

=
1

64

(
1 + 2 cosh

(π

6

))4
sech4

( π

12

)
(34)

Proof. Use Equation (32), set m = π
3 , r = π

2 and simplify to yield the stated result.

Example 11. Product of trigonometric functions raised to a power expressed in terms of a hyperbolic
functions.

∞

∏
n=1

(
tan
(

π2−n−3
)

cot
(

1
3

π2−n−1
)

tanh
(

1
3

π2−n−1
)

coth
(

π2−n−3
))2n+1

=
1

512

(
3 + 2

√
2
)

sech4
( π

24

)(
2 + sech

( π

12

))4
(35)

Proof. Use Equation (32), set m = π
3 , r = π

4 and simplify to yield the stated result.
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Example 12. Product of trigonometric functions raised to a power expressed in terms of the quotient
of hyperbolic functions.

∞

∏
n=1

(
tan
(

1
5

π2−n−1
)

cot
(

π2−n−2
)

tanh
(

π2−n−2
)

coth
(

1
5

π2−n−1
))2n+1

=
256 cosh4( π

20
)(√

5− 3
)2(

1 + 2 cosh
(

π
10
)
+ 2 cosh

(
π
5
))4

(36)

Proof. Use Equation (32), set m = π
2 , r = π

5 and simplify to yield the stated result.

Example 13. Product of trigonometric functions raised to a power expressed in terms of a hyperbolic
function.

∞

∏
n=1

(
tan
(

π2−n−2
)

cot
(

π2−n−1
)

tanh
(

π2−n−1
)

coth
(

π2−n−2
))2n+1

=
1
4

sech4
(π

4

)
(37)

Proof. Use Equation (32), set m = π, r = π
2 and simplify to yield the stated result.

Example 14. Product of trigonometric functions with a complex angle raised to a power expressed
in terms of the quotient of radicals.

∞

∏
n=1

 tan
(( 8

3 + i
)
2−3−nπ

)
tanh

((
1
3 + i

5

)
2−1−nπ

)
tan
((

1
3 + i

5

)
2−1−nπ

)
tanh

(( 8
3 + i

)
2−3−nπ

)
21+n

= −
64i(−1)

1
15−

17i
30

(
i + (−1)−

1
6+

i
5

)4(√
2− (1− i)e−

2π
3

)4

(
i + (−1)

1
6+

i
4

)4
(

1 +
√

5 + i
√

2
(

5−
√

5
)
− 4e−

π
3

)4 (38)

Proof. Use Equation (32) and form two equations by setting m =
(

1
3 + i

5

)
π, r =

(
2
3 + i

4

)
π

and m = −
(

1
3 + i

5

)
π, r = −

(
2
3 + i

4

)
π, then multiply and simplify to yield the stated

result.

Example 15. A finite product involving the exponential of trigonometric functions.

n

∏
j=0

exp
(

csc
(

2−jx
β

)
− csch

(
2−jx

β

)
− csc

(
2−jx

)
+ csch

(
2−jx

))
(

cot
(

2−j−1x
)

tanh
(

2−j−1x
)

tan
(

2−j−1x
β

)
coth

(
2−j−1x

β

))2j log(a)

= exp
(

cot
(

2−n−1x
β

)
− coth

(
2−n−1x

β

)
− cot

(
2−n−1x

)
+ coth

(
2−n−1x

))
exp

(
− cot

(
x
β

)
+ coth

(
x
β

)
+ cot(x)− coth(x)

)

a
log

(csc(2−n−1x) sinh(2−n−1x) sin
(

2−n−1 x
β

)
csch

(
2−n−1 x

β

))2n+1
+log

(
sin(x)csch(x) csc

(
x
β

)
sinh

(
x
β

))
(39)

Proof. Use Equation (23), set k = 1, m = x and apply the method in Section (8) in [15].
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Example 16. A finite product involving the product of trigonometric functions raised to a power.

n

∏
j=0

(
cot
(

2−j−1m
)

tanh
(

2−j−1m
)

tan
(

2−j−1r
)

coth
(

2−j−1r
))2j

= e(−1+i)(m−r) sin(m)csch(m) csc(r) sinh(r)


