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EXTENDED POISSON EQUATION FOR WEAKLY ERGODIC

MARKOV PROCESSES
UDC 519.21

A. YU. VERETENNIKOV AND A. M. KULIK

Abstract. Solvability conditions for a Poisson equation with an extended generator
of a general Markov process are obtained. The predictable part in the Doob–Meyer
decomposition is described for a process of the form g(X(t), Y (t)), where Y is a
solution of a stochastic equation with the coefficients depending on X and where the
function g = g(x, y) is defined as a family of solutions of the Poisson equation.

1. Introduction

Let X(t), t ∈ R
+, be a homogeneous Markov process and let processes Y ε, ε > 0, be

defined as solutions of differential equations (possibly, stochastic differential equations)
whose coefficients depend on a “fast” random component Xε(t) = X(tε−1), t ∈ R

+.
Describing the limit behavior of Y ε as ε → 0+ is of significant interest, since there is a
wide range of both theoretical and applied models, where “fast” and “slow” components
are presented. A comprehensive survey of results of this type can be found, for example,
in Sections 1 and 2 of the paper [1].

The current paper is motivated by the following natural question: how do the ergodic
properties of the process X influence the results of the “diffusion approximation” type
for the processes Y ε? The term “diffusion approximation” is usually used for a certain
version of the functional central limit theorem.

The classical results on the diffusion approximation (see, for example [2], [3], [4],
Theorem 12.2.4 in [5]; see also [6]) assume that the process X is uniformly ergodic. This
means that the invariant distribution π is unique and that

(1) ‖Pt(x, dy)− π(dy)‖var ≤ r(t), t ∈ R
+,

uniformly with respect to points x of the space X of states of the process X, where
Pt(x, dy) is the transition function of the process X, ‖ · ‖var the distance in variation,
and r some function converging sufficiently quickly zero at +∞. The assumption on
the uniform ergodicity is quite natural for processes with a finite (or, more generally,
with a compact) space of states. On the other hand, such an assumption is rather
restrictive for more complicated systems. For example, if X is defined via a stochastic
differential equation in R

k whose coefficients grow at most linearly, then bound (1) does
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24 A. YU. VERETENNIKOV AND A. M. KULIK

not hold, since Pt(x,K) → 0, |x| → ∞, for an arbitrary compact set K and all fixed
t. Estimates of type (1) are even less natural for Markov processes with infinite state
spaces. For example, the distributions Pt(x, ·) are singular for certain pairs of initial
points for many Markov processes defined via partial stochastic differential equations.
This, in particular, means that Pt(x, dy) does not converge to the initial distribution in
the sense of the convergence in variation.

A method of solving the problem of diffusion approximation was developed in [7] for
the case where the “fast” random component is a diffusion process. This method is
essentially based on the analysis of the following Poisson equation in R

k:

(2) Lu(x) = −f(x),

where

L =

k∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

k∑
i=1

bi(x)
∂

∂xi

is the elliptic operator of the second order related to the “fast” diffusion component. As
mentioned above, bound (1) does not hold, as a rule. Instead, bounds of the form

(3) ‖Pt(x, dy)− π(dy)‖var ≤ r(t)ψ(x), t ∈ R
+,

are satisfied under a rather wide class of natural assumptions imposed on the coefficients,
where ψ is a “penalty” function. The function ψ as well as the function r are determined
by the Lyapunov conditions for the coefficients of the process (see [8]–[10]). Bounds of
type (3) are used in [7] to analyze equation (5).

Our aim is to generalize the method of paper [7] for the case where no specific structural
assumptions are imposed on the “fast” random component. For example, we do not
assume that X is a diffusion process, but we do assume that some bounds of the form (3)
hold. More generally, we assume that

(4) d (Pt(x, dy), π(dy)) ≤ r(t)ψ(x), t ∈ R
+,

where d is a probabilistic distance (see Section 2 below). Therefore our main assumptions
imply that the transition probabilities of the “fast” random component converge to the
invariant distribution in a certain sense. This convergence is weaker than the convergence
in variation, which explains the term “weakly ergodic process” used in the title of the
current paper.

A variety of methods is described in the literature allowing one to check both condi-
tions (3) and (4). Condition (3) is obtained in [11] with an exponential function r and
in [12] with an subexponential function r. General conditions for (3) are given in [13]
with an exponential function r in the case of solutions of stochastic differential equations
with a Lévy noise. As shown in [13], the checking of irreducibility conditions used in the
papers [11] and [12] and stated in terms of “petite sets” is hardly possible in the general
case.

A bound of type (4) with an exponential function r and with an appropriate distance
d appears in a natural way if a process is defined via a stochastic differential equation
(possibly, via an infinite dimensional stochastic differential equation) possessing a cer-
tain dissipative property. Typical examples of such results are given in the books [14]
(Section 11.5) and [15] (Section 16.2).

In some recent papers (see, for example, [16]–[19]), several methods are proposed that
allow one to prove bounds similar to (4) under sharper assumptions than the dissipative
assumption. We also mention the “general version of the Harris theorem” proposed
in [20] (we follow the terminology of the paper [20]). This result derives bound (4) from
an appropriate version of the Lyapunov condition. This Lyapunov condition involves a
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EXTENDED POISSON EQUATION 25

set where the processX is irreducible in a certain sense related to the distance d (“d-small
set”).

The above discussion confirms that there are several examples of significant interest
for which one can prove either explicit estimates for the rate of convergence to the
invariant distribution that are nonuniform with respect to the initial point, or those for
the convergence in variation as in (3), or those for a weaker probabilistic distance such
as the one in (4). Our general aim is to prove results on the diffusion approximation for
systems where the “fast” component is represented by a process of this kind.

