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Abstract

Extended permutation �EP� �lters are de�ned and analyzed in this paper� In particular� we
focus on extended permutation rank selection �EPRS� �lters� These �lters are constrained to
output an order statistic from an extended observation vector� This extended vector includes N
observation samples and K statistics that are functions of the observation samples� The rank
permutations from selected samples in this extended observation vector are used as the basis for
selecting an order statistic output� We show that by including the sample mean in the extended
observation vector� the �lters exhibit excellent edge enhancement properties� We also show that
several previously de�ned classes of rank order based edge enhancers �CS� LUM� and WMMR
sharpeners� can be formulated as subclasses of EPRS �lters� These sharpening subclasses are in
addition to the smoothing subclasses� which include rank conditioned rank selection� permuta�

tion� stack� and weighted order statistic �lters� Thus� this novel class of �lters provides a broad
framework within which many rank order based smoothers and edge enhancers can be uni�ed�
Edge enhancement properties are developed and an L� norm EPRS �lter optimization proce�
dure is presented� Finally� extensive computer simulation results are presented comparing the
performance of EPRS and other sharpening �lters in edge enhancement applications�
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� Introduction

Nonlinear �lters have proven to be exceptionally useful in many signal and image restoration appli�

cations� In particular� rank order based �lters are well known for their ability to successfully treat

heavy tailed noise and non�stationary signals� The common occurrence of such signals� and the

poor performance of linear �lters operating on them� have motivated the development of rank order

�lters� The �rst� and most well known� of these rank order based �lters is the median �lter ��	�

Since its introduction� the median �lter has been extensively studied �
� �� �� �	� Building on the

success of the median �lter� many more sophisticated rank order �lters have been proposed� These

include multistage median �lters �
� �� �	� center weighted median �CWM� �lters ��� �� ��	� general

weighted median �WM� and weighted order statistic �WOS� �lters ��� ��	� stack �lters ��
� ��� ��� �
	�

permutation �lters ���� ��	 and rank conditioned rank selection �RCRS� �lters ���	� These �lters have

primarily been utilized as smoothing �lters in restoration applications where a signal is corrupted

by noise�

All of the above �lters can be formulated as rank selection �RS� �lters ���� ��	� since their output

is constrained to be one of the order statistics from observation set� However� they di�er in the

information that they use to perform the selection operation� The permutation �lter and the RCRS

�lter use the ranks of the input samples as the basis for the output rank selection ���� ��	� These

�lters are highly e�ective as smoothers ���� ��	� However� they are not suited to perform edge

enhancement� This results from the fact that in an edge region� comprised of non�decreasing or

non�increasing samples� the ranks of the input samples remain the same for all observation window

locations� Thus� they do not help to identify which �side� of an edge the observation window is lies

on� Consequently� di�erent rank selections cannot be made on each side of an edge to yield gradient

enhancement�

For these reasons� the application of rank order based �lters to edge enhancement has received

limited attention� However� some edge enhancing RS �lters have been proposed� These include the

comparison and selection �CS� �lter ���	� the lower�upper�middle �LUM� �lter ��	 and the weighted

majority of samples with minimum range �WMMR� �lter �
�� 
�	� The CS and LUM �lters utilize

a mean estimate to aid in rank selection� In particular� the observation sample mean is compared

to a speci�ed sample within the observation window to determine which rank ordered sample to

output� This comparison helps to identify which �side� of an edge the �lters window lies on� In a

somewhat similar fashion� WMMR �lters use rank ranges to delineate di�erent regions of an edge�

Having partitioned the edge into di�erent regions� an appropriate output sample is chosen in each

region so as to increase the edge gradient�

In this paper� we develop a �lter class which provides a broad framework for rank order based edge

�



enhancing �lters� These �lters will be referred to as extended permutation �EP� �lters and can be

viewed as an extension of RCRS and permutation �lters� The EP �lters are based upon a partitioning

of the observation space using rank permutations of samples from an extended observation vector�

This extended vector contains N observation samples and K statistics which are functions of the

observation samples� A common �ltering operation is de�ned for each partition� or ordering of

the extended observation vector� While numerous �ltering operations can be performed for each

partition� we focus here on rank selection operations� and refer to the resulting �lters as extended

permutation rank selection �EPRS� �lters�

The EPRS �lters posses excellent noise smoothing capabilities as a result of their use of rank

order information and their inclusion of RCRS and permutation �lters as subsets� With well chosen

statistics in the extended observation vector� the capabilities of EPRS �lters can be made to include

edge enhancement� We show that the sample mean is such a statistic and that the inclusion of

the sample mean in the extended observation vector gives EPRS �lters excellent edge enhancement

properties� Additionally� the �lter formulation combines the advantages of RCRS and permutation

�lters with with those of the rank order based edge enhancing �lters� In fact� we show that the

CS� LUM� and WMMR �lters can all be formulated as subclasses of EPRS �lters� Thus� EPRS

�lters o�er a framework under which numerous rank order based smoothing and edge enhancing

�lters can be uni�ed� This not only helps relate and explain the operations of these previously

unrelated �lters� but also provides increased performance� This increased performance in edge

enhancement is illustrated here using both Markov sequences and images that have been smoothed�

Also� we show that EPRS �lters avoid many of the shortcomings of linear sharpening �lters� Namely�

they are relatively insensitive to heavy tailed noise and they do not cause ringing �overshoot and

undershoot�� With the ability to perform edge gradient enhancement in the presence of noise� the

�lters may be useful in deblurring or deconvolution applications�

The remainder of this paper is organized as follows� In Section �� the application of rank order

based �lters to the edge enhancement problem is described� The EPRS �lters are de�ned in Section

	� In addition� the relationship between other �lters and the EPRS �lters is explored� Some �lter

properties are developed in Section 
 along with an optimization procedure� Experimental results

are presented in Section �� These results illustrate the performance of the new �lters in �
 and

�
dimensional deblurring applications in comparison to other rank order based sharpeners� Finally�

some conclusions are presented in Section ��

�



� Rank Order Filters and the Edge Enhancement Problem

This section addresses the application of rank order based �lters to the edge enhancement problem�

