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Abstract. The problem of minimal extensions of the Lorentz group by superluminal-like 
transformations is analysed. It is found that the ‘extended relativity groups’ are closely 
related to the complex PoincarC group. 

‘Extended relativity’ is then studied as a continuous kinematical symmetry of physical 
states (not necessarily superluminal), and its quantum-mechanical implications obtained by 
the construction of some classes of irreducible unitary representations. It is found that, if 
there are massive or massless states having ‘extended relativity’ as their kinematical 
symmetry group, there is a superselection rule operating between these states and ordinary 
matter. Their mutual interactions may display a new type of spontaneous breaking of PT 
invariance. 

The possible relevance of these new hypothetical states to T violation is neutral kaon 
decays and their observation as real states is discussed in two simple model examples. 

1. Introduction 

Motivated by the problem of whether faster-than-light propagation has any physical 
relevance, a number of authors (e.g., Recami and Mignani 1974 and references therein) 
have discussed the extension of the Lorentz group to a group of ‘extended relativity’ 
containing transformations that might be interpreted as coordinate transformations 
between subluminal and superluminal frames. In the original motivation of these 
studies such superluminal frames would be the rest frames of tachyons. A formalism is 
thus developed to deal with these hypothetical states which is alternative and not 
necessarily equivalent to the conventional view (Bilaniuk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 1962) that tachyons (like 
photons) are created and destroyed but never brought to rest and that the set of 
physically equivalent inertial frames is restricted to those in slower-than-light uniform 
notion. 

Whether or not ‘extended relativity’ is relevant to tachyons and whether or not 
tachyons are relevant to physics, the extended groups may still be interesting in their 
own right. 

Lorentz transformations and space-time translations (i.e. the PoincarC group) 
together with general principles such as microscopic causality and positivity form the 
basic foundation for most of our understanding of subnuclear phenomena. If, as the 
work in ‘extended relativity’ suggests, the kinematical symmetry group of nature may 
be enlarged, at least in some subspaces of the physical space, this may have very 
far-reaching consequences. An enlargement of something as fundamental as the 
kinematical symmetry group may have consequences not only on eventual hypothetical 
superluminal states but it may also open up some new possibilities in the domain of the 
less exotic luminal and subluminal states. This defines the point of view adhered to in 
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this paper. Our purpose will be to study the transformations of extended relativity as a 
symmetry group, exploring some of its consequences in the domain of massive and 
massless states. 

That the kinematical symmetry group might not be the same for all particles should 
not be suprising if one remembers that the parity operation is not implemented for 
neutrinos. Conversely, one might imagine that some particles possess a kinematical 
group larger than the usual PoincarC group (plus the discrete transformations). 

To make the paper reasonably self-contained, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA§ 2 we review the derivation of the 
extended relativity groups from the usual postulates of isotropy of space, equivalence of 
inertial frames and homogeneity, including in the set of possible transformations those 
with a velocity greater than the invariant one. We find that there are two distinct 
minimal ways to construct the extended relativity group and later on we show that for 
the purposes of this paper these have identical consequences. 

Using the results compiled in appendix 1, the close relation between these extended 
relativity groups and the complex Lorentz group is exhibited in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 3. 

In § 4 a particularly simple class of unitary representations of the ‘extended 
relativity group’ is derived; the symmetry-breaking properties, superselection rules and 
possible relevance to T-violation of this class are explored in § 5. 

2. Extended relativity groups 

Let a: denote the matrix elements of a coordinate transformation between two 
equivalent inertial frames, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ’ ~  = a EX ’. 

Linearity follows from the homogeneity of space-time. With isotropy of space and 
equivalence of inertial frames one deduces the existence of an invariant quantity K with 
dimensions of an inverse squared velocity (Berzi and Gorini 1969, Gorini and Zecca 
1970): 

where a : ( u )  is a matrix element of a boost. From equation (2.1) it follows that 

1 
a: (u )a : ( -u )  = 

1 - u 2 / c 2 ’  

Denoting by 1 the direction of the boost, one also deduces from the same principles that 
a : ( u )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:(u) ,  a h ( u ) =  - u a : ( u ) ;  a ? ( u )  = ( -u /c2)a : (u ) .  

From (2.2) one finds two distinct types of transformation, those for which u 2 / c 2  < 1 
and those for which u 2 / c 2 >  1. They cannot be connected by continuous variations of 
the real parameter U because of the singularity at the ‘light barrier’ ( u 2 / c 2  = 1). 

