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Extended Randomized Kaczmarz Method for Sparse
Least Squares and Impulsive Noise Problems

Frank Schöpfer · Dirk A. Lorenz ·
Lionel Tondji · Maximilian Winkler

Abstract The Extended Randomized Kaczmarz method is a well known iter-
ative scheme which can find the Moore-Penrose inverse solution of a possibly
inconsistent linear system and requires only one additional column of the sys-
tem matrix in each iteration in comparison with the standard randomized
Kaczmarz method. Also, the Sparse Randomized Kaczmarz method has been
shown to converge linearly to a sparse solution of a consistent linear system.
Here, we combine both ideas and propose an Extended Sparse Randomized
Kaczmarz method. We show linear expected convergence to a sparse least
squares solution in the sense that an extended variant of the regularized ba-
sis pursuit problem is solved. Moreover, we generalize the additional step in
the method and prove convergence to a more abstract optimization problem.
We demonstrate numerically that our method can find sparse least squares
solutions of real and complex systems if the noise is concentrated in the com-
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plement of the range of the system matrix and that our generalization can
handle impulsive noise.

Keywords randomized Kaczmarz method, sparse solutions, least squares,
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1 Introduction

We consider the fundamental problem of approximating sparse solutions of
large and possibly inconsistent linear systems

Ax = b

with matrix A ∈ Km×n and right hand side b ∈ Km, in the real case K = R as
well as in the complex case K = C. In particular, we have in mind situations
where A = M ·D is the product of a tall matrix M ∈ Km×r with m > r, and a
matrix D ∈ Kr×n with r ≤ n, which acts as a basis or overcomplete dictionary
that allows for a sparse representation of the solution, and where the given
data b may be corrupted by noise and need not be contained in the range
R(A) of A. This setting is somewhat more general than the usual one in the
field of compressed sensing [9], where mostly flat matrices A with m << n and
full row rank are considered. It arises e.g. in geophysical sparsity-promoting
imaging problems [36], where the system matrix is the product of a Curvelet
transform matrix, which is suitable for a sparse representation of the solution,
and a Jacobian, which corresponds to a linearized Born model, so that besides
noisy measurement data there is also inconsistency due to a linearization error.

Here we set out to tackle such problems by solving combined optimization
problems of the form

min
x∈Kn

f(x) s.t. Ax = ŷ, (1)

where ŷ = argmin
y∈Km

g∗(b− y) s.t. y ∈ R(A)

with sparsity promoting functions f and suitable data misfit functions g∗.
For instance, it is known that the choice f(x) = λ · ‖x‖1 + 1

2 · ‖x‖
2
2 favors

sparse solutions for appropriate choices of λ > 0, see [4, 8, 27], where ‖x‖1 and
‖x‖2 denote the `1-norm and `2-norm of x, respectively. Similarly, by dividing
the components of x into K groups x = (x1, . . . , xK) with xj ∈ Knj , the

function f(x) = λ ·
∑K
j=1 ‖xj‖2 + 1

2 · ‖x‖
2
2 favors group sparsity [30]. And in

the related area of low rank matrix solutions [5, 24] we may choose f(X) =
λ · ‖X‖∗ + 1

2 · ‖X‖
2
F , where ‖X‖∗ and ‖X‖F denote the nuclear norm and

Frobenius norm of a matrix X, respectively. Suitable data misfit functions are
g∗(b− y) = 1

2 · ‖b− y‖
2
2 for least squares solutions, and `1-norm-like functions

in situations where the data b is corrupted by impulsive noise, i.e. the case
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where only some components of the data are faulty, but with possibly large
errors, see [32, 33, 35].

The linear system may be so large that full matrix operations are very ex-
pensive or even infeasible. Then it appears desirable to use iterative algorithms
with low computational cost and storage per iteration that produce good ap-
proximate solutions of (1) after relatively few iterations. A celebrated example
for the computation of minimum `2-norm solutions of consistent linear systems
is the Kaczmarz method [14], also known as Algebraic Reconstruction Tech-
nique (ART), and its block and randomized variants [21] which started to get
popular due to the seminal paper [31]. In its most simple form for K = R, in
each iteration a row vector aTi of A is chosen at random and the new iterate
xk+1 is then computed as the orthogonal projection of xk onto the solution
hyperplane corresponding to the i-th equation 〈ai , x〉 = bi, i.e.1

xk+1 = xk − 〈ai , xk〉−bi
‖ai‖22

· ai ,

with initial value x0 = 0. The Randomized Sparse Kaczmarz method [18, 23,
29] is a relatively new variant of the Kaczmarz method with almost the same
low cost and storage requirements, and which has shown good performance in
approximating sparse solutions of large consistent linear systems. It uses two
variables x∗k and xk and reads as

x∗k+1 = x∗k −
〈ai , xk〉−bi
‖ai‖22

· ai ,

xk+1 = Sλ(x∗k+1)

with initial values x0 = x∗0 = 0, and the soft shrinkage operator, which acts
componentwise on a vector x as(

Sλ(x))j = max{|xj | − λ, 0} · sign(xj) . (2)

We refer the interested reader to [6] for an extension of this algorithm to sparse
tensor recovery problems.

For consistent systems the iterates of the Randomized Sparse Kaczmarz
method converge in expectation to the solution of the regularized Basis Pursuit
Problem

min
x∈Rn

λ · ‖x‖1 + 1
2 · ‖x‖

2
2 s.t. Ax = b .

However, for inconsistent systems the iterates do not converge, see [7, 29] for a
detailed study of this phenomenon. This behaviour is also well-known for the
vanilla Kaczmarz method. As a remedy, in [10, 39] an Extended Randomized
Kaczmarz method was proposed, which additionally uses one column ãj of A
in each step and finds the Moore-Penrose inverse solution, i.e. the least squares

1 We use subscript indices for components of a vector, columns or rows of a matrix, and
also as iteration indices. But the meaning should always be clear from the context.
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solution with minimum `2-norm. Using an additional variable zk with initial
value z0 = b, the iterates are computed as

zk+1 = zk − 〈ãj , zk〉‖ãj‖22
· ãj ,

xk+1 = xk − 〈ai , xk〉−bi+zk+1,i

‖ai‖22
· ai .

Advantages of using block variants have recently been discussed in [11, 34], and
generalizations to tensor recovery problems are currently in preparation [12].

