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Abstract Treating the cosmological constant as thermo-

dynamic pressure and its conjugate as thermodynamic vol-

ume, we investigate the critical behavior of the third-order

Lovelock black holes in diverse dimensions. For black hole

horizons with different normalized sectional curvature k =
0,±1, the corresponding critical behaviors differ drastically.

For k = 0, there is no critical point in the extended thermo-

dynamic phase space. For k = −1, there is a single critical

point in any dimension d ≥ 7, and for k = +1, there is a

single critical point in 7 dimensions and two critical points in

8, 9, 10, 11 dimensions. We studied the corresponding phase

structures in all possible cases.

1 Introduction

The thermodynamics of a black hole has been a research fron-

tier for several decades. In the presence of a negative cosmo-

logical constant, there can be very rich phase structures in the

black hole thermodynamic phase space. Since the early work

[1] on the phase transition in the Schwarzschild AdS black

hole, which is presently known as a Hawking–Page transi-

tion, our understanding as regards black hole phase transi-

tions has been greatly extended. An important example is

the first-order phase transition in Reissner–Nordström-AdS

(RN-AdS) spacetime [2–4], which has been compared with

Van der Waals liquid–gas phase transition frequently.

Recently, the idea of including the cosmological constant

in the first law of black hole has become popular [5–8]. Fol-

lowing this idea, the cosmological constant is no longer a

fixed parameter, but rather a thermodynamic variable. The

AdS background can be varying. One may doubt the neces-
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sity of this consideration. However, there are indeed some

physical reasons for doing so [9–12]. Under this considera-

tion, the black hole mass should be identified as the enthalpy

H rather than the internal energy [5], and the cosmological

constant becomes an effective thermodynamic pressure,

P = −
�

8π
. (1)

The thermodynamic volume V that is conjugate to P is natu-

rally defined as V = ( ∂ H
∂ P

)S . A detailed study of the volume

can be found in [13]. The temperature of the black hole is a

function of the black hole radius (which is closely related to

V ) and the cosmological constant. Such a relationship can

be inverted and taken as the equation of states (EOS) for the

black hole system, and hence one can adopt the usual meth-

ods used in classical thermodynamics to analyze the critical

behavior of the black hole.

There have been many papers pursuing the above idea for

diverse choices of AdS black holes, and most works indicate

that there is a close analogy between the P − V criticalities

of AdS black holes and the phase transition in Van der Waals

liquid–gas system. Reference [9] is an investigation of the 4-

dimensional RN AdS black hole in the extended phase space,

which proved that the analogy with Van der Waals system is

very precise. Then the analogy has been extended to other

cases, including higher dimensional charged black holes [9,

14,15], rotating black holes and black rings [16–20], Gauss–

Bonnet black holes [21–23], f (R) black holes [24], black

holes with scalar hair [25,26], black holes with nonlinear

source [27], Born–Infeld black holes [28,29], RN de Sitter

black holes [30], and the third-order Lovelock–Born–Infeld

black holes in d = 7 [31]. In a recent work [32], we studied

the criticality of static Gauss–Bonnet black holes in AdS

spacetime, taking the Gauss–Bonnet coupling constant as a

free thermodynamic variable. See [33–36] for some related

work.
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In this work we shall study the P−V criticality of the static

black holes in the third-order Lovelock gravity in diverse

dimensions. In the presence of a cosmological constant, the

black holes can be classified using the normalized sectional

curvature of the black hole horizons. There are three different

classes of black hole solutions in this classification scheme,

i.e. black holes with horizon curvatures k = 0,±1.

For k = 0, the EOS is identical to that of an ideal gas,

thus no phase transition could occur. For k = +1 and d = 7,

there is one critical point and the first-order phase transition

can easily be obtained. All these results are the same as in the

work of [31]. Furthermore, we give a detailed analysis of k =
±1 and d ≥ 7. For k = −1, there is one critical point in any

dimension d ≥ 7. When v = vc the system is physical if and

only if P = Pc. Actually all the isobaric plots of temperature

diverge at v = vc, except the one corresponding to P = Pc.

We can find the first-order phase transition at the isobaric

plots of the Gibbs free energy in specific regions of P . When

k = +1, the situation is a little more complicated. There is

one critical point in 7 dimensions, there are two critical points

in 8, 9, 10, 11 dimensions, and no critical points in d ≥ 12

dimensions.