This paper is the first, preparatory and technical, step in performing the program
mentioned above. For a general Markov process X, we investigate an appropriate case of
Poisson equation (2). In doing so, we answer two main questions arising in the context
of the problem of diffusion approximation.

The first of these questions is how to define a solution of equation (2). In the paper [7],
a weak solution of equation (2) is studied with an elliptic operator of the second order.
It is also shown in [7] that this solution is, as a rule, unbounded in R

k if one does not
assume that the right hand side of (2) converges sufficiently fast to zero as |x| → ∞. This
shows that if one views the operator L in (2) as the generator of the semigroup generated
by the initial process in the space B(Rk) of measurable bounded functions, for example,
then the class of functions f such that equation (2) has a solution becomes too small.
We propose to use the extended generator A defined in terms of an appropriate version
of the Dynkin formula (see Definition 2.1) as an analogue of the operator L in (2) for a
general Markov process. In other words, for a given measurable function f : X → R, we
search for a function u such that

(5) Au = −f.

Since equation (5) is given in terms of the extended generator A, we call it the extended
Poisson equation.

The second question studied in this paper is related to the structure of the predictable
component in the Doob–Meyer decomposition of stochastic processes of the form

(6) g(X(t), Y (t)), t ∈ R
+,

where X is the initial Markov process, Y is a process defined via the stochastic differ-
ential equation whose coefficients depend on X, and where g = g(x, y) is a family of
solutions of equations of the form (5) with the right hand side f = f(x, y) depending
on a parameter y. The processes described above appear in the context of the theory
of diffusion approximation, since the standard method related to the corrector (see, for
example, the proof of Theorem 3 in [7]) requires some properties of the semimartingale
components of this corrector. These properties are proved in [7] and [21] with the help
of an appropriate version of the Itô formula. Note, however, that this method depends
essentially on a structure of the process X. In particular, some results on local properties
of weak solutions of partial parabolic and elliptic equations of the second kind are used
in [7] and [21]. On the other hand, this method is rather intractable in a quite simple
case of a process X defined via a stochastic differential equation with a Lévy noise, since
the analogs of the analytic results mentioned above do not exist in a needed generality
for solutions of equations with pseudo-differential operators.

In the current paper, we propose another approach that does not require any specific
assumption about the structure of a process and that allows one to describe the struc-
ture of the predictable component of stochastic processes represented in the form (6).
In a forthcoming paper [22], these results will be applied to the problem of diffusion
approximation.
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26 A. YU. VERETENNIKOV AND A. M. KULIK

2. Notation and auxiliary results

Throughout the paper X = {X(t), t ∈ R
+} denotes a homogeneous Feller Markov

process taking values in a separable metric space X. We denote the transition probability
ofX by Pt(x, dy) and assume that the processX has a cádlág version for each distribution
of the initial value X(0). We denote by Px and Ex, x ∈ X, the distribution of this version
in D(R+,X) with X(0) = x and the corresponding expectation, respectively. The natural
filtration of the process X is denoted by F

X = {FX
t , t ∈ R

+}.

Definition 2.1. We say that a measurable function f : X → R belongs to the domain of
the extended generator A of the process X if there exists a measurable function g : X → R

such that the process

(7) f(X(t))−
∫ t

0

g(X(s)) ds, t ∈ R
+,

is well defined and is a local FX -martingale with respect to every measure Px, x ∈ X.

For such a pair (f, g), we write f ∈ Dom(A) and Af
df
= g.

The latter definition is motivated by the Dynkin formula. According to the Dynkin
formula, if f belongs to the domain of a (usual) generator A, then f ∈ Dom(A) and Af =
Af . Note, however, that Dom(A) is usually wider than the domain of a (usual) generator
A. For example, Dom(A) does not necessarily consist of only bounded functions.

The notion of the extended generator traces back to the paper [23]. There are several
technical modifications of the definition of the extended generator given in [23]. The
definition above coincides with that introduced in [25] and is more general than that given
in [24], Chapter VII, since we require that the process (7) is a local martingale and do not
require that it is a martingale. Moreover, we do not require that the trajectories of this
process are right continuous. Note that the function g in Definition 2.1 is not, generally
speaking, uniquely defined; that is, A is a multivalent mapping (see the discussion after
Definition 1.8 in [24], Chapter VII).

Definition 2.2. We say that a measurable function f : X → R belongs to the domain of
the extended potential R of a process X if∫ ∞

0

|Exf(X(t))| dt < +∞, x ∈ X.

The action of the extended potential at the function f is defined by

(8) Rf(x) =

∫ ∞

0

Exf(X(t)) dt, x ∈ X.

Theorem 3.1 makes clear a relationship between the extended potential R and equa-
tion (5). On one hand, Rf is a solution of equation (5) under some additional assump-
tions. On the other hand, this equation cannot have other solutions in a certain class of
functions.

Let d be a premetric, that is, a nonnegative, symmetric, lower semicontinuous function
defined in X×X that vanishes at the “diagonal” {(x, x), x ∈ X} ⊂ X×X and that takes
positive values outside the “diagonal”. For arbitrary probability measures μ and ν in X,
put

d(μ, ν) = inf
(ξ,η)∈C(μ,ν)

E d(ξ, η),

where C(μ, ν) is a family of pairs (ξ, η) of random elements taking values in X and such

that ξ
d
= μ and η

d
= ν. The latter definition is a version of the minimal (or coupling)

distance between the probability distributions; see, for example, [26] or [27], Section 11.8.
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EXTENDED POISSON EQUATION 27

The following is the main assumption on the ergodic properties of the stochastic
process X, that is, an assumption on the limit behavior of its transition probabilities as
t → +∞.