For u 2 / c 2 <  1 (the case of special relativity) the matrices a ( u )  and a( -u )  are 
transformations between identical slower-than-light (bradyonic) frames; therefore 
isotropy requires a : ( u )  = a: ( -u )  and one obtains 

a g ( u ) =  ( I - u ~ / c ~ ) - ~ ”  
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For u 2 / c 2 > 1  and in contrast to the previous case, a : ( u )  and a: ( -u )  refer to 
transformations of a different nature, because if the first is from a bradyonic to a 
tachyonic frame (BT transformation), the second is from a tachyonic to a bradyonic 
frame (TB transformation). Therefore whereas isotropy would require a: ( u ) ~ ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
a:(-u)BT it is not obvious that it must also require aO(u)BT= a O ( - u h .  

One could somehow justify this last equality by insisting that all frames, bradyonic 
and tachyonic, should be equivalent, because after all if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is a bradyonic for S and S’ 
tachyonic for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS then S will be tachyonic for S’ and S’ bradyonic for S’. Therefore there 
is no invariant way to decide whether a particular transformation is of the BT or of the TB 

type, and the natural choice would still be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU :  ( U )  = a: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-U). Under these circumstances it 
follows from equation (2.2) that a : ( u )  is purely imaginary and the final result would be 

0 0 

where the indices L and T denote longitudinal and transverse components and one of 
the signs of the square root was arbitrarily chosen. From the relation 

which has general validity, it follows that in the case of equations (2.3) the four- 
dimensional space-time interval remains strictly invariant for superluminal trans- 
formations. 

If one had required that for superluminal transformations time-like intervals be 
transformed into space-like intervals and vice versa, as one would have intuitively 
expected to happen for real transformation matrices, one should have chosen instead 
a : (u )  = -a:(-u) and in this case the result would have been 

t x L ( u / c 2 )  t’ = 
( u 2 / c 2  - 1p2  - ( u 2 / c 2  - 1p2  

(2.5) 

with the imaginary matrix element in the transverse component transformation being 
required by equation (2.4). 

These were, in fact, the superluminal transformations considered by Recami and 
Mignani zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1974) and they differ from the previous ones by an overall mutiplication by -i. 

It is only in the bi-dimensional (one space, one time) case that the matrices of the 
extended group can be purely real. In such a case (Parker 1969) it would seem natural 
to choose the transformations of equations (2.5) instead of those of equations (2.3). 

For space-time dimension greater than two, however, both transformation groups 
have to be complex and the interpretation of intervals as space-like or time-like 
becomes a delicate matter related to the actual metric machinery associated with each 
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frame (Mignani and Recami 1974, Goldoni 1972). Therefore both sets of equations, 
(2.3) or (2.5), seem to be acceptable as superluminal extensions of special relativity. 

If one actually wants to speculate about the physical meaning of tachyons and 
superluminal frames the interpretation of the above transformations may be different in 
each case; however, for our more modest purpose of exploring the consequences of 
extended relativity as a symmetry group for luminal and subluminal phenomena, their 
content, as we will see shortly, is essentially identical. 

The extended relativity groups are the multiplicative closures of the set of super- 
luminal boosts and the restricted Lorentz group. Their close relation to the complex 
Lorentz group will be derived in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Extended relativity and the complex Lorentz group 

In this section we use the results and notation of appendix 1 and natural units such that 
c = l .  

Let us consider first the case of the transformations of equations (2.3). Consider the 
limit when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2+ CO, with U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, of a superluminal transformation (of the form of 
equations (2.3)) along the direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. The resulting transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI has the properties 

A, (u )  = S,A,( l /u)  for U > 0, / U  1 > 1 

and 

&(U) = SfS ,h , ( l / u )  for U < 0, jul> 1, 

i.e. any superluminal velocity transformation A , ( u )  can be obtained from a trans- 
formation of the real restricted Lorentz group multiplied by a power of SI .  

The problem of finding the multiplicative closure of the superluminal trans- 
formations and the restricted Lorentz group L l  is thus reduced to the simpler one of 
finding the closure of the set {SI, Lt} .  Like any one of the transformations defined by 
equations (2.3), SI is a complex Lorentz matrix and, in terms of the generators defined in 
appendix 1, its representation is 

S, = exp(-i:rHI). (3.1) 

From this one finds 

S;' exp(-iOJ,)S, = E,,k exp(iOHk) + s,, exp( -iOJ,) 

S;' exp(-iuK,)S, = E,]k exp(iuIk) + s,, exp(-iuK,). 

(3.2a) 

(3.2b) 

Notice that S;' = S?.  
From these results one concludes immediately that the closure of SI and L l  is L+(C). 

Therefore in this case the group of extended relativity is nothing else but the complex 
Lorentz group. 

Let us now consider what happens if for the definition of superluminal velocity 
transformations one uses equations (2.5) instead of equations (2.3). In this case 

A : ( u )  = -iSIA:(l/u) U > 0, juI > 1 

A : ( u )  = iS,A:(l/u) U < O , / U I < l .  