First� RCRS and permutation �lters are de�ned since EP �lters are extensions of these classes and

their development builds upon the RCRS and permutation �lter de�nitions� Next� edge gradient

enhancement using RS �lters is considered� In light of this examination� the EP �lters are developed

in Section �� There it will be shown that the EP �lter class uni�es� under a single de�nition� each

of the �lters discussed in this section�

��� RCRS and Permutation Filters

Consider the d�dimensional discrete sequences fd�n�g and fx�n�g� where the discrete index n 	


n�� n�� � � � � nd�� Let these sequences represent the desired and corrupted versions of a signal respec�

tively� Also� consider a d�dimensional window function that spans N samples and passes over the

corrupted sequence in some predetermined fashion� At each location n� the N observation samples

spanned by the window can be indexed and written as a vector� yielding

x�n� 	 
x��n�� x��n�� � � � � xN �n��� �
�

The windowing and indexing of the observation sequence de�nes an ordering of the observed samples�

Typically� this ordering is temporal for one�dimensional time sequences and spatial� e�g� raster�

scan� for two�dimensional signals such as images� Other orderings are possible� as are windows of

higher dimension� An ordering that can be universally applied to the observed samples� regardless

of signal dimension or window con�guration� is rank ordering� The N observation samples ordered

according to rank will be written as

x����n� � x����n� � � � � � x�N��n�� ���

where x����n�� x����n�� � � � � x�N��n� are referred to as the order statistics of the observation�

The use of more than one ordering of the observed samples has proved advantages in many

�ltering problems 

�� 
��� For instance� temporal correlations can be exploited if the temporal

order of samples is known� In contrast� rank ordering allows for the e�ective rejection of outliers�

since these samples are most often located in the extremes of the ranked set� By utilizing both

orderings� results superior to the two marginal cases can be obtained� Thus� to relate the rank of

a sample to its �temporal� spatial� etc�� location �index� within the window� we de�ne ri�n� to be

the rank of the sample in window location i� This establishes the equivalence xi�n� � x�ri�n���n��

The �ltering� or estimation� problem can now be posed as follows� From the set of observation

samples� we wish to form an estimate of the desired sample at location � within the window� This

�



estimate is denoted as �d��n�� where � � � � N � In the remainder of the paper� the index n is

assumed and is used explicitly only when necessary for clarity�

By de�nition� the output �d� of an RS �lter is constrained to be an order statistic from the

observation vector� Numerous non	linear �lters can be cast as RS �lters� including WOS 
���� stack


���� RCRS 
�
�� and permutation �lters 
���� The most general of these formulations are the RCRS

and permutation �lters� which we de�ne next�

Consider the vector r � 
r��� r��� � � � � r�M �� which contains the ranks of M selected observation

samples x��� x�� � � � � � x�M � where � �M � N � Note that since r�i � f�� �� � � � � Ng for i � �� �� � � � �M �

then r � �z � f 
i�� i�� � � � � iM � � ij � f�� �� � � � � Ng and ij �� ik � j �� kg� That is� �z is the set that

contains all permutations of the N indices �� �� � � � � N taken M at a time and we refer to this as the

rank permutation set� The rank permutation set has cardinality j�zj � N ���N �M�� and the index

z � 
M�N �� is used to indicate the dependance of this set on the parameters M and N �

The output of an M th	order RCRS �lter with window size N is given by

FRCRS�x� � x�S�r��� ���

where S��� is said to be the selection rule and S � �z �� f�� �� � � � � Ng 
�
�� Thus� RCRS �lter

estimates are based on the temporal and rank order of M selected samples� If M � N � then r

relates the temporal and rank order of each input sample and �z is the group of permutations� In

this case� the full permutation information is used and ��� de�nes the class of permutation �lters


��� ���� Using r as the basis for rank selection has been shown to be e�ective for smoothing and

frequency selection�rejection applications 
��� �
�� However� as shown in Section ���� using sample

ranks alone is not e�ective for edge enhancement�

��� Edge Enhancement

The problem of enhancing edges� or transition spans� using RS �lters is now addressed� We begin by

discussing the �edge dilemma� of strictly rank based rank selection �lters �RCRS and Permutation

�lters�� Speci�cally� consider the case in which the full set of observation ranks r is used as the basis

for a �lter output� For locally monotone sequences� the resulting rank vector is given by

r � 
�� �� � � � � N � or r � 
N�N � �� � � � � ��� ���

Moreover� as an observation window slides over a monotone signal the rank vector does not change

since the ranks of the observation samples remain constant� As an illustration� consider the one	

dimensional sequence containing an edge in Fig� �� An observation window located anywhere along

the monotone increasing portion of the signal results in the rank vector r � 
�� �� � � � � N �� Thus� for

an RS �lter with any rank based selection rule S���� the output along a monotone sequence will be an

�
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Figure �� Example of a sequence containing a convex�concave increasing�decreasing edge and the

output of an order statistic �OS� �lter �N � �	
 k � �� operating on the sequence� The increasing
edge has been retarded while the decreasing edge has been advanced� Neither transition region

duration has been reduced�

order statistic x�k�
 where k � f�� 
� � � � � Ng� Moreover
 since x � x
r for this monotone increasing

sequence
 it is easy to see that the output of a �lter F ��� based on S��� is simply F �fx�n�g� �

fx�n � �N��
� � k��g� Thus
 the sequence is simply shifted in time� If k � N��

� �k � N��
� � the

sequence is retarded �advanced� and if k � N��
� 
 then the median �lter is realized and the sequence

is left unaltered� Similar results hold for monotone decreasing sequences� In this case
 the sequence

is advanced �retarded� for k � N��
� �k � N��

� � and left unaltered for k � N��
� � This is illustrated

in Fig� ��

The CS
 LUM and WMMR �lters overcome this problem by utilizing information other than

sample ranks in the output rank selection process� In particular
 the CS �lter compares the ob�

servation vector sample mean and median to determine the output rank ����� In a similar fashion


the LUM �lter compares the value of the middle sample in the observation window to the midpoint

between an upper and lower order statistic

�x�l� � x�N�l�����
� �	�

where � � l � �N � ���
 ���� The results of these comparisons helps to indicate which �side� of an

edge the observation window lies� Consequently
 di�erent rank selections can be made on each side of

an edge to produce edge gradient enhancement� We show that by using the rank of the mean
 rather

than simply comparing it to the median or middle sample
 the location of the observation window

with respect to an edge can be more accurately determined� This leads to superior performance in