E(d, r, ψ). The process X has a unique invariant measure π and, moreover,

(9) d (Pt(x, ·), π) ≤ r(t)ψ(x), x ∈ X, t ≥ 0,

where d is a premetric, the measurable function ψ takes values in [1,+∞), and the
function r : R+ → R

+ is bounded, measurable, and such that r(t) → 0 as t → ∞.
It is sometimes convenient to accompany condition E(d, r, ψ) with the following aux-

iliary assumption.
Ê(d, r, ψ). For given functions r : R+ → R

+ and ψ : X → [1,+∞) and a premetric d,

d (Pt(x, ·), Pt(y, ·)) ≤ r(t)d(x, y) (ψ(x) + ψ(y)) , x, y ∈ X, t ≥ 0.

Below are two typical examples.

Example 2.1. Let d(x, y) = �x�=y be a discrete metric. Then

d(μ, ν) =
1

2
‖μ− ν‖var

(see [29]), and thus condition E(d, r, ψ) coincides with condition (3). By the triangle
inequality,

d(Pt(x, ·), Pt(y, ·)) ≤ d(Pt(x, ·), π) + d(Pt(y, ·), π),
and we conclude that condition (3) also implies Ê(d, r, ψ), since d(x, y) = 1 for x 	= y. As
mentioned in Section 1, there are a number of papers devoted to checking condition (3)
(see, for example, [8]–[13]; this list is not exhaustive).

Example 2.2. Let ρ be the initial metric in the space X and let d = ρp, where p ∈
[1,+∞). Then

d(μ, ν) = [Wρ,p(μ, ν)]
p,

where Wρ,p is the probabilistic Kantorovich–Rubinstein metric. In modern literature,
Wρ,p is often called the pth Wasserstein metric, although this name contradicts the
background (see Section 1.1.3 in [26] and the references therein).

A simple sufficient condition for E(d, r, ψ) and Ê(d, r, ψ) with an exponential func-
tion r is the so-called dissipative condition (see, for example, [14, Section 11.5] and [15,
Section 16.2]). The cases p = 2 and p = 1 are treated in the papers [14] and [15], respec-
tively. The same technique (with appropriate modifications) can also be used for other
values of p.

Below is another moment assumption imposed on the transition probabilities.
Mp(φ, ψ). For functions φ, ψ : X → [1,∞) and a number p ∈ [1,∞],

(10)

∫
X

φp(y)Pt(x, dy) ≤ ψ(x), x ∈ X, t ≥ 0.

Here the function ψ belongs to L1(π) (we agree that 1∞ = 1 and a∞ = ∞ for a > 1).
If φ ≡ 1, then condition Mp(φ, ψ) obviously holds with an arbitrary number p ∈

[1,∞]. This condition for an unbounded φ function follows from an appropriate version
of the Lyapunov condition (see, for example, Proposition 1 in [7], inequalities (4) and (7)
therein).

The function ψ involved in the right hand sides of inequalities (9) and (10) that
describe the ergodic and moment properties of the stochastic process X, respectively,
can be interpreted as a “penalty”. Note that the “penalty” depends on the initial state
of this process in our case. The following condition controls, in a certain sense, the value
of the “penalty”.
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28 A. YU. VERETENNIKOV AND A. M. KULIK

P(ψ). For an arbitrary x ∈ X,

Ex

∫ ∞

0

e−λtψ(X(t)) dt < ∞, λ > 0.

For p ∈ [1,∞) and a function φ : X → [1,+∞), we denote by Hφ,d,p the class of
functions f : X → R such that

(11) ‖f‖φ,d,p
df
= sup

x�=y

|f(x)− f(y)|
d1/p(x, y)(φ(x) + φ(y))

< +∞.

It is natural to treat the class Hφ,d,p as a “weight Hölder space” of order 1/p and
weight φ with respect to a premetric d. A “weight” function φ, being unbounded in the
general case, is used in this definition in order to extend the corresponding classes of
functions.

Apart from the process X, we consider a Wiener process W taking values in the
space Rl and two Poisson point measures ν1 and ν2 in R

+×U1 and R
+×U2, respectively.

Here U1 and U2 are some measurable Borel spaces. The intensity measures ν1 and ν2
are assumed to be of the form dt × μ1(du) and dt × μ2(du), respectively. We further
assume that the Wiener process W , point measures ν1 and ν2, and process X are jointly
independent. Put

F = {Ft, t ∈ R
+}, Ft = σ(X(s),W (s), ν1,2([0, s]× ·), s ≤ t).

Consider the following stochastic differential equation in R
m:

(12)

Y (t) = Y (0) +

∫ t

0

a(X(s), Y (s)) ds+

∫ t

0

b(X(s), Y (s)) dWs

+

∫ t

0

∫
U1

c1(X(s), Y (s−), u) ν1(ds, du)

+

∫ t

0

∫
U2

c2(X(s), Y (s−), u) ν̃2(ds, du), t ≥ 0,

where ν̃2(dt, du) = ν2(dt, du)−dt μ2(du) is the compensated point measure corresponding
to the point measure ν2(dt, du).