Therefore the extended relativity group would in this case be the multiplicative closure 
of {*is,, L!}. 
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The inverse of -is, is also contained in the multiplicative closure, namely 
1 (iSl)2(-iSl) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= is: = is;' = (-is,)- 

Therefore from (3.2) one obtains 

is;' exp(-ioA)(-iS,) = Eyk exp(i8Hk) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,, exp(-ieJ,) 

is;' exp(-iuK,)(-iS,) = E,,k exp(-iuIk) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, exp(-iuK,). 

Hence the extended relativity group in this case also contains all the elements of the 
complex Lorentz group L+(C). In particular, one reaches the conclusion that if 
equations (2.5) are chosen for the superluminal transformations then those of equations 
(2.3) are also contained in the group. (The converse is not true, of course.) 

In particular, from 

is;' exp(i&A)(-iS,) = EtjkSk i + j ,  

one concludes that the superluminal transformations SI are also contained in the new 
extended relativity group. Therefore, multiplying is;' by SI one concludes that the 
closure is {L+(C), iL+(C)}. Therefore the minimal extensions of special relativity to 
include superluminal-like transformations lead either to L+(C) or to its central exten- 
sion {L+(C), iL+(C)}. 

The construction of unitary irreducible representations (UIR) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis naturally our main 
tool for the exploration of extended relativity as a symmetry group. As far as the 
construction of UIR'S is concerned, the consequences of the two extended relativity 
groups are the same because any UIR for L+(C) is also irreducible for {L+(C), iL+(C)} 
and is obtained from the first by adjoining the i matrix, which is always unitary. 

The main conclusion of this section is that no matter which reasonable way one 
chooses to extend special relativity by superluminal-like transformations, one is 
necessarily led to replace the Lorentz group by its complex counterpart. Therefore, 
despite the fact that physical observations take place (and are parametrised) in a real 
space-time, the exploration of extended relativity suggests that for theoretical purposes 
it might be convenient to consider this real space to be embedded in a complex 
four-dimensional manifold. This possibility leads to many interesting considerations 
and speculations, which, however, will not concern us in this paper. Here we will simply 
explore the possibility (and consequences) that some little group-irreducible represen- 
tations of the real PoincarC group may also be irreducible for the complex group. We 
will call this small subset of representations of the complex group, somewhat arbitrarily, 
'physically admissible representations'. The precise characterisation of this notion and 
its consequences will be the subject of the next section. 

4. Physically admissible representations of extended relativity 

Because extended relativity is so closely related to the complex Lorentz group, the 
representations to explore for possible physical consequences are obviously those of the 
associated complex PoincarC group P+(C) defined by 

W b ,  (AI, B1)IU[a, (A2, Bd1= U[b +AMI, Bda,  (A1A2, B1BdI 

where a and b are complex four-vectors and the pairs of SL(2, C) matrices (A, B) 
defined the elements of the complex Lorentz group (see appendix 1). To construct the 
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unitary irreducible representations of P+(C) one diagonalises the subgroup zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ U[a, (1, l)]}, i.e. one chooses a basis of generalised momentum eigenvectors lpa) such 
that 

U[a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1, 1)1lpa)=exp( iRe(p.  a))Ipa) (4.1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and a are, in general, complex numbers. For a complex Lorentz trans- 
formation operating in this state 

(4.2) W O ,  (A,  B)l lpa) = c INA, B)PP)DP,[(A, B ) ;  PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

and the representation matrix D,, satisfies 

D[ (A i ,  Bi); A(A2, &)p]D[(A2, B2); PI =D[(AiA2, B1B2); PI. 
One should now proceed, in the usual way, to classify all possible little (isotropy) 

groups, choosing standard vectors in each orbit, etc. At this point, however, we restrict 
our study to a small subset of all possible representations of the complex PoincarC 
group, namely to those which are as close as possible to irreducible representations of 
the real PoincarC group. 

The following two conditions define the restricted class of representations. 
(1) The quantum number of p 2  = p&p& is restricted to real values and the standard 

vectors in the orbits are also chosen to be real. Once p 2  and a standard vector are 
chosen, the irreducible representations of the complex isotropy group will in general 
contain a certain number of irreducible representations of the corresponding real 
isotropy subgroup. 

(2) We will restrict ourselves to those irreducible representations of the complex 
isotropy group which are also irreducible for the real isotropy subgroup. 

The physical significance of the class of representation defined by (1) and (2) will be 
discussed shortly. We now proceed to their determination. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( a )  For p 2 > 0  a real standard vector has the typical form (1,0,0,0) .  From 
equations (A.8) and (A.9) in appendix 1, one concludes that the isotropy group for this 
standard vector is a SL(2, C) group generated by J k  and I k .  The corresponding isotropy 
group for the real PoincarC group is the rotation group generated by J k .  