In this paper, we adopt these ideas and propose the Generalized Extended
Randomized Kaczmarz method to solve (1), see Algorithm 1. For example, to
obtain sparse least squares solutions via

min
x∈Rn

λ · ‖x‖1 + 1
2 · ‖x‖

2
2 s.t. Ax = ŷ,

where ŷ = argmin
y∈Rm

1
2 · ‖b− y‖

2
2 s.t. y ∈ R(A)

the iteration reads as

zk+1 = zk − 〈ãj , zk〉‖ãj‖22
· ãj ,

x∗k+1 = x∗k −
〈ai , xk〉−bi+zk+1,i

‖ai‖22
· ai ,

xk+1 = Sλ(x∗k+1) ,

where ãj is the j-th column of A. We prove expected convergence with rates
under appropriate assumptions for general functions f and g∗ with the help
of global error bounds. We also consider block versions, and in particular,
convergence in the complex case K = C is shown by considering the iteration
as a suitable block method in real variables.

In the next section we recall some basic notions and properties of convex
functions and Bregman distances, which will be used to analyze the iteration
methods in Section 4. Convergence rates will be derived with the help of global
error bounds from Section 3. The theoretical results are supported by numer-
ical examples for sparse solutions of real and complex inconsistent systems
under different noise models in Section 5.

2 Preliminaries

For x, y ∈ Rn, we denote the standard inner product by 〈x , y〉 and for p ∈
[1,+∞[ the `p norm by

‖x‖p :=
( n∑
i=1

|xi|p
) 1
p .

For a nonempty closed convex set C ⊂ Rn, we write its Euclidean projector
as PC and its distance function by

dist(x,C) := inf
z∈C
‖x− z‖2.
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As in [29] we will analyze the convergence of the algorithms with the help of
the Bregman distance [2] with respect to the objective function f . To this end
we recall some well known concepts and properties of convex functions [25].
Let f : Rn → R be convex and finite everywhere. Then f is continuous and
its subdifferential

∂f(x) := {x∗ ∈ Rn | f(y) ≥ f(x) + 〈x∗ , y − x〉 for all y ∈ Rn}

at any x ∈ Rn is nonempty, compact and convex. Throughout the paper we
assume that f is even strongly convex, i.e. there is some α > 0 such that for
all x, y ∈ Rn and subgradients x∗ ∈ ∂f(x) we have

f(y) ≥ f(x) + 〈x∗ , y − x〉+ α
2 · ‖y − x‖

2
2 .

Then f is coercive, i.e.
lim

‖x‖2→∞
f(x) =∞ ,

and its conjugate function f∗ : Rn → R with

f∗(x∗) := sup
y∈Rn

〈x∗ , y〉 − f(y)

is also convex, finite everywhere and coercive. Additionally, f∗ is differentiable
with a Lipschitz-continuous gradient with constant Lf∗ = 1

α , i.e. for all x∗, y∗ ∈
Rn we have

‖∇f∗(x∗)−∇f∗(y∗)‖2 ≤ Lf∗ · ‖x∗ − y∗‖2 ,
which implies the estimate

f∗(y∗) ≤ f∗(x∗)− 〈∇f∗(x∗) , y∗ − x∗〉+
Lf∗

2 · ‖x
∗ − y∗‖22 . (3)

Example 2.1 (cf. [16, 37]) The sparsity promoting objective function

f(x) := λ · ‖x‖1 + 1
2 · ‖x‖

2
2 (4)

is strongly convex with constant α = 1 for any λ ≥ 0, its subdifferential is

∂f(x) = {x+ λ · s | sj = sign(xj) if xj 6= 0, and sj ∈ [−1, 1] if xj = 0} ,

and its conjugate function can be computed with the soft shrinkage opera-
tor (2) as

f∗(x∗) = 1
2 · ‖Sλ(x∗)‖22 with ∇f∗(x∗) = Sλ(x∗) .

Definition 2.2 The Bregman distance Dx∗

f (x, y) between x, y ∈ Rn with re-
spect to f and a subgradient x∗ ∈ ∂f(x) is defined as

Dx∗

f (x, y) := f(y)− f(x)− 〈x∗ , y − x〉 .

Fenchel’s equality states that f(x) + f∗(x∗) = 〈x , x∗〉 if x∗ ∈ ∂f(x) and
implies that the Bregman distance can be written as

Dx∗

f (x, y) = f∗(x∗)− 〈x∗ , y〉+ f(y) .
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Example 2.3 (cf. [29]) For f(x) = 1
2 ·‖x‖

2
2 we just have Dx∗

f (x, y) = 1
2‖x−y‖

2
2.

For f(x) = λ · ‖x‖1 + 1
2 · ‖x‖

2
2 and any x∗ = x+ λ · s ∈ ∂f(x) we have

Dx∗

f (x, y) =
1

2
· ‖x− y‖22 + λ · (‖y‖1 − 〈s , y〉) .

The following inequalities are crucial for the convergence analysis of the
randomized algorithms. They immediately follow from the definition of the
Bregman distance and the assumption of strong convexity of f , cf. [16]. For
all x, y ∈ Rn and x∗ ∈ ∂f(x), y∗ ∈ ∂f(y) we have

α

2
‖x− y‖22 ≤ Dx∗

f (x, y) ≤ 〈x∗ − y∗ , x− y〉 ≤ ‖x∗ − y∗‖2 · ‖x− y‖2 (5)

Note that if f is differentiable with a Lipschitz-continuous gradient, then
we also have the (better) upper estimate Dx∗

f (x, y) ≤ Lf · ‖x − y‖22, but in
general this need not be the case. The following example was also used in [23]
as a smoothed version of (4).

Example 2.4 For ε > 0 the Huber function [13] is defined by

rε(x) :=
n∑
j=1

{
|xj | − ε

2 , |xj | > ε
1
2·ε · x

2
j , |xj | ≤ ε.

.

Then for τ > 0 the function

f(x) := rε(x) + τ
2 · ‖x‖

2
2,

is τ -strongly convex and has a
(
1
ε + τ)-Lipschitz-continuous gradient with(

∇f(x)
)
j

=
(

1
max(ε,|xj |) + τ

)
· xj .