Proposition 2.1. Assume that the coefficients a, b, c1, and c2 of stochastic differen-
tial equation (12) satisfy the following versions of the linear growth condition and local
Lipshitz condition:

(a) there exists a function K : X → R
+ being bounded in every compact set of X and

such that

|a(x, y)|+ |b(x, y)|+
∫
U1

|c1(x, y, u)|μ1(du) +

(∫
U2

|c2(x, y, u)|2μ2(du)

)1/2

≤ K(x)(1 + |y|)
for all x ∈ X and y ∈ R

m;
(b) for an arbitrary R > 0, there exists a function KR : X → R

+ being bounded in
every compact set of X and such that

|a(x, y1)− a(x, y2)|+ |b(x, y1)− b(x, y2)|+
∫
U1

|c1(x, y1, u)− c1(x, y2, u)|μ1(du)

+

(∫
U2

|c2(x, y1, u)− c2(x, y2, u)|2μ2(du)

)1/2

≤ KR(x)|y1 − y2|,
for all x ∈ X and y1, y2 ∈ {y : |y| ≤ R}.
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Then, given the process X and an F0-measurable random variable Y (0), there exists
a unique strong solution Y of stochastic differential equation (12) with respect to the
filtration F. The two component process (X,Y ) defined in this way is a homogeneous
Feller Markov process in X× R

m.

The proof of this result is similar to the standard proofs of theorems for stochastic
differential equations (see for example, [30], Chapter II.2). Thus we omit the proof of
Proposition 2.1 here.

3. Main results

In this section, we state the main results of the paper. The proof of these results
are given in Section 4. Throughout the rest of the paper π denotes a unique invariant
measure for the process X. A function f is called centered if∫

X

f dπ = 0.

The first result gives sufficient conditions for the existence of the extended potential
and describes its main properties.

Theorem 3.1. 1. Let conditions E(d, r, ψ) and Mq(φ, ψ) hold for a process X. More-
over, we assume that the function r is such that

(13)

∫ ∞

0

r1/p(t) dt < +∞,

where 1/p+ 1/q = 1 and p ∈ [1,∞).
Then, given an arbitrary centered function f ∈ Hφ,d,p, the generalized potential Rf is

well defined by equality (8), is centered, and admits the following bound:

(14) |Rf(x)| ≤ 2‖f‖φ,d,p
(∫ ∞

0

r1/p(t) dt

)(∫
X

ψ dπ

)1/q

ψ(x), x ∈ X.

If, in addition, condition P(ψ) holds, then the function Rf is a solution of equation (5).
Moreover, the process

(15) Rf(X(t)) +

∫ t

0

f(X(s)) ds, t ∈ R
+,

is a (usual) FX -martingale with respect to each of the measures Px, x ∈ X.

2. Let, in addition, condition Ê(d, r, ψ) hold. Then, for every centered function

f ∈ Hφ,d,p,

the generalized potential Rf belongs to the class Hψ,d,p and admits the following bound:

(16) ‖Rf‖ψ,d,p ≤ 21/p‖f‖φ,d,p
(∫ ∞

0

r1/p(t) dt

)
.

3. Let all the assumptions of statement 1 hold. In addition, assume that conditions
E(d, r, χ) and Mq(ψ, χ) hold with a certain function χ. Let a function f ∈ Hφ,d,p be
centered and let u be a centered solution of equation (5) that belongs to the class Hψ,d,p.
Then

u = Rf.

According to Theorem 3.1, the extended potential Rf is a unique centered solution
of equation (5) that belongs to the class Hψ,d,p if the assumptions of statements 1 and 3
of Theorem 3.1 hold.

The second of the main theorems describes the predictable component of the Doob–
Meyer decomposition of a process of form (6) with the function g = g(x, y) defined as
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an extended potential Rf of a certain function of two arguments f = f(x, y) and with a
process Y defined via the stochastic differential equation (12). In the definition of this
potential, the variable y is fixed. In other words, we put

(17) g(x, y) =

∫ ∞

0

Exf(X(t), y) dt, x ∈ X, y ∈ R
m.

For a function of two variables x ∈ X and y ∈ R
m, we write

(18)

AY f(x, y) =
∑
i

ai(x, y)∂yi
f(x, y) +

1

2

m∑
i,j=1

d∑
k=1

bik(x, y)bjk(x, y)∂
2
yiyj

f(x, y)

+

∫
U1

(
f(x, y + c1(x, y, u))− f(x, y)

)
μ1(du)

+

∫
U2

(
f(x, y + c2(x, y, u))− f(x, y)

−
m∑
i=1

(c2)i(x, y, u)∂yi
f(x, y)

)
μ2(du),

assuming that the right hand side is well defined. Denote by S(T ) the family of all
stopping times with respect to the filtration F that are bounded by the number T . Also
put S =

⋃
T S(T ).

Theorem 3.2. Let conditions E(d, r, ψ), Mq(φ, ψ), and P(ψ) hold for a process X.
Assume that a function r satisfies condition (13) with 1/p+1/q = 1, p ∈ [1,∞). Further,
let the assumptions of Proposition 2.1 hold for the coefficients of stochastic differential
equation (12). Assume further that a function f : X × R

m → R is twice continuously
differentiable with respect to the variable y and that, for each fixed y ∈ R

m, a function
f(·, y) is centered. Finally assume that

(19) sup
y∈Rm

(
‖f(·, y)‖φ,d,p +

m∑
i=1

‖∂yi
f(·, y)‖φ,d,p +

m∑
i,j=1

∥∥∥∂2
yiyj

f(·, y)
∥∥∥
φ,d,p

)
< ∞,

(20)
sup
y∈Rm

(∣∣∣∣
∫
X

f(x, y) π(dx)

∣∣∣∣+
m∑
i=1

∣∣∣∣
∫
X

∂yi
f(x, y) π(dx)

∣∣∣∣+
m∑

i,j=1

∣∣∣∣
∫
X

∂2
yiyj

f(x, y) π(dx)

∣∣∣∣
)

< ∞.