The paper is organized as follows. In the next section we

will give a brief review of the thermodynamics of the third-

order Lovelock black holes. In Sect. 3 we give the EOS and

find the critical points in diverse dimensions. In Sect. 4 we

investigate the critical behavior of the system. Finally in Sect.

5 we present some concluding remarks.

2 Thermodynamics of third-order Lovelock black holes

To start with we give a brief review of the thermodynamics

of the third-order Lovelock black holes [37–39]. Setting the

Newton constant G = 1, the action is given by

I =
1

16π

∫

dd x
√

−g(R − 2� + α2L2 + α3L3), (2)

where the Gauss–Bonnet and the third-order Lovelock den-

sities are given as

L2 = Rµνγ δ Rµνγ δ − 4Rµν Rµν + R2, (3)

L3 = R3 + 2Rµνσκ Rσκρτ Rρτ
µν

+ 8Rµν
σρ Rσκ

ντ Rρτ
µκ + 24Rµνσκ Rσκνρ Rρ

µ

+ 3R Rµνσκ Rµνσκ + 24Rµνσκ Rσµ Rκν

+ 16Rµν Rνσ Rσ
µ − 12R Rµν Rµν, (4)

α2 and α3, respectively, are the second (i.e. Gauss–Bonnet)

and the third Lovelock coefficients. For the particular choice

of Gauss–Bonnet and Lovelock coefficients

α2 =
α

(d − 3)(d − 4)
, α3 =

α2

72
(

d−3
4

)
, (5)

it is well known that there exists an analytic static black hole

solution of the form [37–39]

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2d2

k, (6)

f (r) = k +
r2

α

[

1 −
(

1 +
6�α

(d − 1)(d − 2)
+

3αm

rd−1

)
1
3

]

,

(7)

where k = 0,±1 if � < 0 and k = +1 if � ≥ 0, d2
k is the

line element on a (d − 2)-dimensional maximally symmet-

ric Einstein manifold with curvature k. We will be working

mostly with � < 0; however, we shall see that P = − �
8π

can

become negative (i.e. � can become positive) in an isother-

mal process. The same phenomenon has also been observed

while studying the P − V criticalities of other AdS black

holes, see e.g. in [28] for the case of RN-AdS black hole.

Since the P − V analysis may not be valid for � > 0, we

consider the case � > 0 as unphysical in our paper.

The gravitational mass M can be expressed as (d−2)�k

16πG
m,

where �k is the volume of the (d −2)-dimensional submani-

fold just mentioned. The radius r+ of the black hole is one of

the roots of f (r) (in AdS spacetime, it is the largest root of

f (r)). Identifying H ≡ M we can rearrange the equations

f (r+) = 0 and T = f ′(r+)
4π

in the form

H =
(d − 2)�krd−3

+
16π

(

k +
16π Pr2

+
(d − 1)(d − 2)

+
αk2

r2
+

+
α2k

3r4
+

)

,

(8)

T =
1

12πr+(r2
+ + kα)2

[

48πr6
+ P

(d − 2)

+ 3(d − 3)r4
+k + 3(d − 5)r2

+αk2 + (d − 7)α2k

]

. (9)

Among various choices for the spacetime dimension d, the

particular case d = 7 is qualitatively different from other

choices, because the last term in (9) vanishes when d = 7.

Consequently, the temperature T vanishes as r+ → 0 when

d = 7, while it becomes divergent as r+ → 0 in higher

dimensions. That the case d = 7 is distinguished from the

cases of higher dimensions is perhaps a consequence of the

fact that d = 7 is the lowest dimension in which the third-

order Lovelock density can affect the local geometry. We

shall see later that the critical behavior in d = 7 is also

distinguished from the cases of higher dimensions.
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The other thermodynamic quantities which we need in

the following discussions are given as follows. These are the

black hole entropy [39]

S =
�krd−2

+
4

[

1 +
2(d − 2)kα

(d − 4)r2
+

+
(d − 2)k2α2

(d − 6)r4
+

]

(10)

and the thermodynamic volume

V =
(

∂ H

∂ P

)

S,α

=
rd−1�k

d − 1
. (11)