(

em2−n − 1
)(
−1 + ei2−nr

)
(
−1 + eim2−n)(e2−nr − 1

)
2n+1

(40)

and

n

∏
j=0

(
cot
(

2−j−1m
)

tanh
(

2−j−1m
)

tan
(

2−j−1r
)

coth
(

2−j−1r
))2j+1

= sin2(m)csch2(m) csc2(r) sinh2(r)(
csc2

(
m2−n−1

)
sinh2

(
m2−n−1

)
sin2

(
2−n−1r

)
csch2

(
2−n−1r

))2n+1

(41)

Proof. Use Equation (23), form a second equation by replacing m by r, take their difference,
set k = −1, a = 1 and simplify using entry (3) in Table of Section (64:12) in [14]. The second
Equation (41) is derived by multiplying Equation (40) by itself after replacing m→ −m, r →
−r and simplifying.

Example 17. A trigonometric identity.

128
√

2 sin8
( π

32

)
csc8

( π

16

)
cosh8

( π

32

)
sech

(π

4

)
=

sec8( π
32
)

cosh8( π
32
)
sech

(
π
4
)

√
2

(42)

Proof. Use Equation (40) and set m = π
2 , r = π

4 , n = 2 and simplify.

Example 18. Hurwitz–Lerch zeta transformation formula. This is a very simple and direct method
for developing the theory of the Hurwitz–Lerch zeta function. It may be noted that Hurwitz’s series
can be obtained immediately upon specializing one of the parameters,

Φ
(
e−α, s, v

)
= e−α/2(−2−s)Φ(e−2α, s,

v
2
+

1
4

)
− e−3α/22−sΦ

(
e−2α, s,

v
2
+

3
4

)
+ 2sΦ

(
e−α/2, s, 2v

)
+ i2se(

1
2 +

i
2 )α+ iπs

2 Φ
(

e
iα
2 , s, 2iv + (1− i)

)
− ie(

1
2 +

i
2 )α+ iπs

2 Φ
(

eiα, s, iv +

(
1
2
− i

2

))
− i2−se(

1
2 +2i)α+ iπs

2 Φ
(

e2iα, s,
iv
2
+

(
1− i

4

))
− i2−se(

1
2 +i)α+ iπs

2 Φ
(

e2iα, s,
1
4

i(2v− (1 + 2i))
)

(43)

Proof. Use Equation (23), set n = 1, replace m → α, k → s, a → v and simplify. This is a
new form for the Hurwitz–Lerch zeta function where another form is given by Equation (12)
in [17].

7. Table of Infinite Products of Trigonometric and Hyperbolic Functions

In this section, we evaluate Equation (32) for various imaginary values of the parame-
ters m and r. For example, the first equation in Table 1 is obtained when m = πi, r = πi

2 .
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Table 1. Table of Infinite Products in terms of Mathematical Constants.

∞
∏

n=1

(
tan
(
π2−n−1) cot

(
π2−n−2) tanh

(
π2−n−2) coth

(
π2−n−1))2n

2 cosh2(π
4
)

∞
∏

n=1

(
tan
(
π2−n−1) cot

(
1
3 π2−n−1

)
tanh

(
1
3 π2−n−1

)
coth

(
π2−n−1))2n

1
4
(
1 + 2 cosh

(
π
3
))2

∞
∏

n=1

(
tan
(
π2−n−1) cot

(
π2−n−3) tanh

(
π2−n−3) coth

(
π2−n−1))2n

4
√

2
(

3− 2
√

2
)

cosh2(π
8
)

cosh2(π
4
)

∞
∏

n=1

(
tan
(
π2−n−1) cot

(
1
5 π2−n−1

)
tanh

(
1
5 π2−n−1

)
coth

(
π2−n−1))2n

1
4

√
1
2

(
7− 3

√
5
)(

1 + 2 cosh
(

π
5
)
+ 2 cosh

(
2π
5

))2

∞
∏

n=1

(
tan
(
π2−n−1) cot

(
1
3 π2−n−2

)
tanh

(
1
3 π2−n−2

)
coth

(
π2−n−1))2n √

7− 4
√

3
(

cosh
(

π
12
)
+ cosh

(
π
4
)
+ cosh

(
5π
12

))2

∞
∏

n=1

(
tan
(
π2−n−2) cot

(
1
7 π2−n−1

)
tanh

(
1
7 π2−n−1

)
coth

(
π2−n−2))2n

2 sin2( π
14
)

sinh2(π
4
)
csch2( π

14
)