Then the function g is well defined by equality (17) and is twice continuously differ-
entiable with respect to the variable y. Moreover, the function AY g is well defined.

If the initial value X(0) of the process X is such that

(21) E

∫ ∞

0

e−λtψ(X(t)) dt < ∞, λ > 0,

(22) Eψ(X(τ )) < ∞, τ ∈ S,
then, for an arbitrary F0-measurable initial value Y (0) of Y , the stochastic process

(23) g(X(t), Y (t)) +

∫ t

0

[f(X(s), Y (s))−AY g(X(s), Y (s))] ds, t ∈ R
+,

is a local F-martingale.
Furthermore, if, for all T ∈ R

+, the family of random variables ψ(X(τ )), τ ∈ S(T ),
is uniformly integrable and if there exists a process Z such that

(24) |f(X(s), Y (s))−AY g(X(s), Y (s))| ≤ Z(s), s ∈ R
+,
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with probability one and

(25) E

∫ t

0

Z(s) ds < +∞, t ∈ R
+,

then the process (23) is a (usual) F-martingale.

Remark 3.1. Let all the assumptions of Theorem 3.2 hold. Assume also that, for an
arbitrary x ∈ X, the initial value X(0) = x satisfies condition (22). Then the following
result is of its own interest: the extended generator of the two dimensional Markov
process (X,Y ) acts as follows:

(26) A(X,Y ) = AX +AY ,

at the functions of the form (17), where AX denotes the action of the extended generator
of the process X at a function of two variables (the action is considered with respect to
the variable x if the variable y is fixed).

Below is an another version of the preceding result where we weaken the assumptions
imposed on the process X. Instead, we strengthen the assumptions on the coefficients of
stochastic differential equation (12).

Theorem 3.3. Let all the assumptions of Theorem 3.2 hold except for (22). Instead, we
assume that

(27) Eψ(X(t)) < ∞, t ∈ R
+,

and that there exists a function � : X → R
+ such that

E

∫ ∞

0

e−λtψ(X(t))�(X(t)) dt < ∞, λ > 0.

We finally assume that

|a(x, y)|+ |b(x, y)|2 +
∫
U1

|c1(x, y, u)|μ1(du) +

∫
U2

|c2(x, y, u)|2 μ2(du) ≤ �(x)

for all x ∈ X and y ∈ R
m.

Then the process given by (23) is a F-martingale.

4. Proofs

4.1. Auxiliary assertions.

Proposition 4.1. Let p ∈ [1,∞). Assume that conditions E(d, r, ψ) and Mq(φ, ψ) with
1/p+ 1/q = 1 hold for a process X. Then Hφ,d,p ⊂ L1(π) and

(28)

∣∣∣∣Exf(X(t))−
∫
X

f dπ

∣∣∣∣ ≤ 2‖f‖φ,d,p
(∫

X

ψ dπ

)1/q

r1/p(t)ψ(x), x ∈ X,

for all t ∈ R
+ and f ∈ Hφ,d,p.

If, additionally, condition Ê(d, r, ψ) holds, then

(29)

∣∣Exf(X(t))− Ex′f(X(t))
∣∣ ≤ 21/p‖f‖φ,d,p(ψ(x) + ψ(x′))r1/p(t)d1/p(x, x′),

x, x′ ∈ X,

for all f ∈ Hφ,d,p and t ∈ R
+.
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Proof. Let x∗ ∈ X be a fixed point. Then

(30) |f(x)− f(x∗)| ≤ ‖f‖φ,d,pd1/p(x, x∗)(φ(x) + φ(x∗)), x ∈ X,

for f ∈ Hφ,d,p. According to condition Mq(φ, ψ), the function φ belongs to the space
Lq(π), that is,

(31)

∫
X

φq(x) π(dx) =

∫
X

∫
X

φq(y)Pt(x, dy) π(dx) ≤
∫
X

ψ(x) π(dx).

On the other hand, inequality (9) applied with x = x∗ and t = 0 proves that the function
d1/p(·, x∗) belongs to Lp(π). This implies that f ∈ L1(π).

To prove bound (28), we consider an arbitrary pair

(ξ, η) ∈ C(Pt(x, ·), π).
Then we write∣∣∣∣Exf(X(t))−

∫
X

f dπ

∣∣∣∣ = |Exf(X(t))− Eπf(X(t))|

= |E f(ξ)− E f(η)| ≤ E |f(ξ)− f(η)|.
Now we substitute random variables ξ and η in (30) for x and x∗, respectively. Then
take the expectation, and finally apply the Hölder inequality:

E |f(ξ)− f(η)| ≤ ‖f‖φ,d,p (E d(ξ, η))
1/p (

E(φ(ξ) + φ(η))q
)1/q

.

Hence

Eφq(η) ≤
∫
X

ψ dπ

(see inequality (31)). Since the function z �→ zq is convex,

E(φ(ξ) + φ(η))q ≤ 2q−1 (Eφq(ξ) + Eφq(η)) ≤ 2q−1

(
ψ(x) +

∫
X

ψ dπ

)
in view of condition Mq(φ, ψ). Taking into account the bound ψ ≥ 1, we finally obtain

E(φ(ξ) + φ(η))q ≤ 2q
(∫

X

ψ dπ

)
ψ(x).

Therefore∣∣∣∣Exf(X(t))−
∫
X

f dπ

∣∣∣∣ ≤ 2‖f‖φ,d,p
(∫

X

ψ dπ

)1/q

(E d(ξ, η))1/p ψ1/q(x).