Among the unitary irreducible representations of SL(2, C) (Naimark 1964), the 
only one that is irreducible for the rotation subgroup is the trivial one-dimensional 
identity representation (spin zero). All other UIR’S are spin towers containing all 
integer or half-integer spins once. Hence, according to our specifications, the ‘physic- 
ally admissible’ representations for the massive ( p 2  > 0) case are only those of zero spin. 

( b )  For p 2 = 0  with p @ # O ,  a standard vector satisfying the condition (1) is 
(1 ,0,0,  1). From equation (A.1) a simple calculation shows that the isotropy group for 
this vector can be parametrised in terms of SL(2, C) x SL(2, C) matrices as follows: 

G b ,  a, a .  b l  

exp(ip +&) a exp(-ip -ria) exp(-ip +$a) b exp(ip -$a) =[i 0 exp(-+p -&) 0 exp($p - 4ia) 

where p and a are real parameters and a and b are complex numbers. 

G b i ,  ai, ai, bilG[p2, ~ 2 ,  a2, b2I 

The group law is 

= G [ P I + P ~ ,  a 1 + ~ 2 ,  al+exp(p l+ iadaz,  b l + e x p ( - p ~ + i a l ) b J .  
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The representations are obtained by diagonalising the subgroup {G[O, 0, a, b]} ,  i.e., 

by choosing a basis of vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171, . . .) such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G[O,O,a, b]l.rr,. . .)=exp(i.rr.u)/.?r,. . .) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = (a ,  b )  is a four-dimensional vector whose components are the real and 
imaginary parts of the parameters a and b. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As in the case of the real Poincare group, there are continuous spin representations 
for 7r # 0 and discrete spin ones for n = 0. Restricting ourselves to this last class, which 
already in the real PoincarC group seems to be the one with physical relevance, one finds 
that in this case the irreducible representations of the isotropy group are one- 
dimensional and labelled by two real parameters v and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ~ ,  

with the parameter taking the values 0, *$, *l, . . . and v being an arbitrary real 
number. 

The discrete spin isotropy group for the real PoincarC group corresponds to the 
subgroup {G[O, cy, a, a ] } ;  therefore all the irreducible representations derived above 
are also irreducible for this subgroup. Hence all the discrete-spin massless represen- 
tations of the complex PoincarC group are physically admissible according to our 
definition. 

In this paper we are mainly interested in the consequences of extended relativity for 
massive and massless states. Therefore we will skip the study of the p 2  < 0 represen- 
tations. 

The main point in restricting our study to the small class of representations which we 
called ‘physically admissible’ is the following. Of course, we do not expect the extended 
(complex) relativity group to be a symmetry of general validity in nature. If it were, 
instead of isolated massive particles of a given spin we would have found in the physical 
spectrum spin towers of degenerate mass. Nevertheless, there is the possibility that, 
when invariance under the complex group does not require the introduction of more 
spins in each irreducible subspace, then some physical states might admit a space-time 
symmetry higher than the usual (real) Lorentz symmetry. This possibility seems 
particularly likely in the case of massless states where all discrete spin representations of 
the real group admit a simple extension to the complex group. 

If there are states that, although having the same spin degrees of freedom as 
imposed by the real Lorentz group, possess as their kinematical symmetry group the 
larger complex group, this will have two main consequences. 

(1) Their physical space of real momentum quantum numbers will have to be 
considered as embedded in a larger space that contains complex momenta. 

(2) Because the complex Lorentz group L+(C) contains the operation P T  as a 
transformation continuously connected to the identity, this operation will necessarily be 
represented in these spaces by an unitary operator. 

In the remainder of this paper we will mainly explore the non-trivial implications of 
(2). In particular, we will assume that, while most physical states observed so far carry 
irreducible representations of the real PoincarC group with the discrete P T  trans- 
formation being unconnected and anti-unitary, there might exist some other states that, 
having as a kinematical symmetry group the larger complex PoincarC group, are 
embedded in an irreducible representation of P+(C) and will necessarily have P T  
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implemented by a unitary operator. We call this new type of particle (quantum fields) 
‘chronons’t. 

The superselection rule that operates between the space of chronons and spaces of 
non-chronons (i.e. usual particles), as well as the structure of their interactions, will be 
discussed in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a preparation for this discussion we list here some 
results concerning the transformation properties of chronon operators and quantum 
fields. 

A spin-zero massive or massless chronon quantum field will have a momentum 
expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

@(xi-/ dk6(k2-m’)a(k) exp(-i Re(k.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ) )  (4.4) 

where the integral runs over real and complex four-momenta restricted only by the 
mass-shell condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= m’. 