∞
∏

n=1

(
tan
(

1
3 π2−n−1

)
cot
(
π2−n−3) tanh

(
π2−n−3) coth

(
1
3 π2−n−1

))2n
4
√

2(3−2
√

2)(cosh( π
24 )+cosh( π

8 ))
2

(1+2 cosh( π
12 ))

2

∞
∏

n=1

(
tan
(
π2−n−3) cot

(
1
5 π2−n−1

)
tanh

(
1
5 π2−n−1

)
coth

(
π2−n−3))2n √

(3+2
√

2)(7−3
√

5)(1+2 cosh( π
20 )+2 cosh( π

10 ))
2

8(cosh( π
40 )+cosh( 3π

40 ))
2

∞
∏

n=1

(
tan
(

1
5 π2−n−1

)
cot
(

1
3 π2−n−2

)
tanh

(
1
3 π2−n−2

)
coth

(
1
5 π2−n−1

))2n
8
√

7−4
√

3(cosh( π
60 )+cosh( π

20 )+cosh( π
12 ))

2

(3−
√

5)(1+2 cosh( π
30 )+2 cosh( π

15 ))
2

∞
∏

n=1

(
tan
(

1
3 π2−n−2

)
cot
(

1
7 π2−n−1

)
tanh

(
1
7 π2−n−1

)
coth

(
1
3 π2−n−2

))2n √
7+4
√

3 sin2( π
14 )(1+2 cosh( π

42 )+2 cosh( π
21 )+2 cosh( π

14 ))
2

(cosh( π
84 )+cosh( π

28 )+cosh( 5π
84 ))

2

∞
∏

n=1

(
tan
(
3π2−n−3) cot

(
1
3 π2−n−2

)
tanh

(
1
3 π2−n−2

)
coth

(
3π2−n−3))2n √

1
2

(
3− 2

√
2
)(

7− 4
√

3
)

sinh2
(

3π
8

)
csch2( π

12
)

∞
∏

n=1

(
tan
(

1
5 π21−n

)
cot
(

5
3 π2−n−2

)
tanh

(
5
3 π2−n−2

)
coth

(
1
5 π21−n

))2n √
2(7+4

√
3)

5(3+
√

5)
sinh2

(
2π
5

)
csch2

(
5π
12

)
∞
∏

n=1

(
tan
(

π2−n

7

)
cot
(

1
3 π2−n−2

)
tanh

(
1
3 π2−n−2

)
coth

(
π2−n

7

))2n √
7−4
√

3 sinh2( π
7 )csch2( π

12 )
2(cos( 3π

28 )−sin( 3π
28 ))

2

∞
∏

n=1

(
tan
(

1
9 π2−n−1

)
cot
(

1
7 π2−n−1

)
tanh

(
1
7 π2−n−1

)
coth

(
1
9 π2−n−1

))2n
sin2( π

14 ) csc2( π
18 )(1+2 cosh( π

63 )+2 cosh( 2π
63 )+2 cosh( π

21 ))
2

(1+2 cosh( π
63 )+2 cosh( 2π

63 )+2 cosh( π
21 )+2 cosh( 4π

63 ))
2

∞
∏

n=1

(
tan
(
π2−n−1) cot

(
3π2−n

7

)
tanh

(
3π2−n

7

)
coth

(
π2−n−1))2n

cos2( π
14
)

sinh2(π
2
)
csch2

(
3π
7

)

8. Table of Finite Products of Trigonometric and Hyperbolic Functions

In this section, we evaluate Equation (41) for various values of the parameters m
and r. For example, the first equation is obtained by multiplying two equations, when
m = π

2 , r = π
4 .