3 Error bounds for linearly constrained optimization problems

Consider the feasible, convex and linearly constrained optimization problem

min
x∈Rn

f(x) s.t. Ax = b (6)

with a nonzero matrix A ∈ Rm×n, right hand side b ∈ R(A), and strongly
convex objective function f : Rn → R. This problem has a unique solution
x̂ which fulfills ∂f(x̂) ∩ R(AT ) 6= ∅. To obtain convergence rates for the so-
lution algorithms, we will estimate the Bregman distance of the iterates to
the solution x̂ by error bounds of the form Dx∗

f (x, x̂) ≤ γ · ‖Ax − b‖2 or

Dx∗

f (x, x̂) ≤ γ · ‖Ax − b‖22. We will see that such error bounds always hold if
f has a Lipschitz-continuous gradient. But they also hold under weaker con-
ditions. The following example was already proved in [29] (and here it also
follows from Theorem 3.9 below).
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Example 3.1 Let x̂ be the unique solution of (6) with objective function f(x) =
λ · ‖x‖1 + 1

2 · ‖x‖
2
2. Then there exists γ(x̂) > 0 such that for all x ∈ Rn and

x∗ ∈ ∂f(x) ∩R(AT ) we have

Dx∗

f (x, x̂) ≤ γ(x̂) · ‖Ax− b‖22 .

Based on the results of [15], an explicit expression of γ(x̂) for x̂ 6= 0 was
given in [29] as follows: Let AJ 6= 0 denote a submatrix that is formed by the
columns of A indexed by J ⊂ {1, . . . , n}, and let σ+

min(AJ) denote its smallest
positive singular value. We set

σ̃min(A) := min{σ+
min(AJ) | J ⊂ {1, . . . , n}, AJ 6= 0} ,

and for x̂ 6= 0 we define |x̂|min = min{|x̂j | | x̂j 6= 0}. Then we have

γ(x̂) =
1

σ̃2
min(A)

· |x̂|min + 2λ

|x̂|min
.

Moreover, for x̂ = 0 we may use γ(0) = 2n(
σ+
min(A)

)2 (this can be shown with

inequality (10) in the beginning of the proof of Lemma 3.8 below, but since
this explicit expression is not so important here, we omit the details). Note
that γ(x̂) is quite discontinuous with respect to x̂ and may become arbitrarily
large, since lim

x̂6=0,|x̂|min→0
γ(x̂) =∞. We do not know whether these expressions

for γ(x̂) are the best possible.

To clarify the assumptions under which such error bounds hold for more
general objective functions, we introduce the concepts of calmness [25] and
linear regularity [1]. Let B2 denote the closed unit ball of the `2-norm.

Definition 3.2 The (set-valued) subdifferential mapping ∂f : Rn ⇒ Rn is
calm at x̂ if there are constants ε, L > 0 such that

∂f(x) ⊂ ∂f(x̂) + L · ‖x− x̂‖2 ·B2 for any x with ‖x− x̂‖2 ≤ ε . (7)

Note that calmness is a local growth condition similar to Lipschitz-continuity
of a gradient mapping, but for fixed x̂. Furthermore, this does not imply that
for all x∗ ∈ ∂f(x) and all x̂∗ ∈ ∂f(x̂) we have ‖x∗ − x̂∗‖2 ≤ L · ‖x− x̂‖2, but
only for some x̂∗ which may depend on x∗. Of course, any Lipschitz-continuous
gradient mapping is calm everywhere.

Example 3.3 (a) The subdifferential mapping of any convex piecewise linear-
quadratic function f : Rn → R is calm everywhere. In particular, this holds
for f(x) = λ · ‖x‖1 + 1

2 · ‖x‖
2
2.

(b) For matrices X ∈ Rn1×n2 the subdifferential mapping of f(X) = λ·‖X‖∗+
1
2 · ‖X‖

2
F is calm everywhere.
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(c) The subdifferential mapping of

f(x) = λ · ‖x‖2 + 1
2 · ‖x‖

2
2

is calm everywhere with

∂f(x) =

{
λ · x
‖x‖2 + x, x 6= 0

λ ·B2, x = 0

and it holds that

f∗(x∗) = 1
2 · ‖x

∗ − Pλ·B2
(x∗)‖22,

∇f∗(x∗) = x∗ − Pλ·B2(x∗) = max
{

0, 1− λ
‖x∗‖2

}
· x∗.

(d) Divide the components of x into K groups x = (x1, . . . , xK) with xj ∈ Rnj .

Then the subdifferential mapping of f(x) = λ ·
∑K
j=1 ‖xj‖2 + 1

2 · ‖x‖
2
2 is

calm everywhere.
The cases (a) and (b) were already proven in [28], and (d) is the group-

version of (c), hence, we show (c). For x̂ 6= 0 and x 6= 0 the function f is indeed
differentiable with

‖∇f(x)−∇f(x̂)‖2 ≤
(

1 + 2λ
‖x̂‖2

)
· ‖x− x̂‖2 ,

i.e. (7) holds with L = 1 + 2λ
‖x̂‖2 for all x with ‖x− x̂‖2 < ‖x̂‖2

2 . For x̂ = 0 and

x 6= 0 we have ∇f(x) = λ · x
‖x‖2 + x ∈ ∂f(x̂) + ‖x− x̂‖2 · x−x̂

‖x−x̂‖2 , i.e. (7) holds

with L = 1 for all x since x−x̂
‖x−x̂‖2 ∈ B2. ut

Definition 3.4 Let ∂f(x)∩R(AT ) 6= ∅. Then the collection {∂f(x̂),R(AT )}
is linearly regular, if there is a constant γ > 0 such that for all x∗ ∈ Rn we
have

dist
(
x∗, ∂f(x̂) ∩R(AT )

)
≤ γ ·

(
dist

(
x∗, ∂f(x̂)

)
+ dist

(
x∗,R(AT )

))
. (8)

Obviously, if f is differentiable at x̂, i.e. if ∂f(x̂) = {∇f(x̂)} is a singleton,
then we have linear regularity.

Example 3.5 (cf. [1, 29]) The collection {∂f(x̂),R(AT )} is linearly regular, if

(a) ∂f(x̂) is polyhedral (which holds for piecewise linear-quadratic f in par-
ticular), or if

(b) rint
(
∂f(x̂)

)
∩R(AT ) 6= ∅, where rint

(
∂f(x̂)

)
denotes the relative interior

of ∂f(x̂).