Since the pair (ξ, η) ∈ C(Pt(x, ·), π) in this inequality is arbitrary, we conclude that∣∣∣∣Exf(X(t))−
∫
X

f dπ

∣∣∣∣ ≤ 2‖f‖φ,d,p
(∫

X

ψ dπ

)1/q

(d (Pt(x, ·), π))1/p ψ1/q(x),

whence the desired result follows by condition E(d, r, ψ).
The proof of bound (29) is analogous: for an arbitrary pair

(ξ, η) ∈ C(Pt(x, ·), Pt(x
′, ·))

we get

E(φ(ξ) + φ(η))q ≤ 2q−1 (ψ(x) + ψ(x′)) = 2q/p (ψ(x) + ψ(x′)

by inequality (10). Reasoning as above we prove that

|Exf(X(t))− Ex′f(X(t))| ≤ 21/p‖f‖φ,d,p(ψ(x) + ψ(y))1/q (d (Pt(x, ·), Pt(x
′, ·)))1/p .

The latter inequality, together with condition Ê(d, r, ψ), completes the proof. �
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We mention a simple corollary that is important for our reasoning below. Putting
t = 0 in inequality (28), we obtain the following bound:

(32) |f(x)| ≤
∣∣∣∣
∫
X

f dπ

∣∣∣∣+ L‖f‖φ,d,pψ(x), x ∈ X,

where

L = 2r1/p(0)

(∫
X

ψ dπ

)1/q

.

This implies that if the function f = f(x, y) satisfies the conditions of Theorem 3.2, then
the absolute value of the function f and the absolute values of its partial derivatives of
the first order with respect to y and those of the second order are bounded by Cψ(x).
Here and in what follows, C denotes a constant whose precise value does not matter for
us.

The following result follows from the above estimates, Fubini’s theorem, and the
Lebesgue dominated convergence theorem. Hence we omit the details of the proof. For
λ ≥ 0, put

(33) gλ(x, y) =

∫ ∞

0

e−λtExf(X(t), y) dt.

It is clear that the function g defined by (17) coincides with g0.

Proposition 4.2. Let conditions E(d, r, ψ), Mp(φ, ψ), and P(ψ) hold for the process X
with some premetric d, functions φ, ψ, and r, and a number p ∈ (1,∞). We further
assume that the function r satisfies condition (13) and that the function f satisfies the
assumptions of Theorem 3.2.

Then the function gλ(x, y) is well defined by relation (33). Moreover, this function is
twice continuously differentiable with respect to y and its derivatives are equal to

(34)

∂yi
gλ(x, y) =

∫ ∞

0

e−λtEx∂yi
f(X(t), y) dt,

∂2
yiyj

gλ(x, y) =

∫ ∞

0

e−λtEx∂
2
yiyj

f(X(t), y) dt.

If x and y are fixed, then the function gλ(x, y) and its derivatives (34) are continuous
with respect to λ.

Note that inequality (28) and definition (33) imply

(35) |gλ(x, y)| ≤ Cψ(x), |∂yi
gλ(x, y)| ≤ Cψ(x),

∣∣∣∂2
yiyj

gλ(x, y)
∣∣∣ ≤ Cψ(x).

Applying the finite difference formula and condition of the linear growth imposed on the
coefficients of stochastic differential equation (12), we prove that AY gλ, λ ≥ 0, is well
defined by relation (18),

AY gλ(x, y) → AY g0(x, y), λ → 0+, x ∈ X, y ∈ R
m,

and that, for an arbitrary compact set K ⊂ X and a number R > 0, there exists a
constant CK,R such that

(36) |AY gλ(x, y)| ≤ CK,Rψ(x), x ∈ K, |y| ≤ R, λ ≥ 0.
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4.2. Proof of the main results.

Proof of Theorem 3.2. As above, we do not restrict the generality if we assume that
m = 1. Let τ be a Markov moment with respect to the filtration F. The process X
possesses the Markov property with respect to F and, moreover, X is a Feller process
and has cádlág trajectories. Thus X is a strictly Markov process, whence

(37)

e−λ(t∧τ)gλ(X(t ∧ τ ), Y (t ∧ τ ))

= e−λ(t∧τ)

∫ ∞

0

e−λsExf(X(s), y)
∣∣
(x,y)=(X(t∧τ),Y (t∧τ))

ds

= e−λ(t∧τ)

∫ ∞

0

e−λs E
[
f(X(s+ t ∧ τ ), Y (t ∧ τ ))

∣∣ Ft∧τ

]
ds

=

∫ ∞

t∧τ

e−λv E
[
f(X(v), Y (t ∧ τ ))

∣∣ Ft∧τ

]
dr

almost surely. We introduce the following auxiliary filtration:

H = {Ht}, Ht = σ
(
X(v),W (s), ν1,2([0, s]× ·), s ≤ t, v ∈ R

+
)
, t ∈ R

+.

It is clear that H is an extension of F. Nevertheless W and ν1 and ν2 are independent
Wiener process and Poisson point measures with respect to the filtration H, respectively.
In particular, the process Y is a H-semimartingale.

For almost all positive v, we have

(38)

f(X(v), Y (v)) = f(X(v), Y (t)) +

∫ v

t

∂yf(X(v), Y (s))a(X(s), Y (s)) ds

+

∫ v

t

∂yf(X(v), Y (s))b(X(s), Y (s)) dW (s)

+
1

2

∫ v

t

∂2
yyf(X(v), Y (s))b2(X(s), Y (s)) ds

+

∫ v

t

∫
U1

[
f(X(v), Y (s−) + c1(X(s), Y (s−), u))

− f(X(v), Y (s−))
]
ν1(ds, du)

+

∫ v

t

∫
U2

[
f(X(v), Y (s−) + c2(X(s), Y (s−), u))

− f(X(v), Y (s−))
]
ν̃2(ds, du)

+

∫ v

t

∫
U2

[
f(X(v), Y (s) + c2(X(s), Y (s), u))

− f(X(v), Y (s))

− ∂yf(X(v), Y (s))c2(X(s), Y (s), u))
]
μ2(du) ds,

t ∈ [0, v].