Example 19. An example in terms of
√

2.

n

∏
j=0

(
tan
(

π2−j−3
)

cot
(

π2−j−2
)

tanh
(

π2−j−2
)

coth
(

π2−j−3
))2j

=
sech

(
π
4
)√(

sec2(π2−n−3) cosh2(π2−n−3)
)2n+1

√
2

(44)
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Example 20. An example in terms of
√

3.

n

∏
j=0

(
tan
(

1
3

π2−j−1
)

cot
(

π2−j−2
)

tanh
(

π2−j−2
)

coth
(

1
3

π2−j−1
))2j

=

2 sinh
(

π
3
)
csch

(
π
2
)√√√√( cos2( 1

3 π2−n−2)(2 cosh( 1
3 π2−n−1)+1)

2
sech2( 1

3 π2−n−2)

(2 cos( 1
3 π2−n−1)+1)

2

)2n+1

√
3

(45)

Example 21. An example in terms of
√

5.

n

∏
j=0

(
tan
(

1
5

π2−j−1
)

cot
(

π2−j−2
)

tanh
(

π2−j−2
)

coth
(

1
5

π2−j−1
))2j

=

√
2 +

2√
5

sinh
(π

5

)
csch

(π

2

)
×√(

sin2
(

1
5

π2−n−1
)

csc2(π2−n−2) sinh2(π2−n−2)csch2
(

1
5

π2−n−1
))2n+1

(46)

Example 22. An example in terms of
√

2 and
√

5.

n

∏
j=0

(
tan
(

π2−j−2
)

cot
(

1
5

π21−j
)

tanh
(

1
5

π21−j
)

coth
(

π2−j−2
))2j

=
sinh

(
π
2
)
csch

(
4π
5

)
2
√

2
×√√√√−((√5− 5

)(
sin2(π2−n−2) csc2

(
1
5

π21−n
)

sinh2
(

1
5

π21−n
)

csch2(π2−n−2)

)2n+1)
(47)

Example 23. An example in terms of the square root of trigonometric functions.

n

∏
j=0

(
tan
(

1
3

π2−j−2
)

cot
(

1
7

π21−j
)

tanh
(

1
7

π21−j
)

coth
(

1
3

π2−j−2
))2j

= 2 cos
( π

14

)
sinh

(π

6

)
csch

(
4π

7

)
×√(

sin2
(

1
3

π2−n−2
)

csc2
(

1
7

π21−n
)

sinh2
(

1
7

π21−n
)

csch2
(

1
3

π2−n−2
))2n+1

(48)
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Example 24. An example in terms of the square root of a complex number.

n

∏
j=0

√(
tan2

(
π2−j−4

)
cot2

(
π2−j−2

)
tanh2(π2−j−2

)
coth2(π2−j−4

))2j

=

√
1
2 + 1√

2

√√√√(−1 + i)

(
sinh2(π2−n−2)csch2(π2−n−4)(
1+eiπ2−n−3

)2(
1+eiπ2−n−2

)2

)2n+1

cosh
(

π
8
)
+ cosh

( 3π
8
)

(49)

Example 25. An example in terms of the square root of a complex number.

n

∏
j=0

√(
cos2

(
π2−j−2

)
sec4

(
π2−j−3

)
cosh4(π2−j−3

)
sech2(π2−j−2

))2j

= sech
(π

4

)√√√√√√i22n+2−1

 cosh2(π2−n−3)(
1 + eiπ2−n−2

)2


2n+1

(50)

Example 26. An example in terms of the square root of a complex number.

n

∏
j=0

√(
tan2

(
3π2−j−3

)
cot2

(
π2−j−3

)
tanh2(π2−j−3

)
coth2(3π2−j−3

))2j

=
(

1 + 2 cosh
(π

2

))√√√√−( eiπ2−n−1(2 cos(π2−n−2) + 1)2

(2 cosh(π2−n−2) + 1)2

)2n+1

(51)

Example 27. An example in terms of the square root of a complex number.

n

∏
j=0

√√√√(cos4
(

1
3

π2−j−1
)

sec2
(

π2−j

3

)
cosh2

(
π2−j

3

)
sech4

(
1
3

π2−j−1
))2j

= cosh
(π

3

)√(
−2− 2i

√
3
)

2−2n+2
((

1 + e
1
3 iπ2−n

)2
sech2

(
1
3

π2−n−1
))2n+1

(52)