The condition in Example 3.5 (b) is a standard regularity assumption,
similar to the Slater condition. In [29] local error bounds were sufficient to
prove convergence, because all iterates were guaranteed to be bounded. In
the present paper this need not be the case (we will in general only show
boundedness in expectation). But here we will derive global error bounds under
a global growth condition on the subdifferential mapping of f .
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Definition 3.6 We say the subdifferential mapping of f grows at most lin-
early, if there exist η, ρ ≥ 0 such that for all x ∈ Rn and x∗ ∈ ∂f(x) we
have

‖x∗‖2 ≤ η · ‖x‖2 + ρ . (9)

Example 3.7 Any Lipschitz-continuous gradient mapping grows at most lin-
early. Furthermore, the subdifferential mappings of all functions in Exam-
ple 3.3 grow at most linearly.

Lemma 3.8 Let x̂ be the unique solution of (6). If the subdifferential mapping
of f grows at most linearly, then there exists some constant c > 0 such that
for all x ∈ Rn and x∗ ∈ ∂f(x) ∩R(AT ) we have

Dx∗

f (x, x̂) ≤ c ·
(√

Dx∗
f (x, x̂) + ‖x̂‖2 + 1

)
· ‖Ax− b‖2 .

Proof To x̂ there is some x̂∗ ∈ ∂f(x̂)∩R(AT ). We choose u, û ∈ N (AT )⊥ with
x∗ = ATu and x̂∗ = AT û, and by (5) we estimate

Dx∗

f (x, x̂) ≤ 〈x∗ − x̂∗ , x− x̂〉 = 〈ATu−AT û , x− x̂〉 = 〈u− û , Ax− b〉
≤ ‖u− û‖2 · ‖Ax− b‖2 ≤ 1

σ+
min(A)

· ‖ATu−AT û‖2 · ‖Ax− b‖2

= 1
σ+
min(A)

· ‖x∗ − x̂∗‖2 · ‖Ax− b‖2 . (10)

It remains to estimate ‖x∗−x̂∗‖2. The assumption of at most linear growth (9)
together with (5) implies

‖x∗ − x̂∗‖2 ≤ η · (‖x‖2 + ‖x̂‖2) + 2ρ

≤ η · ‖x− x̂‖2 + 2 · (η · ‖x̂‖2 + ρ)

≤ η ·
√

2
α ·D

x∗
f (x, x̂) + 2 · (η · ‖x̂‖2 + ρ) ,

from which the assertion follows. ut

Now we can derive the global error bound.

Theorem 3.9 Let f : Rn → R be strongly convex. If its subdifferential map-
ping grows at most linearly, is calm at the unique solution x̂ of (6), and if the
collection {∂f(x̂),R(AT )} is linearly regular, then there exists γ(x̂) > 0 such
that for all x ∈ Rn and x∗ ∈ ∂f(x) ∩R(AT ) we have the global error bound

Dx∗

f (x, x̂) ≤ γ(x̂) · ‖Ax− b‖22 . (11)

In particular, this holds if f has a Lipschitz-continuous gradient.

Proof Let α > 0 be the strong convexity constant, and let ε, L > 0 be as in (7)
in the definition of calmness. At first we consider the case Dx∗

f (x, x̂) ≤ α
2 · ε

2.
Then by (5) we have ‖x− x̂‖2 ≤ ε, so that by (7) and (10) we get

dist
(
x∗, ∂f(x̂)

)
≤ L · ‖x− x̂‖2 ≤ L ·

√
2
α ·D

x∗
f (x, x̂) . (12)
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Let C := ∂f(x̂) ∩ R(AT ). By choosing x̂∗ := PC(x∗) in (10) in the beginning
of the proof of Lemma 3.8, we conclude that

Dx∗

f (x, x̂) ≤ 1
σ+
min(A)

· dist
(
x∗, C) · ‖Ax− b‖2 .

Since x∗ ∈ R(AT ), linear regularity (8) ensures that

dist
(
x∗, C) ≤ γ · dist

(
x∗, ∂f(x̂)

)
.

Hence, together with (12) we get

Dx∗

f (x, x̂) ≤ 1
σ+
min(A)

· L · γ ·
√

2
α ·D

x∗
f (x, x̂) · ‖Ax− b‖2 ,

which implies (11). And in case α
2 · ε

2 < Dx∗

f (x, x̂) we apply Lemma 3.8 to get

Dx∗

f (x, x̂) ≤ c ·
(√

Dx∗
f (x, x̂) + ‖x̂‖2 + 1

)
· ‖Ax− b‖2

≤ c ·
√
Dx∗
f (x, x̂) ·

(
1 +

(
‖x̂‖2 + 1

)
·
√

2
α ·

1
ε

)
· ‖Ax− b‖2 ,

which also implies (11). ut

4 Convergence analysis of the GERK method

At first we consider the real case K = R and prove expected convergence of
the generalized extended randomized block Kaczmarz method (GERK) Algo-
rithm 1 to the unique solution of (1) for suitable strongly convex functions
f and g∗. We will derive convergence rates with the help of the following
technical lemma.

Lemma 4.1 Let a, b > 0, q ∈ (0, 1), and (dk)k≥1 be a sequence with dk > 0
and

dk+1 ≤ dk − a · d2k + b · qk . (13)

Then there exists some c > 0 such that dk ≤ c
k for all k ≥ 1.

Proof To q ∈ (0, 1) we find some c > 0 such that for all k ≥ 1 we have√
2b
a · qk + b · qk ≤ c

k + 1
. (14)

At first we assume that there are infinitely many indices kj (in increasing
order) for which d2kj ≤

2b
a · q

kj . From (13) and (14) we infer that for these

indices we have dkj ≤
√

2b
a · qkj ≤

c
kj

and

dkj+1 ≤ dkj + b · qkj ≤
√

2b
a · qkj + b · qkj ≤ c

kj + 1
. (15)
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Furthermore, in case kj+1 > kj + 1, for all k = kj + 1, . . . , kj+1 − 1 we have
b · qk < a

2 · d
2
k, and thus (13) yields the recursion

dk+1 ≤ dk − a · d2k + b · qk ≤ dk − a
2 · d

2
k . (16)

It follows that dk+1 ≤ dk, and therefore division by dk and dk+1 yields

1

dk
≤ 1

dk+1
− a

2
· dk
dk+1

≤ 1

dk+1
− a

2
,

which together with (15) implies

(k − kj − 1) · a
2
≤

k−1∑
i=kj+1

1

di+1
− 1

di
=

1

dk
− 1

dkj+1
≤ 1

dk
− kj + 1

c
.