Because we are concerned only with the effect of the chronon fields on physical real 
momenta spaces we may use in this expansion only the part that corresponds to real zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk .  
Therefore, using diff erent symbols for the operators that correspond to the positive and 
negative energy parts, i.e. defining a ( - p )  = qb+(p)  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq’ = 1, one may consider the 
restricted field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOr: 

Or(x)  = ( 2 + 3 / 2  / d l p ( a ( p )  exp(-ip. x ) + b + ( p )  exp(ip. x)). (4.5) 
J ~ w ,  

From the general expression for a spin-zero operator 

U[b, A]a(p)U-’[b, A]= exp(-i Re(p .  b))a(Rp) 

where [b, A] is a general element of the complex PoincarC group it follows that 

U[O,  P T ] ~ ( ~ ) u - ’ [ o ,  PT]  = a ( - p )  = q b + ( p )  

where in the last equality the redefinition of a ( - p )  is used. Therefore, if one sticks to 
the usual convention of calling the a states particles and the b states antiparticles, one 
sees that for chronons the PT operation is unitary and transforms particle destruction 
operators into antiparticle creation operators and vice versa. 

From now on we will label the operation PT, as well as T and P, in the space of 
chronons by the index c to distinguish them from the usual representations of these 
operations in the spaces of non-chronons: 

(PT),a(p)(PT),’ = ~ b + ( p ) .  (4.6) 

(PT)cOr(x)(PT)2 = ?7@r(-x), (4.7) 

For the quantum field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@Jx) the transformation law is 

in accordance with the physical interpretation of the PT operation. 
The complex Lorentz group only specifies in a unique manner the PT trans- 

formation for chronons. For the calculations in the next section it is also convenient to 
have explicit forms for the separate P and T operations, and also for the charge- 
conjugation operation, C. 

t Although the term ‘chronon’ has already been used by some authors in other contexts, I thought this would 
be az appropriate name for these new hypothetical states because of their presumed natural role in T 
violation. 
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Requiring the parity to have the usual properties, it follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, like (PT) , ,  is a 
unitary operator. For the charge-conjugation operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,, if one wants to preserve 
CPT invariance for interactions of chronons with non-chronons (see next section), one 
is inevitably led to an anti-unitary operator. 

In the table below we list the C, P and T transformations for the creation operators 
and quantum fields of both spinless chronons and non-chronons. 

Chronons Non-chronons 

Complete inversion ( P T )  

Space inversion 

P,a+(k)PF' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= qpa+(kO,  - k )  Pa+(k)P- '=  qpa+(kO,  - k )  
unitary unitary 

P,@(X)P,' = q p @ ( x O ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x) P@(x)P- '  = q p @ ( x O ,  -x )  

Time reversal 

Charge conjugation 

For chronons of non-zero spin, which according to our specifications are necessarily 
massless, a slightly larger amount of work is required to obtain the transformations of 
the quantum fields. First a careful definition is needed for the elements of the 
complementary set which lead from the standard vector to general momentum states. A 
possible choice which constitutes a natural extension of the helicity complementary set 
in the real PoincarC group is the following. 

Consider the definition of the massless state Ikp) with k complex. Define as the 
'direction of k' the three-space direction of Re k. The state l kp )  can then be defined as 

IkP) = R k k o  exP(-$H3) exP(-iuK3) I k p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.8) 

where Ik ) is the standard vector, exp( - id3)  'boosts' the standard momentum 
(k:,  0, 0, k , )  to a momentum lkl along the three-direction, exp(-iq5H3) is a complex 
rotation that leads to a momentum Re k + i Im k along the three-direction and RkkO is a 
real rotation that rotates this vector to its final direction, 

k o =  k 3 =  (cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 - i  sin 4) Ik l .  

Notice that when applying the K3 and H3 transformations the eigenvalue of J3 does not 
change and R k k O  preserves the helicity. However, if Re k < 0 the appropriate H3 
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rotation has to change the signs of the real parts of both the time and space components 
of the momentum; therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp will in this case represent the projection of J3 along a 
direction opposite to Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. Therefore, for k real if ko  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, p is the helicity and if k o  < 0, 
p is minus the helicity. 

It is now straightforward to obtain the action of the PT operation in an arbitrary 
l kp )  state. 

Defining 

C ( k ,  k,) = Rkp exp(-iOH3) exp(-iuK3) 

and restricting ourselves as before to k real, 

U ( P T )  I k p )  = C (PTk, kJ C- ' (PTk, k s ) f T C ( k ,  kJ I k S p  ) 

and using PT = exp(-i.rrH3) exp(-i.rrJ3) one obtains 

U(PT)  Ikp) = exp(-i.rrp) I fTkp) .  (4.9) 

For the creation operators the resulting unitary transformation becomes 

U ( P T ) a + ( k p ) U - ' ( P T )  = exp(-i.rrp)a'(-kp). 