Relation (38) follows from the Itô formula (see Theorem 5.1 of Chapter II in [28])
applied to the H-semimartingale Y if the function

F = f(X(v), ·)
belongs to the class C2 with respect to the variable y. The function F is nonrandom
in the theorem cited above, and thus we cannot get (38) as a corollary of this theorem.
Nevertheless, F = f(X(v), ·) is H0-measurable as a function of a random argument, and
moreover the absolute value of this function and the absolute values of its derivatives of
the first and second orders are bounded from above by the random variable Cψ(X(v))
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being integrable for almost all v > 0 in view of (21). Reasoning similarly to the proof of
Theorem 5.1 of Chapter II in [28], we obtain equality (38) (we omit the details).

For a compact set K ⊂ X and a number R > 0, we put

τK,R = inf{t : X(t) /∈ K or |Y (t)| > R}.

Since the trajectories of (X,Y ) are cádlág, there exists a sequence of compact sets {Kn}
such that

(39) τn := τKn,n → ∞, n → ∞,

with probability one. On the other hand, the condition of the linear growth imposed
on the coefficients of stochastic differential equation (12) implies that there are real
constants Cn such that

(40)

|a(X(s), Y (s))|+ |b(X(s), Y (s))|2 +
∫
U1

|c1(X(s), Y (s), u)|μ1(du)

+

∫
U2

|c2(X(s), Y (s), u)|2 μ2(du)

≤ Cn, s < τn.

Taking into account the bounds

(41) |F (y+ c)−F (y)| ≤ |c| sup
z

|F ′(z)|, |F (y+ c)−F (y)−F ′(y)c| ≤ c2

2
sup
z

|F ′′(z)|,

and that the function F = f(X(v), ·) as well as its derivatives of the first and second
orders are bounded by the random variable Cψ(X(v)), we conclude from equality (38)
that

(42)

f(X(v), Y (v))− f(X(v), Y (t))

= Mv(v)−Mv(t) +

∫ v

t

∂yf(X(v), Y (s))a(X(s), Y (s)) ds

+
1

2

∫ v

t

∂2
yyf(X(v), Y (s))b2(X(s), Y (s)) ds

+

∫ v

t

∫
U1

[
f(X(v), Y (s) + c1(X(s), Y (s), u))− f(X(v), Y (s))

]
μ1(du) ds

+

∫ v

t

∫
U2

[
f(X(v), Y (s) + c2(X(s), Y (s), u))− f(X(v), Y (s))

− ∂yf(X(v), Y (s))c2(X(s), Y (s), u))
]
μ2(du) ds

= Mv(v)−Mv(t) +

4∑
i=1

(Ii,v(v)− Ii,v(t)) , t ∈ [0, v],

for almost all v > 0, where Mv(·) is a local martingale with respect to H with a localizing
sequence {τn} defined by (39). Since Ht ⊃ Ft, we have

E
[
Mv(v ∧ τn)−Mv(t ∧ τn)

∣∣ Ft∧τn

]
= E

[
E
[
Mv(v ∧ τn)−Mv(t ∧ τn)

∣∣∣ Ht

] ∣∣∣ Ft∧τn

]
= 0

for t ∈ [0, v]. Now we deduce from (42) that equality

(43)

E
[
f(X(v), Y (t ∧ τn))

∣∣ Ft∧τn

]
= E

[
f(X(v), Y (v ∧ τn))

∣∣ Ft∧τn

]
−

4∑
i=1

E
[
Ii,v(v ∧ τn)− Ii,v(t ∧ τn)

∣∣ Ft∧τn

]
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holds with probability one for almost all v > 0 and all t ∈ [0, v]. On the other hand, if
t > v, then equality (43) holds in the set {v > τn} since t ∧ τn = v ∧ τn = τn. Therefore
equality (43) holds with probability one for almost all v > t ∧ τn if t ≥ 0 is arbitrary.

Next we use (43) in equality (37) with τ = τn. The terms in (37) are considered
separately. Since

|f(X(v), y)| ≤ Cψ(X(v)),

we apply Fubini’s theorem and derive from condition (21) that

(44)

∫ ∞

t∧τn

e−λv E
[
f(X(v), Y (v))

∣∣ Ft∧τn

]
dv

= E

[∫ ∞

t∧τn

e−λvf(X(v), Y (v)) dv
∣∣ Ft∧τn

]
.

Using inequality (40) and an analogous bound for the derivative of the function f(X(v), ·),
we apply Fubini’s theorem to the term in (43) corresponding to i = 1. Then∫ ∞

t∧τn

e−λv E
[
I1,v(v ∧ τn)− I1,v(t ∧ τn)

∣∣ Ft∧τn

]
dv

=

∫ ∞

t∧τn

e−λv

∫ v∧τn

t∧τn

E
[
∂yf(X(v), Y (s))a(X(s), Y (s))

∣∣ Ft∧τn

]
ds dv

= E

[∫ τn

t∧τn

∫ ∞

s

e−λv E
[
∂yf(X(v), Y (s))a(X(s), Y (s))

∣∣ Fs

]
dv ds

∣∣ Ft∧τn

]
.