	



edge enhancement applications�

� Extended Permutation Filters

In this section� the EP �lters are de�ned and discussed� These �lters can be considered an extension

of RCRS and Permutation �lters� They incorporate the advantages of RCRS and permutation �lters

with those of the rank order based edge enhancers�

��� Filter De�nition

The EP �lters are based on a partitioning of the observation space using the rank permutations

of samples from an extended observation vector� That is� in addition to the ranks of selected

observation samples� the rank of additional statistics are utilized� These statistics are computed as

functions of the observation vector� Thus� de�ne an extended observation vector as

�x � ��x�� �x�� � � � � �xN�K � � �x�� x�� � � � � xN � F�	x
� F�	x
� � � � � FK	x
�� 	�


This extended observation vector can be sorted as before� yielding

�x��� � �x��� � � � � � �x�N�K�� 	�


Also� let an extended rank vector be de�ned as

�r � ��r��� �r��� � � � � �r�M � �r��� �r�� � � � � � �r�L� � 
z� 	�


where � � �i � N � N � � � �i � N �K� and the limits on M and L are given by � �M � N and

� � L � K� The element �r�i is the rank of �x�i � x�i in �x� and �r�i is the rank of �x�i � F�i�N 	x
�

Thus� the extended rank vector lies in the extended rank permutation space which is denoted as


z� where z � �M�N�K�L��

Each unique extended rank vector �r � 
z de�nes a distinct partition in the RN observation

space� EP �lters are de�ned such that a common �ltering operation is applied to each observation

vector lying in a given partition� In the general case� the �ltering operation performed is a function

of the extended observation and can be either linear or nonlinear� For the EPRS �lters considered

here� the �ltering method is restricted to an order statistic operation� That is� in each partition

a speci�c order statistic from �x is selected as the �lter output� These �lters are formally de�ned

below�

De�nition ��� The output of an EPRS �lter is given by

FEPRS	x
 � �x�S��r��� 	�


where S � 
z �� f�� �� � � � � N �Kg�

�



The �lter operation can be achieved by using straightforward lookup table based on the selection

function S���� Such a lookup table would be similar to the ordering�output table shown in ���	� A

speci�c order statistic is selected based on the observed extended rank vector 
r�

The cardinality of the extended rank permutation space depends� in general� on the K functions

F����� F����� � � � � FK���� For arbitrary observation values� the ranks of the function outputs must lie

between � and N 
K� Thus� the cardinality is bound above such that j�zj � �N 
K����N �M 


K � L��� where the inequality is strict if one or more of the extended vector samples are bound by

other samples or the corresponding order statistics� The inequality is strict� for instance� if F����

is the sample mean since x��� � F��x� � x�N�� Similarly� for each observed rank permutation� the

number of possible unique EPRS �lter outputs is less than or equal to N 
K� Thus� denoting the

class of EPRS �lters as �z� the cardinality of the �lter class is bound above by j�zj � �N 
K�j�z j�

The exact number will depend on the speci�c functions F����� F����� � � � � FK��� and the domain of

the observation x� Next� we restrict the extension of the observation set to a single statistic� the

��trimmed mean� Bounds on the general and restricted �lter classes are then given as a theorem�

Consider the case where K � L � � ��� � N 
 �� and 
xN�� � F��x� is an ��trimmed sample

mean estimate given by

F��x� �
�

N � ��
 �

N����X

i��

x�i�� ����

where � � � � �N 
 ���� and is selected to provide a robust mean estimate when outliers are

present� We show that this is an e�ective choice for edge enhancement applications� This follows

because the rank of the mean� 
r��� provides information about where the observation window lies

with respect to an edge midpoint� Furthermore� providing the opportunity to select F��x� to be the

output can be valuable� The rest of this paper will focus on the case where K � L � � and F��x�

is de�ned in ����� As the size of the extended vector 
x is now determined by M � we will refer to M

as the order of the EPRS �lter�

Theorem ���� The cardinality of the the window size N EPRS �lter class with extended ob�

servation vector 
x � �x�� x�� � � � � xN � F��x�� F��x�� � � � � FK�x�	 � RN�K and extended rank vector


r � �
r��� 
r��� � � � � 
r�M � 
r��� 
r��� � � � � 
r�L	� is denoted as j�zj and is bound by

j�zj � �N 
K�
�N�K��

�N�K�M�L�� � ����

where � � M � N and � � L � K� When K � L � � and F��x� is the ��trimmed sample mean�

the bound becomes strict with

j�zj � �N 
 ��
�N����
�N�M�� � ����

If the input is restricted such there are no constant subsequences in the extended observation vector�

�



then

j�zj � �N � ��
�N������N �

�N�M�� � ����

Proof� The bound in ���� follows from the discussion above where it was shown that j�zj � �N �

K�j�z j and j�zj � �N�K�	��N�M�K�L�	
 Setting K � L � � directly reduces the bound to that

in ���� where the relation operator is the inequality �
 The inequality is strict for F��x� taken to be

the ��trimmed sample mean since
 by de�nition
 F��x� averages only over x���� x������ � � � � x�N�����


Consequently
 x��� � F��x� and
 due to stable sorting
 � � �r��
 Stable sorting also allows �r�� to

take on values up to and including N � � �for instance when all observation samples have equal

value�
 Thus
 ��� � �r�� � N��
 The lower bound on �r�� limits the number of permutations �r can

take on to fewer than in the general case
 causing the bound in ���� to be strict
 For the case where

all elements of �x are unique
 �r�� is bound to the N ����� values ��� � �r�� � N ����
 For this

case
 the M selected input samples can take on N�N � �� � � � �N �M ��� � N 	��N �M�	 ordering

combinations
 This
 with theN����� possible values of �r��
 gives a total of �N������N 	��N�M�	

possible rank permutations
 For each of the permutations
 the range of S��r� is f�� �� � � � � N � �g


corresponding to N � � possible outputs
 each of which is unique
 Thus for this case
 the number

of possible �lters is �N � ��
�N������N �

�N�M�� 
 �

An interesting consequence of stable sorting revealed in the proof is that
 unlike the straight rank

permutation �lter
 the EPRS can di�erentiate between a constant input signal and a non�constant

non�decreasing signal
 That is
 �r�� � N � � if and only if x� � x� � � � � � xN 
 For non�constant

signals
 �r�� � N 
 Next
 we relate the EPRS �lters to other previously de�ned �lters