We see that the thermodynamic volume is a monotonic func-

tion of the radius of the horizon. The first law of black

hole thermodynamics in the extended phase space can be

expressed as

dH = T dS + V dP + ψdα, (12)

where ψ is the thermodynamic conjugate of α, which is given

by

ψ =
(

∂ H

∂α

)

S,P

=
�krd−7

+ k2

48π
(2kα − 3r2

+)(d − 2). (13)

It should be remarked that in general cases the first law

should contain contributions from the Gauss–Bonnet and

Lovelock coefficients as independent thermodynamic vari-

ables. However, in our case, these two objects are propor-

tional to each other and we are left with only a single param-

eter α as given in (5). A detailed discussion of extended first

Law and Smarr formula for Lovelock gravity can be found

in [40].

The Gibbs free energy can be obtained by

G = G(T, P) = H − T S

= �k

{

rd−1
+ P

d − 1
+

(d − 2)

(

k2α2 + 3 r2
+kα + 3 r4

+

)

krd−7
+

48π

−
rd−7
+

48π

(

r2
+ + kα

)2

(

r4
+

d − 2
+

2kα r2
+

d − 4
+

k2α2

d − 6

)

×
(

48 r6
+π P+(d − 2)

[

3 k (d − 3) r4
+ + 3 k2α (d − 5) r2

+

+ α2k3 (d − 7)

]

)}

. (14)

Notice that although on the left hand side we have included T

and P as independent variables for the Gibbs free energy, the

right hand side does not explicitly contain T . To understand

Eq. (14), we must think of r+ as an implicit function of T

and P . The implicit relationship is given by the expression

(9) for the temperature.

3 Equation of states and critical points

Equation (9) can be rearranged into the following form:

P =
T (d − 2)

4r+
−

k(d − 2)(d − 3)

16πr2
+

+
T kα(d − 2)

2r3
+

−
k2α(d − 2)(d − 5)

16πr+4

+
T k2α2(d − 2)

4r5
+

−
k3α2(d − 2)(d − 7)

πr6
+

. (15)

This equation can be regarded as the thermodynamic EOS for

the black hole system. Instead of the thermodynamic volume

V , we introduce the parameter

v =
4r+

d − 2
(16)

as an effective specific volume. Then the EOS takes the form

P =
T

v
−

k(d − 3)

(d − 2)πv2
+

32T kα

(d − 2)2v3
−

16k2α(d − 5)

(d − 2)3πv4

+
256T k2α2

(d − 2)4v5
−

256k3α2(d − 7)

3(d − 2)5πv6
, (17)

which resembles the EOS of the Van der Waals system to

some extent.

The critical points, if they exist, correspond to inflection

points on the isotherms, i.e. they must obey the conditions

∂ P

∂v
= 0,

∂2 P

∂2v
= 0, (18)

and ∂2 P
∂2v

should change sign around each of the solutions.

Merely finding the solution of (18) is insufficient to justify

the existence of a critical point, because the second derivative
∂2 P
∂2v

may not change sign around the solution, making the

solution correspond to an extremum, rather than an inflection

point. Later we shall see that when k = 1 and d = 12, the

solution to (18) is indeed not an inflection point and thus no

critical point exists in 12 dimensions.

Now let us proceed to finding all possible critical points

for each value of k = 0,±1 in diverse dimensions.

3.1 Ricci flat case with k = 0

When k = 0, Eq. (17) reduces into

P =
T

v
. (19)

This equation is independent of the spacetime dimension d

and is identical to the EOS of an ideal gas. The conditions
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(18) regarded as a system of algebraic equations for T and v

have no finite nonzero solution, so there is no critical point

when k = 0 in any dimension.

3.2 Hyperbolic case with k = −1

In this case, Eq. (17) becomes

P =
T

v
+

(d − 3)

(d − 2)πv2
−

32T α

(d − 2)2v3
−

16α(d − 5)

(d − 2)3πv4

+
256T α2

(d − 2)4v5
+

256α2(d − 7)

3(d − 2)5πv6
. (20)

Correspondingly, Eq. (18) possesses a single solution:

vc =
4
√

α

d − 2
, (21)

Tc =
1

2π
√

α
(22)

which can be checked to be a real critical point. The corre-

sponding critical pressure is

Pc = P(vc, Tc) =
1

48πα
(d − 1)(d − 2). (23)

The critical parameters vc and Tc must all be real positive,

so the existence of a critical point requires α > 0. It is easy

to check that

Pcvc

Tc

=
d − 1

6
, (24)

which depends only on d but not on any other parameters.