Remembering that p is the helicity for k o >  0 and (-1) x helicity for k o  < 0, one defines, 
in a manner similar to that for the spinless case, the 'antiparticle' operator 

a + ( - k p ) = v  exp(i.rrp)b(k - p )  

and using, as before, the notation (PT)c for the representation of the PT automorphism 
in chronon space one obtains 

(PT) ,a ' (kp) (PT) i '  = v b ( k  - p ) ,  (4.10) 

to be compared with the corresponding anti-unitary realisation in non-chronon spaces: 

(PT)a+(kp ) (PT) - '  = q 'a+ (k  - p ) .  (4.11) 

We are now ready to construct quantum fields for spinning massless chronons and find 
their transformation properties. 

We list here the result for the spin-i case which will be used in the examples of the 
next section. The free quantum field (real k part only) is defined as 

where u ' ( kp )  and u'(k,u) are the following massless limits of helicity spinors (see 
appendix 2): 

u ' ( kp )  = lim (m/ko) ) " 'u (kp)  
m-0 

u ' ( kp )  = lim (m/k0) " ' v (kp) .  
m-0 

These, together with equation (4.12), guarantee that the quantum field has the usual 
B jorken-Drell normalisation. 

Considering, as in the spinless case, an unitary parity and anti-unitary charge- 
conjugation transformation for chronons and the properties of the spinors listed in 
appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, the following table is obtained. 
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Chronons Non-chronons 

Space inversion 

Time reversal 

Charge conjugation 

Here 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7p7T, the phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ( k p )  and ~ ( p )  are 

O(k+) = -arg(k1+ik2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( + )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

6 ( k - ) =  -arg(-k'+ik2) E ( - ) =  1 

and the phase in the charge-conjugation transformation of chronon fields was chosen so 
that chronons and non-chronons have the same CPT transformation properties, 
namely 

(cPT)$,(x)(cPT)-' = - i ~ m ( r ~ ) ~ p $ ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-XI. 

From the table the transformation properties for any spinor bilinears follows in a 
straightforward manner. For the purpose of the applications in the next section we list 
the following. 
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5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChronons and symmetry breaking 

A first consequence of the PT transformation properties of chronons is the result that 
there is a superselection rule operating between the spaces of chronons and non- 
chronons. 

Let V,  denote the space of free chronons and V the space of ordinary matter. 
Consider a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI+) = A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C )  +@la) in V,O V where IC) E V,, la) E V and A ,  /-L are real 
numbers. The vectors I+) and e"!+) belong to the same ray, and should therefore 
represent the same physical space. Let us apply the PT transformation to these vectors. 
For 14) we obtain 

and for e"]+) 

Therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(+)  and p_T(e"I+)) belong to different rays; hence ET does not establish a 
ray correspondence in V,O V unless A = 0 or p = 0, i.e. unless chronons and ordinary 
matter belong to distinct superselection sectors. 

To say that free chronons and ordinary matter belong to different superselection 
sectors has as yet no particular consequences on their mutual interactions, because the 
above result provides information only on the structuture of the direct sum space 
V,O V. The nature of the interactions is actually related to the structure of the tensor 
space V,OV. 

Denote by I c , ~ , )  = /c , )O/a, )  with ict) E V,, la,) E V an arbitrary basis state in V,O V. 
Let U and A be the operators that implement the PT transformation in the spaces V, and 
V respectively, i.e. U 

To study the nature of the tensor product operator U O A  in V,O V, consider the 
matrix element 

(PT), and A= (PT).  
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Therefore there is no choice of phase that can make zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU @ A  unitary or anti-unitary in the 
tensor product space. According to Wigner’s theorem, the full P T  transformation 
cannot be implemented as a symmetry in the (scattering) tensor space. 

To discuss the implications of this result one should recall some facts about the role 
of symmetry operations in physical spaces. 

A symmetry of a theory, i.e. an automorphism T of its algebra of observables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, is 
said to be conserved in a particular representation space if it can be implemented in this 
space by unitary or anti-unitary operators and if it commutes with time evolution (or at 
least it has well defined commutation properties, as in the case of Lorentz trans- 
formations), 

This second condition is necessary because otherwise the automorphism defined as a 
transformation on the operators at a given time t would not be consistent with the 
transformation at some other time. This second requirement is expressed in (Lagran- 
gian) field theory by requiring the equations of motion (or the Lagrangian) to be 
invariant under the transformation. 