We conclude that dk ≤ 1
min{ a

2 ,
1
c }
· 1k for all k ≥ 1. In the remaining case that

the index set I = {k ∈ N | d2k ≤ 2b
a · q

k} is finite or empty, the assertion follows
from inequality (16) for k 6∈ I with a similar conclusion. ut

Algorithm 1 Generalized Extended Randomized Block Kaczmarz (GERK)

Input: starting points x0 = x∗0 = 0 ∈ Rn and z∗0 = b ∈ Rm, z0 = ∇g∗(z∗0 ), matrix A ∈
Rm×n with Mr row-blocks 0 6= Ai ∈ Rmi×n and Nc column-blocks 0 6= Ãj ∈ Rm×nj

and probabilities (p̃j) ∈ RNc , (pi) ∈ RMr

Output: (approximate) solution of
minx∈Rn f(x) s.t. Ax = ŷ, where ŷ = argminy∈Rm g∗(b− y) s.t. y ∈ R(A)

1: initialize k = 0
2: repeat
3: choose a column-block index jk = j ∈ {1, . . . , Nc} at random with probability p̃j > 0

4: update z∗k+1 = z∗k − t̃k · Ãjk Ã
T
jk
zk with stepsize t̃k = 1

Lg∗ ·‖Ãjk
‖22

5: update zk+1 = ∇g∗(z∗k+1)

6: choose a row-block index ik = i ∈ {1, . . . ,Mr} at random with probability pi > 0
7: update x∗k+1 = x∗k − tk ·AT

ik
(Aikxk − bik + z∗k+1,ik

) with stepsize tk = 1
Lf∗ ·‖Aik

‖22
8: update xk+1 = ∇f∗(x∗k+1)
9: increment k = k + 1

10: until a stopping criterion is satisfied

Theorem 4.2 Let g∗ : Rm → R be strongly convex with a Lipschitz-continuous
gradient. Then the iterates z∗k of the GERK method from Algorithm 1 converge
in expectation to b− ŷ, where ŷ ∈ R(A) is the unique solution of

min
y∈Rm

g∗(b− y) s.t. y ∈ R(A) . (17)

If the subdifferential mapping of the strongly convex function f : Rn → R
grows at most linearly, then the iterates xk converge in expectation to the
corresponding unique solution x̂ of

min
x∈Rn

f(x) s.t. Ax = ŷ . (18)
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For some q ∈ (0, 1) and c > 0 the expected rates of convergence are

E
[
‖z∗k − (b− ŷ)‖22

]
≤ c · qk , (19)

and for all k ≥ 1

E
[
‖xk − x̂‖22

]
≤ c

k
. (20)

Moreover, if a global error bound holds at x̂, then we even have

E
[
‖xk − x̂‖22

]
≤ c · (1 + k) · qk . (21)

Proof We split the proof into two parts. In the first part we show convergence
of the iterates z∗k , and in the second part we show convergence of the iterates
xk.
Part 1: At first we note that the iterates z∗k are independent from xk and
ik, so that convergence of the z∗k can be analyzed separately. In fact, the first
part of our method may be reformulated and interpreted as a randomized
coordinate descent algorithm [22] for the problem minx∈Rn g∗(b−Ax), and for
the constant stepsizes t̃k the linear convergence of the function values follows
from Theorem 5.4 under Assumption 2 in [20] together with the error bound
in the remark after Theorem 2 in [38]. For convenience, and since we also need
it for the discussion of non-constant stepsizes in Remark 4.3, here we give a
short convergence proof with the help of the results in [29] adapted to the
present situation. The assumptions on g∗ imply that the conjugate g = (g∗)∗

is also strongly convex with a Lipschitz-continuous gradient. Hence, this also
holds for the objective function h(z) := g(z)− 〈b , z〉 of the dual to (17),

min
z∈Rm

h(z) = g(z)− 〈b , z〉 s.t. AT z = 0 . (22)

Set z̃∗k := z∗k− b. Then we have z̃∗0 = 0 and ∇h∗(z̃∗k) = ∇g∗(z̃∗k + b) = ∇g∗(z∗k).
Hence, the iteration can be written in the form

z̃∗k+1 = z̃∗k − t̃k · ÃjkÃTjkzk , zk+1 = ∇h∗(z̃∗k+1)

with initial value z̃∗0 = 0. By Theorem 5.5 in [29] the iterates zk converge in
expectation to the unique solution ẑ of (22) with rate E

[
‖zk − ẑ‖22

]
≤ c · qk.

By duality and comparison of the optimality conditions of convex programs
(cf. Example in [25]), the solution ŷ of (17) and the solution ẑ of (22) are
related by ∇g(ẑ) = b − ŷ. Expected convergence of the iterates z∗k to b − ŷ
with rate (19) then follows from the estimate

‖z∗k − (b− ŷ)‖2 = ‖∇g(zk)−∇g(ẑ)‖2 ≤ Lg · ‖zk − ẑ‖2 .

Part 2: Let wk := Aikxk − bik + z∗k+1,ik
. By Definition 2.2 of the Bregman

distance, and since Aik x̂ = ŷik , we have

D
x∗k+1

f (xk+1, x̂) = f∗
(
x∗k − tk ·ATikwk

)
− 〈x∗k , x̂〉+ tk · 〈wk , ŷik〉+ f(x̂) .
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Using estimate (3) for f∗ yields

D
x∗k+1

f (xk+1, x̂) ≤ Dx∗k
f (xk, x̂)− tk · 〈wk , Aikxk − ŷik〉+

Lf∗

2 · t
2
k · ‖ATikwk‖

2
2 .

Since t2k = 1
L2

f∗ ·‖Aik
‖42

and ‖ATikwk‖
2
2 ≤ ‖ATik‖

2
2 · ‖wk‖22, we get

D
x∗k+1

f (xk+1, x̂) ≤ Dx∗k
f (xk, x̂)− tk · 〈wk , Aikxk − ŷik〉+ tk

2 · ‖wk‖
2
2 .

We rewrite the last two summands as

〈wk , Aikxk − ŷik〉 = ‖Aikxk − ŷik‖22 + 〈ŷik − bik + z∗k+1,ik
, Aikxk − ŷik〉

and

1
2 · ‖wk‖

2
2 = 1

2 · ‖Aikxk − ŷik‖
2
2 + 〈ŷik − bik + z∗k+1,ik

, Aikxk − ŷik〉
+ 1

2 · ‖ŷik − bik + z∗k+1,ik
‖22

to get

D
x∗k+1

f (xk+1, x̂) ≤ Dx∗k
f (xk, x̂)− tk

2 · ‖Aikxk − ŷik‖
2
2 + tk

2 · ‖ŷik − bik + z∗k+1,ik
‖22 .