Remember that the above critical point exists in all dimen-

sions d ≥ 7.

3.3 Spherical case with k = 1

In this case the EOS reads

P =
T

v
−

(d − 3)

(d − 2)πv2
+

32T α

(d − 2)2v3
−

16α(d − 5)

(d − 2)3πv4

+
256T α2

(d − 2)4v5
−

256α2(d − 7)

3(d − 2)5πv6
. (25)

We have two solutions to Eq. (18), which read

vc1 =
4
√

α

d − 2

(

d + 3 − 2A

d − 3

)1/2

, (26)

Tc1 =
d − 3

2π
√

α

(

A − d + 2

A − 3d + 6

) (

d − 3

d + 3 − 2A

)1/2

, (27)

Table 1 The numerical critical parameters at the first critical point

Dimension d Pc1 vc1 Tc1
Pc1vc1

Tc1

8 −0.4336 0.3269 0.1364 −1.0392

9 −0.0856 0.3928 0.2046 −0.1644

10 0.0374 0.4226 0.2636 0.0600

11 0.1194 0.4444 0.3183 0.1667

Table 2 The numerical critical parameters at the second critical point

Dimension d Pc2 vc2 Tc2
Pc2vc2

Tc2

7 0.0271 1.7889 0.1424 0.3400

8 0.0454 1.3597 0.1857 0.3325

9 0.0696 1.0732 0.2302 0.3244

10 0.1002 0.8660 0.2757 0.3148

11 0.1383 0.7027 0.3221 0.3017

and

vc2 =
4
√

α

d − 2

(

d + 3 + 2A

d − 3

)1/2

, (28)

Tc2 =
d − 3

2π
√

α

(

A + d − 2

A + 3d − 6

)(

d − 3

d + 3 + 2A

)1/2

, (29)

where

A =
√

(d − 2)(12 − d).

The corresponding pressures are given, respectively, as fol-

lows:

Pc1

=
(d − 2)(d − 3)2

[

(15d2 − 222d + 177)d−A(d2 − 160d + 255)+414

]

48πα(d + 3 − 2A)3(A − 3d + 6)
,

(30)

Pc2

= −
(d−2)(d−3)2

[

(15d2 − 222d + 177)d+A(d2 − 160d + 255)+414

]

48πα(d + 3 + 2A)3(A + 3d − 6)
.

(31)

For these solutions to be real-valued, the constant A must also

be real-valued. This requires 2 ≤ d ≤ 12. On the other hand,

the third-order Lovelock density is geometrically nontrivial

only when d ≥ 7, therefore, for k = +1, critical points can

only possibly exist in dimensions 7 ≤ d ≤ 12. In particular,

when d = 12, the above two solutions degenerate, and one

can check that ∂2 P
∂2v

does not change sign around this degen-

erate solution. When d = 7, both vc1 and Tc1 vanish, with the

corresponding Pc1 going to negative infinity. Clearly vc1 = 0

does not correspond to a black hole configuration, so the first

123



Eur. Phys. J. C (2014) 74:3074 Page 5 of 15 3074

Fig. 1 The isobaric (left) and isothermal (right) plots at d = 7, k =
−1. On the left plots, all the isobars are discontinuous at v = vc,

except the one corresponding to P = Pc (dashed line), and the pres-

sure decreases from top to bottom. Similarly, on the right plots, all the

isotherms are discontinuous at v = vc, except the dashed line corre-

sponding to T = Tc. The temperatures decrease from top to bottom on

the right plots

Fig. 2 d = 7 and k = −1: isobaric plots of the EOS and Gibbs free energy at P = 0.2785 > Pc. For reference, the isobaric curves at P = Pc are

also depicted in dashed lines. Marked points on the left and right diagrams are in one-to-one correspondence

solution is excluded from the possible candidates of critical

points when d = 7. One can check that for 8 ≤ d ≤ 11,
∂2 P
∂2v

indeed changes sign around each of the above solutions,

and for d = 7, the above object also changes sign around the

second solution. So we conclude that, when k = +1, there

will be a single critical point in dimensions d = 7 and two

critical points in dimensions d = 8, 9, 10, 11.