In general, when a symmetry is broken it is because this second requirement fails. 
An exception is the case of the so called ‘spontaneous breaking of symmetry’ (SBS) 

where the equations of motion (and the Lagrangian) are invariant, but the automor- 
phism cannot be implemented in the physical space. 

In our case the P T  automorphism cannot be implemented in the tensor space, at 
least in a way that is consistent with the properties of the operators that implement it in 
the free particle spaces; i.e. we face a situation where ‘spontaneous breaking’ can occur. 

Three important remarks should be made at this point. 
( a )  In the known cases of spontaneous symmetry breaking what usually occurs is 

that the operator that would implement the automorphism when applied to vectors in 
the irreducible representation space leads to vectors outside the space. Therefore it 
would be possible, in principle, to construct an operator representation of the 
automorphism if the space of states were enlarged to a reducible direct sum (integral) 
over irreducible spaces. That is, the automorphism which is not implementable in a 
single irreducible vector space becomes implementable in the fibre bundle over the set 
of degenerate ground states. 

In the present case, however, no such extension can make the automorphism 
implementable and we could say that we have found a new type of spontaneous 
symmetry breaking. 

( b )  Chronons, as we have defined them, possess a kinematical invariance group (the 
complex PoincarC group) larger than the one of ordinary matter. Therefore if they are 
to interact at all with ordinary matter these interactions should not spoil this larger 
invariance. 

In particular, (YT), is an element of the kinematical group, and in the Lagrangian 
the terms corresponding to interactions of chronons with ordinary matter should always 
be invariant under the action of an unitary ( P T ) ,  operator, i.e., there should be a unitary 
automorphism operating in the full V,O V (which for the V, part is interpreted as the 
realisation of the physical BT transformation but for the V part has no special physical 
meaning). The consequence is that there can be no actual violation of P T  in chronon 
space and what this special type of spontaneous symmetry breaking can do at most is to 
induce P T  violation in the space of ordinary matter. This situation will become clear in 
the examples discussed later. 

( c )  Non-implementability of an automorphism is the general symptom of spon- 
taneous symmetry breaking, but how does one explore it in practice? 
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Because it is simpler to explore the dynamics from a Lagrangian than from the field 

algebra directly, what one usually does is to choose a representation for the fields 
appropriate to a particular vacuum among the set of degenerate ones and to rewrite the 
explicitly invariant Lagrangian in terms of shifted fields. When written in terms of the 
shifted fields, the Lagrangian is no longer explicitly invariant and the calculations may 
proceed as if the symmetry breaking were manifest rather than of the spontaneous type. 
In our examples below, this is also to be the method that we use, and because the 
character of a PT transformation is a phase our shifted fields are 'phase-shifted fields'. 

The interaction term to be explored in the examples is 

where r is either 1 or iy5. By choosing the signs of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~ and qc such a term can be 
made invariant for both P, C, T ( T  anti-unitary) and P,, C,, T, (C, anti-unitary) (see the 
transformation tables in the previous section). 

As far as P,, C, and T, are concerned, Lr is one of a family of equally invariant 
Hermitian Lagrangians {L?}: 

LP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= g[& r$](4 e'" + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4+ e-'"). (5.2) 

Although invariant for P,, C, and T, (if LI  = LP is invariant), for CY # 0 these interaction 
terms are not invariant under C or T. That is, 

PLI"(x)P-' = L?(X0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x) 

(cT)LP(x)(cT)-' = L;(-x', X) 

but 

CLP(X)C-' = [& r$](4+ e'" + 4  e-'") z LP(X)  

TLP(X)T-'  = [$, r$](-xo, x)(+(-xO, x) e-'" + 4+(-xo, x) e'") # ~ f ( - x O ,  x). 

P and CT are good symmetries for any CY f 0 but C and T are not separately conserved. 
The replacements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 + e'"d and 4++ e-'"q5 that occur on passing from LI to LP 

correspond precisely to the choice of a representation where C (and T )  is not 
implemented, and this is, as we have discussed above, the standard way to explore 
practically the consequences of spontaneous symmetry breaking (SSB). That is, once we 
know that the automorphism cannot be implemented in the scattering space one shifts 
the fields by fixing for them a particular representation where the transformation is not 
implemented, and thus one transfers to an equivalent explicitly symmetry breaking 
Lagrangian the effects of SSB. In fact, the shifts 4 +e'"+ and 4++ e-'"4+ correspond to 
the replacements 

a + ( k ) +  a+(k) '=e-'"a+(k) 

b + ( k ) - .  b+(k) '  = e'"b+(k). 