��� Relationship to Other Filters

The EPRS �lters are a broad class of �lters that contain several important
 and as yet unrelated


�lters as subclasses
 Thus
 EPRS �lters provide a unifying framework that aids in the understanding

and analysis of the various �lter subclasses
 For example
 by virtue of the fact that EPRS �lters

utilize the ranks of selected samples
 previous work shows that weighted order statistic
 stack


RCRS
 and permutation smoothing �lters are also subclasses of EPRS �lters ���
 ���
 The following

theorems show that the CS
 LUM
 and WMMR sharpening �lters are also subclasses of EPRS �lters


Theorem ���� The window size N CS �lter with parameter j is a subclass of order zero EPRS

�lters where K � L � � and � � � �F��x� is the sample mean�� The EPRS �lter selection function

that gives the CS �lter class is

S��r� � S��r��� �

�
N � j � � if �r�� � �N � ����
j otherwise

� ����

�



where � � j � �N � �����

Proof� If �r�� � �N � ����� then for stable sorting� F��x� � x��N������ and �x�N�j��� � x�N�j���	

To yield the CS output� equivalent to that de
ned in ���
� the EPRS 
lter must output �x�N�j��� in

this case	 If �r�� � �N � ���� using stable sorting� then F��x� � x��N������ and �x�j� � x�j�	 In this

case� the EPRS 
lter should output �x�j�	 Thus� all possible inputs are accounted for and the proof

is complete	 �

The LUM 
lter can also be formulated as an EPRS 
lter provided that a slightly modi
ed mean

estimate is used	 This is shown in the following theorem	

Theorem ���� The window size N LUM �lter with parameters k and l is a subclass of order one

EPRS �lters with F��x� � �x�N�l��� � x�l����� and �r � ��r��� �r��
� where �� � � �usually the index

of the center sample in the observation vector�� The EPRS �lter selection function that gives the

LUM �lter class is

S��r� � S���r��� �r��
� �

�������
������

N � k � � if �r�� � N � k � �

k if �r�� � k
N � l � � if �r�� � �r�� � N � l � �

l if l � �r�� � �r��
�r�� otherwise

� ����

where � � k � l � �N � �����

Proof� First note that since �xN�� � F��x� � �x�N�l��� � x�l���� and � � k � l � �N � ����� then

x�k� � x�l� � �xN�� � x�N�l��� � x�N�k���� ����

Thus� �x�N�k��� � x�N�k���� �x�N�l��� � x�N�l���� �x�l� � x�l� and �x�k� � x�k�	 If �r�� � N � k � ��

then �x�� � �x�N�k��� or equivalently x�� � x�N�k���	 To yield the LUM 
lter output� de
ned in

��
� the EPRS 
lter should output x�N�k��� � �x�N�k��� in this case	 Similarly� if �r�� � k� then

x�� � x�k�	 In this case� the EPRS 
lter output should be x�k� � �x�k�	 Also� if �r�� � �r�� � N � l���

then �x�N�l����x�l���� � x�� � x�N�l���	 Thus� the LUM output in this case is equal to x�N�l��� �

�x�N�l���	 If l � �r�� � �r��� then x�l� � x�� � �x�N�l����x�l����	 Thus� the LUM output in this case

is equal to x�l� � �x�l�	 Finally� in any other case� the output of the LUM 
lter is x�� � �x�� which

has rank �r��	 This completes the proof	 �

An example of a LUM 
lter function is shown in Fig	 � for N � ��� k � � and l � �	 Since the

case where �r�� � �r�� cannot occur� these values are omitted from the plot	 Note that the midpoint

rank� �r��� can only range from l � � to N � � using stable sorting	 Also� note that if �r�� � i for

i � N � l � �� N � l � �� � � � � N � �� then x�l� � x�i���	 This means that any rank selection from

l to i � � produces the same output	 The LUM selection function determines the output based

�
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LUM Selection Function (k=5, l=8, N=25)

Figure �� LUM �lter selection function S���r��� �r���	
 where �r�� is the center sample rank and �r�� is

the rank of the LUM midpoint tl� This function is shown for N � �

 k � 
 and l � ��

on rank ranges of the center sample and mean� Since the EPRS �lters utilize the complete rank

information of these statistics
 the number of functions that can be realized
 and their complexity


is increased� This increase in number and complexity allows EPRS �lters to be more �nely tuned

to signal statistics
 resulting in superior performance in general�

In addition to the trimmed mean given in ���	
 other statistics may be useful for edge enhance�

ment either alone or in conjunction with the trimmed mean� For example
 the statistic used by the

WMMR �lter in ���
 ��� can be useful� This provides an estimate of the nearest edge plateau� Thus


by letting F��x	 be the WMMR �lter output
 �r � ��r��� �r���
 and �� � �
 the bene�ts of order one