Example 28. An example in terms of the square root of a complex number.

n

∏
j=0

√√√√(tan2
(

π2−j

3

)
cot2

(
3π2−j

7

)
tanh2

(
3π2−j

7

)
coth2

(
π2−j

3

))2j

=

2 sin
(

π
7
)

sinh
( 2π

3
)
csch

( 6π
7
)
√√√√√√(−1)

8i
21


(

e
3
7 π21−n

−1
)2

sin2
(

π2−n
3

)
csc2

(
3π2−n

7

)
(

e
1
3 π21−n

−1
)2


2n+1

√
3

(53)

Example 29. An example in terms of the square root of a complex number.
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n

∏
j=0

cot
(
2−2−jπ

)
cot
(

1
3 2−1−jπ

)
tanh

(
2−2−jπ

)
tanh

(
1
3 2−1−jπ

)
cot
(
2−3−jπ

)
cot
(

1
5 2−1−jπ

)
tanh

(
2−3−jπ

)
tanh

(
1
5 2−1−jπ

)
2j

= (−1)
23
60+

7i
60

√
3 +

3√
5


(
−1 + e2−1−nπ

)(
−1 + e−

1
3 2−nπ

)
((
−1+ei2−1−nπ

)(
−1+e

1
3 i2−nπ

))((
−1+e2−2−nπ

)(
−1+e−

1
5 2−nπ

))
(
−1+ei2−2−nπ

)(
−1+e

1
5 i2−nπ

)



21+n

csch
(π

3

)
csch

(π

2

)
sinh

(π

5

)
sinh

(π

4

)
(54)

Example 30. An example in terms of the square root of a complex number.

n

∏
j=0

√(
tanh2(2−j−2 log(2)

)
cot2

(
2−j−2 log(2)

))2j+1

=
(
−1 + 2i

)2

√√√√√√√21−i

2(−1+i)2−n−1
(

22−n−1 − 1
)4

(
−1 + 2i2−n−1

)4


2n+1

(55)

Example 31. An example in terms of the square root of a complex number.

n

∏
j=0

 tan
(

1
3 2−2−jπ

)
tan
( 5

3 2−2−jπ
)

tanh
(
2−2−jπ

)
tanh

(
3 2−2−jπ

)
tan
(
2−2−jπ

)
tan
(
3 2−2−jπ

)
tanh

(
1
3 2−2−jπ

)
tanh

( 5
3 2−2−jπ

)
2j

= −4

(
sinh

(
π
6
)

sinh
( 5π

6
))

sinh
(

π
2
)

sinh
( 3π

2
)


(

1 + 2 cos
(

1
3 2−1−nπ

)
+ 2 cos

(
2−nπ

3

))(
1 + 2 cosh

(
1
3 2−1−nπ

))2(
1 + 2 cosh

(
2−1−nπ

))
(

1 + 2 cos
(

1
3 2−1−nπ

))2
(1 + 2 cos(2−1−nπ))

(
1 + 2 cosh

(
1
3 2−1−nπ

)
+ 2 cosh

(
2−nπ

3

))


21+n

(56)

Example 32. An example in terms of the square root of a complex number.

n

∏
j=0

cot
( 5

9 2−1−jπ
)

coth
(

1
9 21−jπ

)
tan
(

1
9 21−jπ

)
tanh

( 5
9 2−1−jπ

)
cot
(

1
9 21−jπ

)
coth

( 5
9 2−1−jπ

)
tan
( 5

9 2−1−jπ
)

tanh
(

1
9 21−jπ

)
2j

= (−1)
2i
9

(
e

2−nπ
9 csc2

(
5
9

2−1−nπ

)
csch2

(
1
9

21−nπ

)
sin2

(
1
9

21−nπ

)
sinh2

(
5
9

2−1−nπ

))21+n

csch2
(

5π

9

)
sinh2

(
4π

9

)
(57)

Example 33. An example in terms of the square root of a complex number.
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n