(23)

Set c1 := min
i=1,...,Mr

pi
2·Lf∗ ·‖Ai‖22

and c2 := max
i=1,...,Mr

pi
2·Lf∗ ·‖Ai‖22

. Then we have

0 < c1 ≤ pi · tk2 ≤ c2 for all i = 1, . . . ,Mr. Averaging (23) over the random
variables i0, j0, ..., ik−1, jk−1 and using linearity of the expectation, we obtain
the recursion

E
[
D
x∗k+1

f (xk+1, x̂)
]
≤ E

[
D
x∗k
f (xk, x̂)

]
−c1·E

[
‖Axk − ŷ‖22

]
+c2·E

[
‖ŷ − b+ z∗k+1‖22

]
.

Using (19) we arrive at

E
[
D
x∗k+1

f (xk+1, x̂)
]
≤ E

[
D
x∗k
f (xk, x̂)

]
−c1 ·E

[
‖Axk − ŷ‖22

]
+c2 ·c ·qk+1 . (24)

This recursion implies boundedness of E
[
D
x∗k
f (xk, x̂)

]
, because by the choice

x0 = x∗0 = 0 the initial Bregman distance D
x∗0
f (x0, x̂) = f(x̂) is finite. For

ease of notation, in the following we use a generic constant c > 0 that is
independent of the iteration index k and the random choices of the algorithm.
By Lemma 3.8, the linear growth assumption on ∂f implies

E
[
D
x∗k
f (xk, x̂)

]
≤ c · E

[√
D
x∗k
f (xk, x̂) · ‖Axk − ŷ‖2

]
+ c · E [‖Axk − ŷ‖2]

≤ c ·
√
E
[
D
x∗k
f (xk, x̂)

]
·
√
E [‖Axk − ŷ‖22] + c · E [‖Axk − ŷ‖2]

≤ c ·
√
E [‖Axk − ŷ‖22] ,
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which yields (
E
[
D
x∗k
f (xk, x̂)

])2
≤ c · E

[
‖Axk − ŷ‖22

]
.

We insert this inequality into recursion (24) to get

E
[
D
x∗k+1

f (xk+1, x̂)
]
≤ E

[
D
x∗k
f (xk, x̂)

]
− c ·

(
E
[
D
x∗k
f (xk, x̂)

])2
+ c · qk+1 .

The sublinear convergence rate (20) then follows from Lemma 4.1. Now we
turn to the asymptotically better rate (21) under the stronger assumption
that a global error bound of the form

D
x∗k
f (xk, x̂) ≤ γ · ‖Axk − ŷ‖22

holds with some constant γ > 0. We set q1 := max{0, 1− c1/γ}. Then we have
q1 ∈ [0, 1), and inserting the error bound into (24) we get

E
[
D
x∗k+1

f (xk+1, x̂)
]
≤ q1 · E

[
D
x∗k
f (xk, x̂)

]
+ c2 · c · qk+1 .

Finally, we set q̃ := max{q1, q} and conclude inductively that

E
[
D
x∗k
f (xk, x̂)

]
≤ c · q̃k + c · k · q̃k ,

from which the rate (21) follows by (5). ut

Remark 4.3 According to [29], the stepsize t̃k for the z∗k-update in line 4 of
Algorithm 1 may also be chosen as

t̃k = 1
Lg∗
·
‖ÃT

jk
zk‖22

‖Ãjk
ÃT

jk
zk‖22

or determined by an exact linesearch. But so far we do not know whether
we can also choose the stepsize tk for the x∗k-update in line 7 by an exact

linesearch or as tk = 1
Lf∗
· ‖wk‖22
‖AT

ik
wk‖22

with wk := Aikxk−bik +z∗k+1,ik
. The main

problem with this choice here seems to be that we only have a lower estimate
tk ≥ 1

Lf∗ ·‖Aik
‖22

, but after inequality (23) in the above proof we would also need

a suitable upper estimate (note that wk need not be contained in R(Aik)).

To apply Theorem 4.2 in the complex case K = C, we just split the variables
into real and imaginary parts. In this way, a complex linear system Ax = b
can equivalently be written as a real linear system of the form(

<(A) ,−=(A)
=(A) ,<(A)

)
·
(
<(x)
=(x)

)
=

(
<(b)
=(b)

)
and a vector update as in lines 4 and 7 of Algorithm 1 for a complex vector then
corresponds to block updates of the real and imaginary parts. But we must
take some care when we consider a function f : Cn → R in complex variables
as a function f : R2n → R in real variables. In particular, there is a notable
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subtlety regarding the sparsity promoting function f(x) = λ · ‖x‖1 + 1
2 · ‖x‖

2
2

for complex vectors x ∈ Cn. Considering it as a real function of the form

f
(
<(x),=(x)

)
= λ ·

(
‖<(x)‖1 + ‖=(x)‖1

)
+ 1

2 ·
(
‖<(x)‖22 + ‖=(x)‖22

)
,

the gradient ∇f∗ of the conjugate function would just be componentwise
shrinkage of the vector

(
<(x),=(x)

)
, i.e. sparsity of the real and imaginary

part is enforced seperately. On the one hand, this means that sparsity of the
real vector

(
<(x),=(x)

)
does not necessarily imply sparsity of the complex

vector x. On the other hand, a global error bound is guaranteed to hold,
cf. Examples 3.3 (a), 3.5 (a), and 3.7. A more suitable way to enforce sparsity
of a complex vector seems to be to just use the complex `1-norm, i.e.

f
(
<(x),=(x)

)
= λ ·

n∑
j=1

√(
<(xj)

)2
+
(
=(xj)

)2
+ 1

2 ·
(
‖<(x)‖22 + ‖=(x)‖22

)
,

where, by Examples 3.3 (c) and (d), the gradient∇f∗ of the conjugate function
amounts to componentwise shrinkage of the complex vector x,( (

∇f∗(x)
)
j

=̂
) (

Sλ(x)
)
j

= max{|xj | − λ, 0} · xj

|xj | , x ∈ Cn , (25)

i.e. sparsity of the real and imaginary part is enforced simultaneously. But
since this is a special form of group sparsity, we can guarantee a global error
bound, and hence the better rate (21), only under an additional regularity
assumption as in Example 3.5 (b).