RCRS and WMMR �lters are combined� One clear advantage of this �lter is the ability to perform

the identity operation if S��r	 � �r��� This will give the �lter signi�cantly better detail preserving

characteristics than the WMMR �lter possess� Note that the WMMR operation is performed by

this EPRS �lter for the �xed selection rule S��r	 � �r��� Such a �xed rule can not perform di�erent

output selections as may be warranted by local signal statistics� The ability of EPRS �lters to select

order statistic outputs as a function of local statistics
 as measured by the ordering of �x
 is of great

advantage and results in superior performance over such �xed rule �lters�

In addition to the sharpening �lters discussed above
 a number of other relatively simple �lters

can also be realized as EPRS �lters� For example
 a standard k rank �lter is obtained by the

following selection function

S��r	 � S��r��	 �

�
k � � if �r�� � k

k otherwise
� ���	

��



Similarly� an ��trimmed mean �lter is obtained by using the selection function S��r� � S��r��� � �r���

when F��x� is given by �	
�� As with the other sharpeners� these �lters are �xed rule �lters and do

not take into account local variations in fxg�

It should be noted that other �ltering methods have been extended to incorporate both linear

operations and ranking� Most notably� FIR�WOS �lters �
�� utilize linear combinations of samples

and rank selection� However� the rank selection method is that of WOS �lters in which samples

are weighted �repeated� and an order statistic from the weighted �expanded� set is selected� This

weighting allows certain samples to be emphasised and others deemphasized� Such a rank selection

method is suited for smoothing applications and has not been successfully applied to sharpening�

Due to the di�erent selection methodology� FIR�WOS �lters are not a subset of EPRS �lters except

in the limiting case where M � N and F��x� is an FIR operator�

As this section has shown� the EPRS �lter class contains a wide array of possible �lters� In order

to aid the design and analysis of EPRS �lters� the next section develops a number of �lter properties

and an optimization procedure� This optimization procedure returns the optimal selection rule for

a given set of training signals�

� Properties and Filter Optimization

In this section� some deterministic properties of the �lters are derived� The �rst property discussed�

which relates to the generalizability of a �lter class� is scale and bias invariance� Next� several

properties relating the rank of the mean and edges are given� These properties are then related

to the edge sharpening capabilities of EPRS �lters� While these properties will aid in design and

analysis of EPRS �lters� it may not be practical to design EPRS �lters based solely on them� Thus�

an adaptive procedure for optimizing over the �lter class is also presented in this section�

��� Deterministic Properties

The EPRS �ltering operation is clearly nonlinear� Consequently� the superposition property does

not hold in its general form� The superposition property does� however� hold for the special case of

a change in scale and bias�

Property ��� �Scale and bias invariance� For K � L � 	 and F��x� de�ned by ����� the EPRS

�lters have the property of scale and bias invariance� Speci�cally� if y � ax� b�N � where �N is an

N 	vector of ones� then

FEPRS�y� � aFEPRS�x� � b �	��

for a � 
 and �� � b ��� If the function S��r� has the symmetry S��r� � N�
�S��N�
��N���

�r�� then ��
� is valid for �� � a� b ��� �

		



The proof can be readily extended from that presented in ����� Thus� the EPRS �lters are not be

sensitive to changes in scale and bias� This is important since these parameters often vary from

image	to	image�

As stated earlier� the rank of the �	trimmed mean� as de�ned by 
���� provides important

information regarding the location of the �lter window with respect to an edge� The following

property illustrates this for a one	dimensional step edge�

Property ��� ���trimmed mean rank for step edges� For a step edge de�ned as

x
n� 


�
a for n � I

b for n � I
� 
���

the rank of F�
x
n�� for a � b is given by

�r��
n� 


�

N � �
I � n� � ���� for I � N��

�
� n � I � N��

�
� �

N � � otherwise
� 
���

For a � b� the rank of F�
x
n�� is given by

�r��
n� 


�

N � �
n� I� � ���� for I � N��

�
� � � n � I � N��

�

N � � otherwise
� 
���

Proof� For the case when n � I � N��
�

� the window spans N samples with value a� Using

stable sorting� �r��
n� 
 N � �� Similarly� when n � I � N��
�

� the window spans N samples with

value b and stable sorting yields �r��
n� 
 N � �� When I � N��
�

� n � I � N��
�

� the �lter

window spans z 
 n � 
I � N��
�

� samples with value b and N � z with value a� In the region

I � N��
�

� n � I � N��
�

� �� F�
x
n�� 
 a� Thus� for a � b� �r��
n� 
 N � z � � and for a � b�

�r��
n� 
 N�� using stable sorting� In the region I� N��
�

�� � n � I� N��
�
��� a � F�
x
n�� � b�

Thus� for a � b� �r��
n� 
 N � z�� and for a � b� �r��
n� 
 z�� in this region using stable sorting�

Finally� in the region I� N��
�
�� � n � I� N��

�
� F�
x
n�� 
 b� Thus� for a � b� �r��
n� 
 N�� and

for a � b� �r��
n� 
 z�� using stable sorting� Substituting in the value of z gives rise to expressions


��� and 
���� �

Thus� the �lter location relative to a step edge can be determined solely on the basis of the rank

of F�
x
n�� 
within a �nite region around the edge�� An example illustrating this is shown in Fig� �

for a window size N 
 � �lter with � 
 �� The rank of the mean provides detailed information about

the location of the �lter with respect to non	step edges as well� This is illustrated in Fig� �� which

shows a ramp edge and the resulting window mean and mean rank for all window locations� For

simple sequences� the rank of the trimmed window mean can be determined in a straight forward

manner� Next� we investigate the relationship between the mean and median for the more complex

convex and concave sequences and edges�

��
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Step Edge

Figure �� Example of a step edge showing the rank of the mean �r�� for size N � � �lter window
�� � 	
� Notice that for each �lter position which spans the edge� the mean takes on a unique rank�

To de�ne convex and concave sequences� the �rst di
erence of samples is used� Let ��n
 denote

the �rst di
erence� ��n
 � x�n
 � x�n � 	
� Then� fxg is convex �concave
 if ��n
 � ��n � 	


���n
 � ��n � 	

 for all n� Convex and concave sequences can be concatenated to form edges�

We consider such edges after relating the mean and median of a window passing over each type of

sequence�

Property ��� ���trimmed mean rank bounds for convex and concave sequences� For a

size N window passing over a convex �concave�� strictly increasing �decreasing�� sequence fxg� the

rank of the ��trimmed mean� F��x
� is bound below by �r�� � �N � 	
��� Similarly� for a concave