∏
j=0

(
cot
( 7

5 2−2−jπ
)

coth
( 3

5 2−2−jπ
)

tan
( 3

5 2−2−jπ
)

tanh
( 7

5 2−2−jπ
)

cot
( 3

5 2−2−jπ
)

coth
( 7

5 2−2−jπ
)

tan
( 7

5 2−2−jπ
)

tanh
( 3

5 2−2−jπ
))2j

= (−1)4/5

 e−
1
5 i21−nπ

(
sin2( 3

5 2−2−nπ
)

sinh2( 7
5 2−2−nπ

))
sin2( 7

5 2−2−nπ
)

sinh2( 3
5 2−2−nπ

)
21+n

csch2
(

7π

10

)
sinh2

(
3π

10

)
(58)

Example 34. An example in terms of the square root of a complex number.

n

∏
j=0

(
cot
(
3 2−3−jπ

)
coth

(
2−2−jπ

)
tan
(
2−2−jπ

)
tanh

(
3 2−3−jπ

)
cot
(
7 2−4−jπ

)
coth

( 5
3 2−2−jπ

)
tan
( 5

3 2−2−jπ
)

tanh
(
7 2−4−jπ

))2j

=

(
(−1)

5
24+

5i
24 csc

(
π
8
)
csch

( 3π
4
)
csch

( 5π
6
)

sinh
(

π
2
)

sinh
( 7π

8
))

2
√

2
×

(
−1 + e3 2−2−nπ

)(
−1 + ei2−1−nπ

)
((
−1+e3i2−2−nπ

)(
−1+e2−1−nπ

))((
−1+e7 2−3−nπ

)(
−1+e

5
3 i2−1−nπ

))
(
−1+e7i2−3−nπ

)(
−1+e

5
3 2−1−nπ

)



21+n

(59)

Example 35. An example in terms of the square root of a complex number.

n

∏
j=0

 tan
((

1 + 2i
3

)
2−2−jπ

)
tanh

((
3 + 4i

5

)
2−3−jπ

)
tan
((

3 + 4i
5

)
2−3−jπ

)
tanh

((
1 + 2i

3

)
2−2−jπ

)
2j

= (−1)
23
60+

7i
60


(
−1 + e(3+ 4i

5 )2−2−nπ
)(
−1 + e(−

2
3+i)2−1−nπ

)
(
−1 + e(−

4
5+3i)2−2−nπ

)(
−1 + e(1+ 2i

3 )2−1−nπ
)
21+n

cos
((

1
6
+

i
2

)
π

)
csch

((
3
4
+

i
5

)
π

)
sech

(π

3

)
sinh

((
1
5
+

i
4

)
π

)
(60)

9. Discussion

In this work we evaluated a few equations. The two equations we focused on were
the infinite product and finite product of the ratio of the tangent function of angles with
power of two given by;

∞

∏
n=1

(
tan
(
2−1−nr

)
tanh

(
2−1−nm

)
tan(2−1−nm) tanh(2−1−nr)

)2n

= csc2
( r

2

)
csch2

(m
2

)
sin2

(m
2

)
sinh2

( r
2

)
(61)
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and

n

∏
j=0

(
tan
(
2−1−jr

)
tanh

(
2−1−jm

)
tan
(
2−1−jm

)
tanh

(
2−1−jr

))2j

= csc(r)csch(m) sin(m) sinh(r)(
csc2

(
2−1−nm

)
csch2

(
2−1−nr

)
sin2

(
2−1−nr

)
sinh2

(
2−1−nm

))2n

(62)

In future work, we would like to work on analyzing this infinite and partial product
and see if any particular mathematical trends can be surfaced. We think this type of analysis
could be of interest to the mathematical community since this work involves the product of
trigonometric functions.

10. Conclusions

In this paper, we have presented a novel method for deriving new finite and in-
finite sums and products involving trigonometric functions using contour integration.
The method applied in the derivation of the main theorem may be used to derive other
sums and products in future work, which could include deriving and extending Melnikov
forms such as Equation (23) in [16]. We were able to derive infinite forms involving trigono-
metric functions and their partial sum counterpart. These types of evaluations allowed us
to analyze the infinite sum of functions and the partial sums which they are built upon.
The results presented were numerically verified for both real and imaginary and complex
values of the parameters in the integrals using Mathematica by Wolfram.
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