Applying the Markov property of the process X and proceeding similarly to (37), we get∫ ∞

s

e−λv E
[
∂yf(X(v), Y (s))a(X(s), Y (s))

∣∣ Fs

]
dv

= e−λsa(X(s), Y (s))

∫ ∞

0

e−λw E
[
∂yf(X(s+ w), Y (s))

∣∣ Fs

]
dw

= e−λsa(X(s), Y (s))

∫ ∞

0

e−λw [Ex ∂yf(X(w), y)](x,y)=(X(s),Y (s)) dv

= e−λsa(X(s), Y (s))∂ygλ(X(s), Y (s)).

We refer to the first equality in (34) to justify the last line above. Therefore

(45)

∫ ∞

t∧τn

e−λv E
[
I1,v(v ∧ τn)− I1,v(t ∧ τn)

∣∣ Ft∧τn

]
dv

= E

[∫ ∞

t∧τn

e−λsa(X(s), Y (s))∂ygλ(X(s), Y (s)) ds
∣∣ Ft∧τn

]
.

Similar reasoning applies for the terms in (43) corresponding to i = 2, 3, 4, as well. A
technical difference in the proof is that one needs to use a bound for the second derivative
of the function f(X(r), ·) for i = 2, 4 and estimates (41) in the case of i = 3, 4 to justify
the application of Fubini’s theorem. Omitting the details, we write the final relation in
the proof:

e−λ(t∧τn)gλ(X(t ∧ τn), Y (t ∧ τn))

= E

[∫ ∞

t∧τn

e−λs (f(X(s), Y (s))−AY gλ(X(s), Y (s))) ds
∣∣ Ft∧τn

]
.
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Hence if t2 ≥ t1, then

E
[
e−λ(t2∧τn)gλ(X(t2 ∧ τn), Y (t2 ∧ τn))

∣∣ Ft1∧τn

]
− e−λ(t1∧τn)gλ(X(t1 ∧ τn), Y (t1 ∧ τn))

= E

[∫ t2∧τn

t1∧τn

e−λs
(
f(X(s), Y (s))−AY gλ(X(s), Y (s))

)
ds

∣∣ Ft1∧τn

]
.

Now we pass to the limit λ → 0+ in the latter equality. To justify this procedure, we
refer to the Lebesgue dominated convergence theorem and use conditions (21) and (22).
We also mention that (32), (35), and (36) imply

|gλ(X(t2 ∧ τn), Y (t2 ∧ τn))| ≤ Cψ(X(t2 ∧ τn)),

|f(X(s), Y (s))−AY gλ(X(s), Y (s))|�s≤t2∧τn ≤ Cψ(X(s)).

For an arbitrary stopping time τn, n ≥ 1, we have

(46)

E
[
g(X(t2 ∧ τn), Y (t2 ∧ τn))

∣∣ Ft1∧τn

]
− g(X(t1 ∧ τn), Y (t1 ∧ τn))

= E

[∫ t2∧τn

t1∧τn

(f(X(s), Y (s))−AY g(X(s), Y (s))) ds
∣∣ Ft1∧τn

]
, t2 ≥ t1,

whence we deduce that stochastic process (7) is a local F-martingale. If, in addition,
the family {ψ(X(τ )), τ ∈ S(t2)} is uniformly integrable and if conditions (24) and (25)
hold, then one can pass to the limit in (46) as n → ∞ and prove that process (7) is a
F-martingale. �

Proof of Theorem 3.3. The proof is similar to that presented above, and thus we do not
discuss it in detail. From the beginning, we change all the Markov moments with +∞.
The Fubini theorem and Lebesgue dominated convergence theorem can nevertheless be
applied, since, instead of inequalities (40) and (36), one can use the following bounds:

|a(X(s), Y (s))|+ |b(X(s), Y (s))|2 +
∫
U1

|c1(X(s), Y (s), u)|μ1(du)

+

∫
U2

|c2(X(s), Y (s), u)|2 μ2(du)

≤ C�(X(s)), s ≥ 0,

|AY gλ(x, y)| ≤ Cψ(x)�(x), x ∈ X, y ∈ R
m, λ ≥ 0. �

Proof of Theorem 3.1. The existence of the generalized potential and its properties (14)
and (16) follow directly from bounds (28) and (29). Further, let a ≡ 1, b ≡ 0, and c1,2 ≡ 0.
Consider a function f(x, y) = f(x) that does not depend on the “additional” variable y.
Then all the assumptions of Theorem 3.3 hold with � ≡ 1. Hence the generalized potential
Rf is a solution of equation (5) and process (15) is a F

X -martingale with respect to every
measure Px, x ∈ X. This proves statements 1 and 2 of the theorem.

To prove statement 3, consider a certain solution u of equation (5). Then, by definition
of the extended generator, the process

u(X(t)) +

∫ t

0

f(X(s)) ds, t ≥ 0,

is a martingale with respect to Px for all x ∈ X. In particular,

Exu(X(t)) + Ex

∫ t

0

f(X(s)) ds = u(x), t ≥ 0.
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Thus |f(x)| ≤ Cψ(x), and condition P(ψ) justifies the application of Fubini’s theorem,
that is

u(x) =

∫ t

0

Exf(X(s)) ds+ Exu(X(t)).

According to statement 1 proved above,

u(x) = lim
t→+∞

[∫ t

0

Exf(X(s)) ds+ Exu(X(t))

]
= Rf(x) + lim

t→+∞
Exu(X(t)).

Now we apply bound (28) with u, χ, and ψ instead of f , ψ, and φ, respectively. As a
result, we get

|Exu(X(t))| ≤ 2‖u‖ψ,d,p

(∫
X

χdπ

)1/q

χ(x)r1/p(t), t ≥ 0.

Therefore Exu(X(t)) → 0 as t → ∞, and thus u(x) = Rf(x). �
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