Remark 4.4 Algorithm 1 can also be directly implemented with complex num-
ber operations. We just have to replace the transposed matrices ÃTjk and ATik in

lines 4 and 7 by the complex adjoints Ã
T

jk
and A

T

ik
, respectively. The updates in

lines 5 and 8 must be performed by replacing the real gradient mappings ∇g∗
and ∇f∗ with the corresponding complex operators, e.g. using the complex
shrinkage operator (25), cf. [3, 26]. Note that the expressions for the Huber
function and its gradient in Example 2.4 are also meaningful for complex vec-
tors x, and the corresponding real function is still strongly convex and has a
Lipschitz-continuous gradient.

Example 4.5 Here are some concrete choices for the functions f and g∗ that
can be used in both the real and complex case K = R or K = C, so that the
assumptions in Theorem 4.2 are fulfilled. We indicate by (RA) if a regularity
assumption as in Example 3.5 (b) is needed for f to ensure a global error
bound and hence the better rate (21).

(a) (Least squares) g∗(y) = 1
2 · ‖y‖

2
2

(b) (Impulsive noise) g∗(y) = rε(y) + τ
2 · ‖y‖

2
2 with the Huber function rε

(c) (Minimum 2-norm) f(x) = 1
2 · ‖x‖

2
2

(d) (Sparsity, (RA) needed only for K = C) f(x) = λ · ‖x‖1 + 1
2 · ‖x‖

2
2

(e) (Group sparsity (RA)) f(x) = λ ·
∑K
j=1 ‖xj‖2 + 1

2 · ‖x‖
2
2
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(f) (Low rank matrices (RA)) f(X) = λ‖X‖∗ + 1
2‖X‖

2
F

Note that instead of f(x) = λ · ‖x‖1 + 1
2 · ‖x‖

2
2 we could also use f(x) =

rε(x) + τ
2 · ‖x‖

2
2 as sparsity promoting function, as was done in [23]. But this

requires tuning the two parameters ε,τ instead of only λ. On the contrary, so
far we could not prove convergence for non-smooth data misfit functions g∗,
so that we cannot use g∗(y) = λ · ‖y‖1 + 1

2 · ‖y‖
2
2 for impulsive noise.

5 Numerical examples

In this part, we report numerical results of Algorithm 1 (GERK) for multiple
settings and compare with the Sparse Randomized Kaczmarz method (SRK)
from [18] and the Extended Randomized Kaczmarz method (REK) from [39].
All examples are run in MATLAB 2019b on a computer with an Intel Core i7
processor with 4 cores at 1,2 GHz and 16 GB RAM.

We consider two kinds of experiments, one to find sparse least squares
solutions (which assume normally distributed noise) and one in which we aim
to find sparse solutions to inconsistent systems under impulsive noise.

(i) Least squares solutions: In a first experiment, we want to find sparse
solutions of the least squares problem min ‖Ax− b‖2 for the real and com-
plex case. We use the functions g∗(y) = 1

2‖y‖
2 from Example 4.5(a) and

f(x) = λ‖x‖1 + 1
2‖x‖

2
2 from Example 4.5(d) and hence, we refer to the

resulting method as GERK-(a,d).
Similar to [10] we fix some dimensions m and n and some rank r <
min(m,n) and construct A ∈ Rm×n (or Cm×n, respectively) as follows. For
two matrices U, V with orthonormal columns (generated with the MAT-
LAB command orth), we set A = UΣV T with a diagonal matrix Σ which
r nonzero entries on the diagonal which were sampled from the uniform
distribution on [0.001, 100]. Then we construct a sparse x̂ with normally
distributed non-zero entries and set

b̂ = Ax̂, b = b̂+ ηR(A)⊥

with noise ηR(A)⊥ = Nv ∈ R(A)⊥ = N (A∗), where the columns of N
form an orthonormal basis of N (A∗) and v is a random vector uniformly

distributed on a sphere ∂Bρ(0) with radius ρ = α‖b̂‖2 and a factor α. The
factor α is exactly the relative noise level.
Note that we do not consider a matrix with full rank due to the following
reason: If m ≤ n and A has full rank, it holds R(A) = Rm. If m ≥ n,
the matrix ATA is invertible and the least-squares solution of the possibly
inconsistent system Ax = b is unique. In both cases, the sparse solution
can be found either by the existing randomized sparse Kaczmarz method
or by the existing randomized extended Kaczmarz method.

Figure 1 and Figure 2 show the results for the real case for 50 runs withm =
1000, n = 500, rank r = 250, sparsity s = 25, noise level α = 5, penalty
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λ = 5 and uniform probabilities p and p̃. In Table 1 we report the sparsity of
the last iterates (min, median and max). One observes that the randomized
sparse Kaczmarz method (blue) does not find any least squares solution
and in fact, the method does not even converge (because the system is
inconsistent). The randomized extended Kaczmarz method (black) does
indeed find a least squares solution, but fails to find the sparse one. The
GERK-(a,d) method does converge to a sparse least squares solution and
indeed recovers x̂. Moreover, GERK-(a,d) is even faster than the standard
randomized extended Kaczmarz method. In Table 1 we note that the last
iterates of the sparse randomized Kaczmarz method are not as sparse as
they should be, while GERK-(a,d) is able to produce sparser solutions.
Figure 3 and Figure 4 report the result for the complex case in the same
setup and we can draw the same conclusion.
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Fig. 1 A comparison of real randomized extended Kaczmarz (black), randomized sparse
Kaczmarz (blue) and GERK(a,d) method (red). Experiment (i) with m = 1000, n = 500,
sparsity= 25, rank r = 250, α = 5, λ = 5, uniform probabilities p, p̃ and 50 repeats. Left:
Plot of relative residual ‖Ax − b̂‖2/‖b̂‖2, middle: Plot of relative gradient norm ‖AT (b −
Ax)‖2/‖b‖2, right: plot of relative distance ‖x − x̂‖2/‖x̂‖2 to the initial sparse solution x̂.
Thick line shows median over all trials, light area is between min and max, darker area
indicates 25th and 75th quantile
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Fig. 2 Approximated solution in the experiment from Figure 1. Left: Plot of b̂ (blue)
and noisy b (red), right: Plot of x̂ (blue) and last iterate x (red) of randomized extended
Kaczmarz, randomized sparse Kaczmarz and GERK-(a,d) method
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Fig. 3 Experiment (i) with complex A, b and x̂ and the complex method, cf. Remark 4.4,
with parameters as in Figure 1.
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Fig. 4 Approximated solution in the experiment from Figure 3, only absolute values. Left:
Plot of b̂ (blue) and noisy b (red), right: Plot of x̂ (blue) and last iterate x (red) of randomized
extended Kaczmarz, randomized sparse Kaczmarz and GERK-(a,d) method

Algorithm Figure 2 Figure 4

REK 499/500/500 500/500/500
SRK 56/75.5/99 92/123/159

GERK-(a,d) 25/27/42 25/26/31

Table 1 Sparsity of last iterates (#|xN,i| > 10−5) in Figures 2 and 4 (min/median/max)

Note that we did not report results on noise in the range of A. The method
still works in this case and converges to some approximate least squares
solution with error in the order of the level of the noise in R(A).