�convex�� strictly increasing �decreasing�� sequence� the rank of the ��trimmed mean is bound above

by �r�� � �N � 	
���

Proof� Not that �N �	
�� is the rank of the median for a window size N � Also� since all sequences

considered are strictly increasing or decreasing� the median sample is always the center sample in

the window� Thus for the symmetric window considered� we can� without consequence� consider

the median taken over an arbitrary window size� Also� for a strictly increasing sequence time and

rank order are identical� Thus� x � xr and F��x
 �
�

N �

PN����
i�� x�i� �

�
N �

PN����
i�� xi � �N �� where

N � � N�����	
 and �N � is the mean of an N � sample observation x� �centered at the same location

as x
� The same result holds for strictly decreasing sequences� Since the window size for the median

is arbitrary� we choose N � and denote the median of this size window as �N �� Consequently� to

prove the �rst assertion of the property it is su�cient to show that �N � � �N � for strictly increasing

convex sequences� To simplify the notation� denote the the �rst di
erence of observed samples as

	�
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Ramp Edge

Figure �� Example of a ramp edge showing the rank of the mean �r�� for size N � � �lter window

where � � �	 Notice that mean rank provides detailed edge location information	


i � x�i�x�i��
and the center sample in the observation window as x��	 Now consider N ���N ���N ��


N ���N � � �N �� � N �x�� �
N �X

i��

x�i �
N �X

i��

x�� � x�i ����

�
���X

i��

x�� � x�i � �x�N ����i � x��� �
���X

i��

�
�

�X
j�i��


j �
N ����iX
j����


j

�
A � � ����

since
P�

j�i��
j �
PN ����i

j���� 
j � � for � � i � � � � and strictly increasing convex sequences	 The

other assertions are proved similarly	 �

The rank of the ��trimmed mean can thus
 for instance
 distinguish an increasing convex se�

quence ��r�� � �N������ from an increasing concave sequence ��r�� � �N������	 This discrimination

property allows EPRS �lters to enhance the gradient of the class of edges formed by concatenating

convex and concave sequences	 Convex and concave sequences can be concatenated to form the

sets of increasing convex�concave
 and decreasing concave�convex
 edges	 Due to their symmetric

nature
 we need only consider the set of increasing convex�concave edges	 Similar results hold for

the set of decreasing concave�convex edges	

An increasing sequence fxg
 with �rst di�erence f
g
 contains a convex�concave edge with

in�ection point I if 
�n� � 
�n � �� for n � I and 
�n� � 
�n � �� for n � I	 Thus
 x�n� is

convex for n � I and concave for n � I	 The previous theorem can now be used to determine which

region of the convex�concave edge an observation window lies in	 The theorem states that if the

window spans only convex �concave� samples
 then �r�� � �N � ���� ��r�� � �N � �����	 Thus
 if

the window is centered su�ciently to the left �right� of the edge in�ection point
 �r�� � �N � ����

��r�� � �N � �����	 Moreover
 the rank of the ��trimmed mean transitions from � �N � ���� to

��
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Figure �� A convex�concave edge with in�ection point at time index �� On the left �right	 side of
the edge the rank of �
trimmed mean is bound by �r�� � �N �
	�� ��r�� � �N �
	��	� The relation
operator switches from � to � within N � ���� 
	 samples of the edge in�ection point�

� �N � 
	�� at a single point� Furthermore� the location of this transition point is bound to be

within N�����
	 samples of the edge in�ection point� This property of the �
trimmed mean rank

is made exact in the following� The proof of the property follows closely that in �
��� with the span

of the window modi�ed by trimming o� the � smallest and largest samples� and so is not given�

Property ��� ���trimmed mean rank bounds for increasing convex�concave edges� For

a size N window passing over an increasing convex�concave edge� there exists an integer m such

that the rank of the ��trimmed mean� F��x�n		� is bound below by �r�� � �N � 
	�� for n � m and

bound above by �r�� � �N � 
	�� for n � m� Moreover� the unique point m is within N � ��� � 
	

samples of the edge in�ection point I� jI �mj � N � ���� 
	� �

This property is illustrated in Fig� �� The �gure contains an increasing convex�concave edge

and the ��N � ��� � 
		 sample wide region� centered at the edge in�ection point� which contains

the point m where the bound on the rank of the �
trimmed mean changes� This edge localizing

property of the �
trimmed mean rank can be used by an EPRS �lter to enhance edges� For an

increasing edge� let T� and T� �T� � T�	 be two thresholds such that x�n� � 
	 � T� � x�n�	 and

x�n� � 
	 � T� � x�n�	� Then n� � n� is the edge transition duration between levels T� and T��

The following property gives su�cient conditions on the selection rule S��	 which result in an EPRS

�lter that reduces transition durations� or enhances edges�

Property ��� �Edge enhancement� Let FEPRS��	 be a window size N EPRS �lter with K � L �


 and F���	 the ��trimmed mean de�ned by �	
�� Restrict the selection rule S � �z �� f
� �� � � � � N �


�
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Figure �� A convex�concave edge �ltered by an EPRS �lter meeting the conditions in Property ����
The selection rule is chosen to be symmetric	 k� 
 k� 
 k� The window size is ��	 and results for

k 
 � and k 
 � are shown� For the k 
 � case	 the results of a single and four passes are shown�
After four passes the signal becomes a step edge and a root of the �lter�

�g which de�nes FEPRS��
 to be S��r
 
 k� when �r�� � �N � �
�� and S��r
 
 N � � � k� when

�r�� � �N��
��� � � k�� k� � �N��
��� Take fxg to be an increasing convex�concave edge sequence

with in�ection point I� For any two thresholds T� � x�I
 � T� with jI�nij � �N������

� i 
 �� ��

the transition duration of FEPRS�fxg
 is less than that of fxg� If jI�nij � ���N��
���k�������

�

i 
 �� �� then FEPRS��
 reduces the transition duration by N � �� �k� � k�
 samples�

Proof� Note that since fxg is increasing	 time and rank order are identical	 i�e�	 x 
 x
r� Thus	

when �r�� � �N � �
��	 FEPRS�x
 
 �x�k�� 
 x�k�� 
 xk� since k� � �N � �
��� Similarly	 when

�r�� � �N � �
��	 FEPRS�x
 
 xN���k�� Let m be the transition point where �r�� � �N � �
��

for windows centered at n � m and �r�� � �N � �
�� for windows centered at n � m� Then	

for observation windows centered at n � m	 the sequence fxg is retarded by FEPRS��
	 while

the �lter advances the sequence for windows centered at n � m� Since T� � x�I
 � T� and

jI � nij � �N � ���� �

	 i 
 �� �	 by property ���	 the points n� and n� are guaranteed to be on

opposite sides of m� Thus	 x�n�
 is among those points retarded �shifted right
 and x�n�
 is among

those points advanced �shifted left
� Consequently	 the transition duration between T� and T� has

been reduced� If jI � nij � ���N � �
��� k� � ���� �

	 i 
 �� �	 then FEPRS��
 shifts x�n�
 back

by �N � �
��� k� samples and x�n�
 ahead by �N � �
��� k� samples	 reducing the transition by

the sum of the shifts� �

This edge enhancing property is illustrated in Fig� �� The �gure contains a convex�concave edge

�ltered by an EPRS �lter meeting the above edge enhancing conditions� The results shown are for a

symmetric selection rule	 k� 
 k� 
 k� For this simple selection rule	 the EPRS �lter is equivalent to

��



the CS �lter ����� Such a basic selection rule can provide edge enhancement and allows for relatively

simple analysis� However� in practice such a rule may perform poorly on signals with complex

structures and edges 	as will be seen in Section 
�� By considering the ranks of the ��trimmed

mean and M selected observation samples� the EPRS �lter can use more sophisticated selection

rules� This allows the �lter to adapt to a wider variety of signal structures and edges� Moreover� by

utilizing sample ranks� robust noise suppression and frequency selectivity� can be realized ��
� ����

Selecting a �lter based solely on deterministic properties may be suitable for simple edge en�

hancement applications� A more practical solution for deblurring or deconvolution applications is

to optimize over the �lter class using training sequences that accurately account for the varied edge

types present in the signal of interest� One such adaptive technique is discussed next� The proce�

dure described is based on that in ��
� ��� and is adapted for the EPRS �lters� While the �lters

can be optimized under other criteria� such as the mean absolute error 	MAE�� we focus here on

optimization under the sum of L� normed error 	LNE� criteria�

��� Filter Optimization

To develop and implement the optimization� the rank permutation vectors which comprise the

permutation space must be indexed� By doing so� the permutation space can be expressed as

�z � f�r���r�� � � � ��rj�z jg� 	���

Also� let the observation vectors be written as a sequence� indexed in the order that they are utilized�

Thus� the observation vectors can be written as x	n���x	n��� � � � �x	nP �� and the corresponding

desired estimates as d	n��� d	n��� � � � � d	nP ��

For the EPRS �lter de�ned by the decision rule S	��� the LNE over the P element training

sequence is
PX

i��

j d	ni�� FEPRS	x	ni�� j
� �

PX

i��

j d	ni�� �x�S��r�ni��� j
�� 	�
�

The classi�er that minimizes 	�
� is referred to as the optimal classi�er and is denoted as Sopt	���

In instances where more than one classi�er satis�es the optimality criteria� a tie breaking rule must

be employed to de�ne a single optimal classi�er�

The LNE in 	�
� can be partitioned according to the observation vectors with the same rank

permutation� Let �i be the index of rank permutation vector in �z corresponding to observation

vector x	ni�� such that �r	ni� � �r�i� Next� de�ne �j�P � fi � f�� �� � � � � Pg � �i � jg� The total LNE

incurred over the training sequence by estimating the desired signal with the kth order statistic� in

those cases where the observation vector lies in the jth partition can be written as

Ej	k� �
X

i��j�P

j d	ni�� �x�k�	ni� j
�� 	���

�




If for some j � f�� �� � � � � j�zjg� �j�P � �� then de�ne Ej	k
 � � for k � �� �� � � � � N � �
 The LNE

of the EPRS �lter de�ned by S	�
 can now be written as a sum of errors� partitioned according to

permutation vector� yielding

PX

i��

j d	ni
� FEPRS	x	ni

 j
� �

j�z jX

j��

Ej	S	�rj

� 	��


It is easy to show that the LNE in 	��
 is minimized if and only if each of the Ej	S	�rj

 error sums

is minimized
 Thus� the optimal EPRS �lter selection function is given by

Sopt	�rj
 � k � Ej	k
 � Ej	l
 � l �� k 	��


for j � �� �� � � � � j�zj
 If there is not a unique minimum error for some j� then a tie breaking rule

must be employed
 In most practical cases� however� ties are unlikely given a su�cient number of

training samples


This training procedure always returns the globally optimal �lter for the training set
 Note

that a low error norm� � � �� may be useful for signals corrupted by heavy tailed noise
 For such a

choice� outliers do not dominate the sum of errors and �lters that smooth excessively are not chosen


Moreover� for doubly exponential noise the � � � norm leads naturally to the maximum likelihood

estimator
 For other noise processes where outliers are less likely� e
g
� Gaussian� higher order norms

can be successfully used


To implement this procedure the lookup table must be stored and the appropriate table index

generated for each observation
 The N � K samples in the extended observation vector must be

sorted and M � L� � 	integer
 multiplications performed to generate the appropriate index
 The

limiting factor for implementation� most often� is the size of the lookup table
 This is clear from

Theorem �
� which shows that the cardinality of the �lter class grows rapidly for large values of

M �L
 Thus� for increasing values of M � L a reduced lookup table may be required
 This can be

e�ectively accomplished by quantizing the extended rank vector using permutation colorings ����


However� in many cases good performance can be achieved with low order �lters that do not require

coloring or prohibitively large lookup tables


� Experimental Results

The proposed �lters can be used in a variety of signal and image restoration applications
 Here we

consider the application of these �lters to the restoration of a blurred Markov signal and natural

image corrupted by noise
 Thus� the �lters are performing deblurring or deconvolution in the

presence of noise
 Quantitative error results are presented and several �ltered signals and images

are shown for subjective evaluation
 The EPRS �lter are compared to other nonlinear edge enhancing