It is trivial to show that the combinations

Pc1vc1

Tc1
=

(177 − 222d + 15d2)d − A(d2 − 160d + 255) + 414

6(2A − d − 3)2(A − d + 2)
,

(32)

Pc2vc2

Tc2
= −

(177 − 222d + 15d2)d + A(d2 − 160d + 255) + 414

6(2A + d + 3)2(A + d − 2)

(33)
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Fig. 3 d = 7 and k = −1: isobaric plots of the EOS and Gibbs free energy at P = 0.1592 < Pc. For reference, the isobaric curves at P = Pc are

also depicted in dashed lines. Marked points on the left and right diagrams are in one-to-one correspondence

Fig. 4 d = 7 and k = −1: isobaric plots of the EOS and Gibbs free energy at P = 0.1393 < Pc. For reference, the isobaric curves at P = Pc are

also depicted in dashed lines. Marked points on the left and right diagrams are in one-to-one correspondence

are both only dependent on the dimension d. The numerical

values for the critical parameters are given in Tables 1 and 2.

The values for Pc are given in units of α−1, those for vc are

given in units of α1/2 and for Tc are given in units of α−1/2.

In all subsequent discussions we will stick to this system

of units. The critical pressure Pc1 is negative in dimensions

d = 8, 9. Although the black hole solutions remain valid

for a positive cosmological constant, we consider them as

unphysical in this paper.

4 Phase structures

4.1 Hyperbolic case with k = −1

Previous studies indicate that critical points may exist for

AdS black holes with k = −1 in various models of gravity.

However, the behavior of such black holes near the criticali-

ties is in some sense exotic and has been paid less attention

to as compared to the cases of k = +1 black holes. In this
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Fig. 5 d = 7 and k = −1: isothermal plots of the EOS and Gibbs free energy at T = 0.6366 > Tc. For reference, the isothermal curves at T = Tc

are also depicted in dashed lines. Marked points on the left and right diagrams are in one-to-one correspondence

Fig. 6 d = 7 and k = −1: isothermal plots of the EOS and Gibbs free energy at T = 0.0732 < Tc. For reference, the isothermal curves at T = Tc

are also depicted in dashed lines. Marked points on the left and right diagrams are in one-to-one correspondence

work, we will pay particular attention to the k = −1 cases

and show how exotic it is for such black holes.

As mentioned earlier, the Hawking temperature (9) (and

hence the EOS) is qualitatively different for d = 7 and d > 7,

so we shall subdivide our discussions into d = 7 and d > 7

cases.

4.1.1 The case of d = 7

In the rest of the paper, we will treat the thermodynamics of

the Lovelock AdS black holes as a P − V –T system, taking

the Lovelock coefficient α as a constant parameter. This is

of course an incomplete description of the Lovelock black

holes, because the coupling coefficient α should also play a

role in the thermodynamics of the black holes, just like in the

case of GB AdS black holes [32].

Figure 1 gives the isobaric and isothermal plots for our P−
V –T system at d = 7 and k = −1, in which the parameter α

is taken to be equal to 1. The critical value of the parameters

are Pc = 5
8π

, vc = 4
5

, and Tc = 1
2π

.

From the isobaric plots given in Fig. 1, one can see that

for each P < Pc, there is a region for v containing vc

123
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Fig. 7 d = 7 and k = −1: isothermal plots of the EOS and Gibbs free energy at T = 0.0637 < Tc. For reference, the isothermal curves at T = Tc

are also depicted in dashed lines. Marked points on the left and right diagrams are in one-to-one correspondence

Fig. 8 The isobaric (left) and isothermal (right) plots at d = 8, k =
−1. On the left plots, all the isobars are discontinuous at v = vc,

except the one corresponding to P = Pc (dashed line), and the pressure

decreases from top to bottom. On the right plots, all isotherms are dis-

continuous at v = vc, except the dashed one corresponding to T = Tc.

The temperature of each isotherm decreases from top to bottom on the

right plots

such that the temperature T goes negative, which means

that black holes with such parameters are thermodynami-

cally unstable and should not exist actually. Meanwhile, on

the isothermal plots, one sees that for sufficiently low tem-

peratures T < Tc, there is a segment on the isotherms such

that the pressure becomes negative. Such black hole states

are physically impossible, because negative P corresponds

to positive cosmological constant �, and it is well known

that black holes with positive cosmological constant cannot

have k = −1.