(ii) Impulsive noise: In a second experiment, we use mainly the same setup as
in the the first experiment, but instead of noise in R(A)⊥ we add impulsive
noise and use Algorithm 1 with g∗(y) = rε(y)+ τ

2‖y‖
2
2 from Example 4.5(b)

and f from Example 4.5(d) (as in the first experiment). More concretely,
after choosing a sparse solution x̂ as in (i) we set

b̂ = Ax̂, b = b̂+ ηimpulsive,

where we generate ηimpulsive by choosing a random subset I ⊂ {1, ..., n}
with ñ = dn/20e many elements and setting

(
ηimpulsive

)
i

=

{
si · α · ‖b̂‖∞, i ∈ I,
0, otherwise



Generalized extended Randomized Kaczmarz Method 19

with random signs si ∈ {−1, 1}. In our experiments, we have set α = 5.
For the matrix A we choose singular values in [0.001, 10] and use ε = 10−2

and τ = 10−3, m = 1000, n = 500, λ = 10, sparsity 25 and rank 250. The
results of 50 trials of the real case are reported in Figure 5 and Figure 6.
In Figure 7 and Figure 8 we report the results of the complex case. Here,
we set

(
ηimpulsive

)
j

=

{
1√
2
· (sj + itj) · α · ‖b̂‖∞, j ∈ I,

0 otherwise

with random signs sj , tj ∈ {−1, 1}.
We observe that, different to the GERK-(a,d) method, the GERK-(b,d)
method is able to reconstruct the sparse vectors and gives the sparsest iter-
ates. The exemplary plot of the vector components suggests that, when ap-
plying the GERK-(b,d) method, the remaining nonzero components might
even vanish after more steps. Again, the sparsity of the last iterates is
reported in Table 2. The middle figures in Figure 5 and Figure 7 show
the gradients of the lower level objective in (17) w.r.t. x. We observe that
the REK and GERK-(a,d) method indeed solve (17) with g from Example
4.5(a), and the GERK-(b,d) method seems to converge to a solution of
(17) with g from Example 4.5(b). The relative residuals, the relative gra-
dient norm and the relative error for the REK method behaved like those
for the GERK-(a,d) method (i.e., the black curves in the respective plots
in Figure 5 and Figure 7 are hidden behind the blue and red curve). We
would also like to mention that the speed of the reconstruction depends
heavily on the condition of the matrix A. For A with condition as in our
experiment and if b is corrupted by small additional noise, the method is
still able to approximate the sparse solution with error in the order of the
level of the additional noise.
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Fig. 5 A comparison of randomized sparse Kaczmarz (blue), randomized extended Kacz-
marz (black), GERK-(a,d) (red) and GERK-(b,d) method (green). Experiment (ii) with
m = 1000, n = 500, sparsity= 25, rank r = 250, ε = 10−2, τ = 10−3, λ = 10, uniform
probabilities p, 50 repeats. From left to right: Plot of relative residual ‖Ax − b̂‖2/‖b̂‖2,
relative gradient norm ‖AT (b − Ax)‖2/‖b‖2, ‖AT∇g∗(b − Ax)‖2/‖b‖2 and relative error
‖x− x̂‖2/‖x̂‖2. Thick line shows median over all trials, light area is between min and max,
darker area indicates 25th and 75th quantile.
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Fig. 6 Approximated solution in the experiment from Figure 5. Left: Plot of b̂ (blue)
and noisy b (red), right: Plot of x̂ (blue) and last iterate x (red) of randomized extended
Kaczmarz, randomized sparse Kaczmarz, GERK-(a,d) and GERK-(b,d) method
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Fig. 7 Experiment (ii) with complex A, b and x̂ and the complex method, cf. Remark 4.4,
with parameters as in Figure 5, and with independent uniform noise in real and imaginary
part.
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Fig. 8 Approximated solution in the experiment from Figure 7, only absolute values.
Left: Plot of b̂ (blue) and noisy b (red), right: Plot of x̂ (blue) and last iterate x (red) of
randomized extended Kaczmarz, randomized sparse Kaczmarz, GERK-(a,d) and the GERK-
(b,d) method

Algorithm Figure 6 Figure 8

REK 499/500/500 500/500/500
SRK 154/182.5/222 253/287.5/326
GERK-(a,d) 197/219/256 307/329/352
GERK-(b,d) 28/36/51 30/45/70

Table 2 Sparsity of last iterates (#|xN,i| > 10−5) in Figures 6 and 8

6 Conclusion

We showed that the extended randomized Kaczmarz method can be further
generalized to the case of sparse least squares solutions for inconsistent sys-
tems. We can even allow different smooth and strongly convex data misfit func-
tions g∗ that can be modeled to cover different noise models. Moreover, under
a global error bound we obtain linear convergence in this case and we show



Generalized extended Randomized Kaczmarz Method 21

that these global error bounds hold under mild regularity assumptions. Our
numerical experiments indicate that this generalization is indeed successful
for rank deficient inconsistent least squares problems for both large normally
distributed noise in the complement of the range of the system matrix and the
case of large impulsive noise. Future research could consider adjoint mismatch
as in [17], or averaging as in [19]. Furthermore, although our analysis includes
block variants (which was important for the complex case K = C), here we
did not concentrate on proving or validating numerically an actual advantage
of using block variants. This is an important topic for future research, and it
would be interesting to know whether the results in [34] can be generalized to
our setting.
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27. F. Schöpfer. Exact regularization of polyhedral norms. SIAM J. Optim.,
22(4):1206–1223, 2012.



Generalized extended Randomized Kaczmarz Method 23
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