�lters


��



��� Markov Signal Restoration

The �rst experiment involves the restoration of a blurred Markov sequence� A ��dimensional signal

is used in order to clearly illustrate the edge enhancement properties of the �lters� The transition

matrix P characterizing the Markov signal model is a �� � matrix where

Pij �

�
��	� for i � j

���� for i �� j
� 
��


The resulting signal is a � level sequence with relatively long constant regions connected by step

edges� The blurring model is a �� sample Gaussian point spread function 
PSF
 with variance

of �� The signal is further corrupted by additive contaminated Gaussian noise� We denote the

contaminated Gaussian noise probability density function 
pdf
 as �
��� ��� p
� With probability

�� p� a noise sample is normally distributed with zero mean and variance ��
�
� and with probability

p� a noise sample is normally distributed with zero mean and variance ��
�
� In general� �� � �� and

p represents the �contamination� probability�

The mean absolute error 
MAE
 for the ERPS �lters and others is shown in Fig� �� Figure �a

shows the case where the noise has a �
�� �� p
 pdf� For the EPRS �lters� � � �� and a window size

of N � � is used for all �lters� Also� for M � �� �� � � which is the index of the center sample� For

M � �� ��� ��� and �� are the indices of the three center samples� Each �lter has been optimized

under the L� or MAE criteria using signal and noise realizations not used for �ltering� Notice that

the EPRS �lters outperform the other nonlinear �lters� The order three �lters provide the best

results followed by the order one �lters� Thus� improved performance can be gained by using high

order EPRS �lters� However� the �lter selection lookup table grows rapidly and more training data

is generally needed for higher order �lters� The median yields the worst results because it has no

edge enhancing capabilities and removes small signal structures� The results for the case where the

blurred signal is corrupted by Gaussian noise are shown in Fig� �b� In this case� � � � and again

the EPRS �lters provide the best results�

To illustrate the performance of the various �lters� a section of the �ltered signals is shown in

Fig� 	� The input signal is the blurred Markov signal which is corrupted by �
�� �� ��
 contaminated

Gaussian noise� Each of the �lter has been trained on a di�erent signal and noise realization� The

output of the order one EPRS �lter where N � � and � � � is shown in Fig� 	a� The MAE

for the entire restored signal is ����	� Notice that the impulses are suppressed and most edges

are fully restored to step edges� The output of the same size order three EPRS �lter is shown in

Fig� 	b 
MAE������
� This �lter provides better detail preservation� as can be seen in the region

� � n � ��� The output of the order one RCRS �lter� shown in Fig� 	c� does not show any

gradient enhancement 
MAE������
� However� the impulses are e�ectively suppressed� Thus� by

��
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�a� �b�

Figure �� MAE for the Markov sequence restoration where the signal is blurred and corrupted by

�a� ���� �� p� contaminated Gaussian noise �b� Gaussian noise� A window size of N 	 
 is used for
all �lters�

incorporating the mean in the extended observation vector� the performance of the EPRS �lters is

signi�cantly improved over that of the RCRS �lters�

The outputs of the CS� LUM and WMMR �lters are shown in Figs� 
d� 
e� and 
f with MAEs

of ������ ����� and ���

� respectively� These �lters are also employing a window size of N 	 
 and

the CS and LUM �lter parameters have been optimized by means of an exhaustive search using a

di�erent signal and noise realization� For the CS �lter jopt 	 � and kopt 	 lopt 	 � for the LUM�

The CS and WMMR �lters provide edge gradient enhancement and suppress the impulsive noise�

However� signi�cant loss of signal detail can be seen in the region � � n � ���

��� Image Restoration

In this section� the restoration of a blurred image corrupted by noise is examined� The original

image� shown in Fig� 
a� is a ��� � ���� 
 bit�pixel gray�scale image acquired from an airborne

platform� The image is blurred using a �� � mean �lter and ���� ���� ���� contaminated Gaussian

noise has been added� This corrupted image is shown in Fig� 
b �MAE	������� The nonlinear edge

enhancing �lters have been applied to this image� Each of the �lters has been optimized under the

L� or MAE criteria using the left half of the image in Fig� 
a with a di�erent noise realization� In

general� the EPRS �lters should be optimized using imagery which is statistically representative of

that to be restored� Note that the window sizes and parameters for each of the �lters has been

optimized using an exhaustive search�

The corrupted image has been �ltered using a ��� 	 N window size EPRS �lter with M 	 �� ��

��
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Figure �� Filtered Markov signals� �a� Order one EPRS �lter �MAE���		�� �b� order three EPRS
�lter �MAE���	�
� �c� order one RCRS Filter �MAE������� �d� CS �lter �MAE������
 jopt � ��

�e� LUM �lter �MAE���	��
 kopt � lopt � �� �f� WMMR �lter �MAE���	����

	�



is the index of the center sample� and � � �� The resulting image is shown in Fig� �c �MAE���	
��

Notice that the impulses are suppressed and the edges are sharper in this image� The output of

the optimal � � � CS �lter is shown in Fig� �d �MAE���

� jopt � 
�� Note that the 	 � 	 CS

�lter had a signi�cantly higher error and is therefore not shown� While many edges are enhanced�

some image detail is lost in this image� The output of the optimal � � � LUM �lter is shown in

Fig� �e �MAE������ kopt � �� lopt � ��� A result similar to that of the CS is obtained with the ���

WMMR �lter� This output image is shown in Fig� �f �MAE���	���

� Conclusions

The EPRS �lters can be viewed as an extension of RCRS �lters and permutation �lters� They

provide a broad framework in which many rank order based edge enhancing �lters can be formulated

including the CS� LUM� and WMMR �lters� It has been shown that by using the rank of selected

input samples and the rank of the mean� e�ective edge enhancement can be accomplished� The CS

and LUM �lters use partial information about the rank of the mean� However� it is demonstrated

that by using the full mean rank information in addition to the full rank of selected input samples�

superior results can be obtained� A deterministic optimization procedure is described here� This

optimization guarantees the optimal EPRS �lter for the given training data with any L� normed

error� The main advantage of EPRS �lters over linear techniques is their ability to enhance edge in

the presence of noise� In fact it is demonstrated that edge enhancement and noise suppression can

be achieved simultaneously� Furthermore� no overshoot or undershoot is introduced by the EPRS

�lters�
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