To have more intuitive feelings on the critical behavior

of the d = 7, k = −1 black holes, let us turn to look at

the Gibbs free energy plots. Since G = G(T, P), we will

consider separately isobaric and isothermal processes.

The isobaric plots of the EOS and Gibbs free energy are

presented respectively for black holes with constant P > Pc
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Fig. 9 d = 8 and k = −1: isobaric plots of the EOS and Gibbs free energy at P = 0.3621 > Pc. For reference, the isobaric curves at P = Pc are

also depicted in dashed line. Marked points on the left and right diagrams are in one-to-one correspondence

Fig. 10 d = 8 and k = −1: isobaric plots of the EOS and Gibbs free energy at P = 0.2618 < Pc. For reference, the isobaric curves at P = Pc

are also depicted in dashed line. Marked points on the left and right diagrams are in one-to-one correspondence

and P < Pc in Figs. 2, 3, 4. Figure 2 is a typical case with

P > Pc. It can be seen that, at the temperature T1, there

can be three different black hole phases with different v,

among these, the “small black hole” marked with the letter

b and the “large black hole” marked with g are both ther-

modynamically stable, while the “medium sized black hole”

marked with e is thermodynamically unstable. The black hole

phases b and g coexist at temperature T1, because these two

phases have the same Gibbs free energy. At temperatures

lower than the temperature of the black hole state f, only the

small black hole phase exists, while at temperatures higher

than the temperature of the black hole state g, the large black

hole phase is thermodynamically favored. The shape of the

Gibbs free energy plot can be thought of as containing a swal-

low tail with one tip extending infinitely long to the right

(i.e. the high temperature end). Figures 3 and 4 both corre-

spond to cases P < Pc. The difference lies in the pressure

in Fig. 4, which is even lower than that in Fig. 3, so that

in Fig. 3, there still exists a stable small black hole phase,

which coexists with the large black hole phase at tempera-

ture T2, while in Fig. 4, the only stable black hole phase is

the large black hole phase (T2 becomes negative). The swal-

low tails in the Gibbs free energy curves in these two figures

are both incomplete, because a small/large portion of the tail

123



3074 Page 10 of 15 Eur. Phys. J. C (2014) 74:3074

Fig. 11 d = 8 and k = −1: isobaric plots of the EOS and Gibbs free energy at P = 0.2451 < Pc. For reference, the isobaric curves at P = Pc

are also depicted in dashed line. Marked points on the left and right diagrams are in one-to-one correspondence

Fig. 12 Isothermal plots of the EOS and Gibbs free energy at d = 7

and k = +1. Each curve corresponds to a constant T > 0. The P < 0

region is unphysical. The curves at T = Tc are depicted in dashed lines.

Marked points on the left and right diagrams are in one-to-one corre-

spondence. The apparently straight vertical segments in the Gibbs free

energy plots are actually curved, with positive slope everywhere

extends to the negative temperature axes and hence are cut

off from the physical region of the thermodynamical phase

space.

Let us now turn to look at the isothermal plots of the EOS

and Gibbs free energy. These plots are given in Figs. 5, 6,

7. Figure 5 gives the isothermal plots of the EOS and Gibbs

free energy at T > Tc. It can be seen that at low pressure,

the large black hole phase (segment b-g and onwards on the

isotherm) is thermodynamically preferred. At high pressure,

the small black hole phase (segment b-a and onwards) is ther-

modynamically preferred. Note that although the Gibbs free

energy curve looks like containing a complete swallow tail,

the curve is actually discontinuous at the point c. Both Figs.

6 and 7 correspond to the case T < Tc, the only difference

lies in Fig. 7, which corresponds to a temperature even lower

than that in Fig. 6, so that a portion of the isobaric curves in

Fig. 7 become unphysical (i.e. extend to negative pressure).

The phase structure is basically the same as in the case of
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Fig. 13 Isothermal plot of the EOS at d = 9 and k = +1. Each

curve corresponds to a constant T > 0. The dashed lines correspond to

T = Tc1 and T = Tc2. The temperatures decrease from top to bottom

T > Tc, i.e. large black holes are favored at low pressures

and small black holes are favored at high pressures.

4.1.2 The cases of d > 7

When d > 7, the last term in (9) dominates at small v, which

results in a significant difference as compared to the d =
7 case. Apart from this, there is no qualitative difference

between the different dimensions if they are all above seven.

The best way to illustrate the difference from the case of

d = 7 is via a plot of the EOS. Figure 8 gives the isobaric and

isothermal plots of the EOS at d = 8, which is in analogy to

Fig. 1 for the d = 7 case. The most significant difference from

Fig. 1 lies in the fact that all isobaric curves tend to T → −∞
as v → 0. However, there is no qualitative difference in the

isothermal curves at positive T .

The phase structure for the d > 7 cases can be worked out

exactly as in the d = 7 case. The resulting phase structure is

extremely similar to the d = 7 case, the only difference lies in

the fact that at low pressure, the thermodynamically favored

small black hole phase cannot become arbitrarily small; there

always exists a smallest va 	= 0, which corresponds to a

zero temperature small black hole. If v goes even smaller,

the temperature becomes negative, which indicates that the

corresponding small black hole becomes unstable and can-

not exist physically. For illustrative purposes, we present the

isobaric plots for the EOS and Gibbs free energy for d = 8,

k = −1 black holes in Figs. 9, 10, 11. These plots are cre-

ated in complete analogy to Figs. 2, 3, 4. The isothermal plots

analogous to Figs. 5, 6, 7 for the d = 8 case do not reveal

any further novelty or difference from the d = 7 case, so we

omit these plots.

4.2 Spherical case with k = +1

Now we consider the case of k = +1. When d = 7, the last

term in the EOS (25) vanishes, the dominating term at small

v is the second last term, making P → +∞ as v → 0 (for

positive constant T ). In contrast, when d > 7, the last term

in (25) dominates at small v, making P → −∞ as v → 0.

Therefore, it is still necessary to distinguish the case of d = 7

from the 8 ≤ d ≤ 11 cases (the cases d > 11 are excluded

because there is no critical point in such cases).

Fig. 14 Isothermal plots of the EOS and Gibbs free energy at d = 9

and k = +1 at Tc1 < T = 0.2075 < Tc2. Marked points on the P − V

and G − P diagrams are in one-to-one correspondence. The third plot

is a magnification of the G − P diagram given in the middle plot. The

P < 0 region is unphysical. In this case, there is no first-order phase

transition in the P > 0 region (the Gibbs free energy on the e– f seg-

ment and onward is lower than its values on any other segment of the

EOS plot)
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Fig. 15 Isothermal plots of the EOS and Gibbs free energy at d = 9

and k = +1 at Tc1 < T = 0.2100 < Tc2. Marked points on the P − V

and G − P diagrams are in one-to-one correspondence. The third plot

is a magnification of the G − P diagram given in the middle plot. The

P < 0 region is unphysical. In this case, there is a first-order phase tran-

sition at the marked point b(g) where the Gibbs free energy degenerate

but not differentiable

Fig. 16 Isothermal plots of the EOS at d = 11 and k = +1. The

temperatures decrease from top to bottom. The dashed lines correspond

to T = Tc1 and T = Tc2. The middle two lines correspond to T =
0.3193 and T = 0.3195, respectively

4.2.1 The case of d = 7

First we consider the case of d = 7. As indicated in the

last section, there is a single critical point in this dimension.

Figure 12 gives the isothermal plots for the EOS and the

Gibbs free energy at k = +1 and d = 7. It can be seen that

at T > Tc (here Tc = Tc2 is the only critical temperature in

d = 7), there is only a single phase which is in analogy to

the thermal behavior of an ideal gas. At T < Tc, multiple

phases begin to appear. It is remarkable that for sufficiently

low temperature T , there can be a segment in the isotherms

which corresponds to negative pressure P . We consider it as

unphysical.

For P > 0, there can be up to three black hole phases at

the same pressure, among these, the small black hole phase is

favored at high pressure, while the large black hole phase is

favored at low pressure. The two thermodynamically favored

black hole phases can coexist at some intermediate pressure,

while the intermediately sized black hole phase is always

thermodynamically unfavored.

4.2.2 The cases of 8 ≤ d ≤ 11

Now we investigate the case of 8 ≤ d ≤ 11 by analyzing

the isothermal plots of EOS and Gibbs free energy. In these

dimensions there are always two critical points. In d = 8, 9,

the critical pressure Pc1 becomes negative, which is unphys-

ical. In d = 10, 11, Pc1 remains positive. We shall consider

the case of d = 8, 9 and d = 10, 11 separately.

First we consider the cases d = 8, 9. These two cases are

not qualitatively different from each other, and so, without

loss of generality, we only present the detailed analysis in

d = 9. The two critical pressures are Pc1 = −0.0856 and

Pc2 = 0.3928. The critical temperatures are Tc1 = 0.2046

and Tc2 = 0.2302. Figure 13 gives the isothermal plots for

the EOS at k = +1 and d = 9, which is quite similar with

the P − V diagram of BI-AdS black holes [28]. Regardless

of the value of temperature, the pressure goes to negative

infinity as v → 0 and vanishes as v → ∞. It can be seen

that at Tc1 < T < Tc2, multiple phases begin to appear.

Note that in this region of the temperature, each isotherm

possesses three extrema, and it will be clear that at each of
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Fig. 17 Isothermal plots of the EOS and Gibbs free energy at d = 11 and k = +1 in Tc1 < T = 0.3193 < Tc2. Marked points on the left and

right diagrams are in one-to-one correspondence. In this case, there is no phase transition in the region P > 0

Fig. 18 Isothermal plots of the EOS and Gibbs free energy at d = 11

and k = +1 in Tc1 < T = 0.3195 < Tc2. Marked points on the left and

right diagrams are in one-to-one correspondence. The global minimum

of the Gibbs free energy proves there is a coexistence state of small

(point a) and larger (point e) black holes

these extrema the derivative of the Gibbs free energy with

respect to the pressure is discontinuous.

In Figs. 14 and 15 we depict two particular temperatures

and re-plot the EOS together with the corresponding Gibbs

free energy curve. It can be seen from these plots that at

some temperature in between T = 0.2075 and T = 0.2100

the system begins to develop a first-order phase transition

at a particular point in the region P > 0. However, the

exact value of the temperature at which the phase transi-

tion begins to appear is very difficult to determine. When the

first-order phase transition point is developed, there is also

some possibility for the existence of a zeroth-order phase

transition in the region P > 0, which occurs when the pres-

sure at the marked point f is higher than it is at the marked

point a in Fig. 15. We consider the region of P < 0 as

unphysical.

Next we consider the cases of d = 10, 11. These phase

structures in two dimensions are qualitatively similar, so we
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take d = 11 as an example. The critical pressures are Pc1 =
0.1194 and Pc2 = 0.1385, respectively, both are positive. The

critical temperatures are Tc1 = 0.3183 and Tc2 = 0.3221.

In Fig. 16 we present the isothermal plots for the EOS in

d = 11 and k = +1. Multiple phases can appear at temper-

atures T in between Tc1 and Tc2. Unlike the cases d = 8, 9,

both Pc1 and Pc2 are positive and physical, so one does not

need to take care of the negative pressure region. In analogy

to Figs. 14 and 15, we depict the EOS and G − P diagrams in

Figs. 17 and 18, with the former corresponding to the cases

in when no first-order phase transition occurs and the latter

to the cases when a first-order phase transition develops in

the P > 0 region. In the latter case, if the pressure at the

point d exceeds that at the point b, there is a possibility for

the existence of a zeroth-order phase transition in the region

P > 0.

5 Concluding remarks

Although the extended phase space thermodynamics for

the third-order Lovelock gravity has been studied in some

previous works, e.g. [31,41], exploring the thermodynamic

phase space in different spacetime dimensions reveals unex-

pected rich phase structures, which are overlooked in those

works.

In this paper we explored the phase structures for the

third-order Lovelock gravity in diverse dimensions. Special

emphasis is put on the dependence on the spacetime dimen-

sions as well as on the spatial curvature of the black hole

horizons. Our work extends that of [31] in that all spacetime

dimensions which admit the existence of critical points are

worked out, and in that the case k = −1 is explored in much

more detail. The more recent work [41] studied the phase

structures of Lovelock–Born–Infeld gravity and did consider

the dependence on the spacetime dimensions. However, the

authors of that paper worked out only a single critical point

and erroneously described d = 12 with k = 1 as a dimen-

sion allowing for the existence of critical point. Our work

indicates that when k = 1, only the dimensions 7 ≤ d ≤ 11

allow for the existence of critical points.
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