Therefore if Cu+(k)C-'= qc b'(k) and Ta+(k)T-' = q ~ u + ( k ' ,  - k )  the correspon- 
dence is no longer preserved for the primed operators 

CU'(~) 'C- '  = qc e-Iab+(k) # vcb+(k) '  

Ta+(k)'T-' = qT  e1"a+(k0, - k )  # q T a f ( k O ,  -k) '  
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whereas for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and T, the appropriate correspondences are preserved under the shift 

C,a'(k)'C,= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqc e'"a(k) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= qCa(k) '  

T,a'(k)'T,= qr e-'"b(kO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- k )  = qrb(kO,  -k) ' .  

In conclusion, the interaction of equation (5 .2 )  provides us with a shifted Lagrangian 
appropriate to explore the practical consequences of this special type of SSB, which in 
addition satisfies the requirement of invariance under (PT),  that, as we saw, is a 
necessary condition to preserve the large kinematical invariance group of chronons. 

Actually, if 'extended relativity' is a good kinematical symmetry for chronons, all 
that its interacting Lagrangian terms are required to satisfy is to be invariant under 
(PT),  (because it belongs to the kinematical group) and not under PT, which is not even 
unitary. Therefore we will always be led to physical processes where, from the point of 
view of the genuine Lagrangian symmetries, nothing is really broken. 

Putting it simply, from the point of view of chronons any T-violating effects 
generated by their agency are perfectly symmetric processes. It is only our prejudice in 
extending to interactions of chronons with ordinary particles the same disci ete sym- 
metry conventions that one uses for the latter that leads to effects that, adhering to the 
old conventions, one describes as symmetry breaking. 

The final part of this paper will be devoted to a study of shifted interaction terms of 
the form of equation (5 .2)  for two simple situations: first assuming that it represents an 
interaction between spin-; massless chronons with scalar non-chronons, and secondly 
in the reserved situation where q5 represents scalar massive or massless chronons and 4 
is a spinor ordinary matter field. 

5.1. Example 1 

Let 4 be the field of a spinor (massless) chroiion and q5 a scalar ordinary matter field. 
The quantum numbers of the field are chosen to allow the study of the possible 
relevance of this model to T violation in the neutral kaon complex. Therefore 

L? = iglj;r5+(q5 e', + 4' e-'") + L , ~  

P4(x)P- '=  -q5(X0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x) = Pcq5(x)P,l 

c 4 ( x ) c - '  = q5+(X) = CCq5(X)Ci1 

Tq5(x)T-'= -4(-x", x) = TCq5(X)TF'. 

L,, stands for the counter-term contribution needed for renormalisation. 
Defining particle a ( k )  and antiparticle a ( k )  operators from the expansion 

l ,2(a(k) e-ikx + $(k) eikx) 
d3k 

= [ ( 2 r ) 3 2 w k ]  

(5 .3)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5.4) 

the Feynman rules for vertices in this theory are as shown in figure 1. To convert to 
familiar looking notation set 

a'(k)lO) = iKO) 

d'(k)lO) E -/go). 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVertex factors for model 1. 

An arbitrary state 

will evolve in time according to the equation 

where A = M - iT is the total mass matrix in the KO - I?' representation and can be 
separated conventionally into Hermitian and anti-Hermitian parts ( M  = M +  and 
I' = r+). 

The eigenstates /Ks) and IKL) of the mass matrix will evolve in time as 

iKS,L)r = e x p ( - i k d ) / K d O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AS,L = m , L  - T ~ Y S , L .  

with 
1. 

These states are related to the previous ones by 

where CPT invariance is already assumed. 

follows: 
The experimental parameter E is related to the elements of the mass matrix as 

E 
Im r 1 2 + i  I m M l 2 = ~ ( A S - A L ) = E ( h S - h L )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 . 5 )  1--E 

where the lase equality holds for small E .  

To Im M12 contribute, in this model, the a +  5 virtual transitions, of which the 
lowest-order ones are drawn in figure 2(a), while to Im rI2 contribute in lowest order 
the real a+cC and 3+cC transitions (figure 2(b ) ) .  These contributions will both be 
proportional to g2 sin 2cr : 

Im r l 2 = + I m  (nlTll?")(nlTIK')*, 

Let us now compute the contributions of the graphs of figure 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Lowest-order diagrams contributing to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a )  Im zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM12 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( b )  Im rI2 in model 1. 

Notice that the minus sign of the closed fermion loop of figure 2(a )  was cancelled by the 
minus sign in our definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\E") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -a'(k)lO). Computing the trace, 

To extract physical results from these badly divergent integrals is particularly delicate 
because the massless nature of the spinor chronon field forces us to cope with genuine 
infrared divergences. In particular, as pointed out by several authors (Leibbrandt 1975 
and references therein), the convenient technique of dimensional regularisation 
requires some modification to deal with massless fields. The worst ambiguity comes 
from the first integral in equation (5.7), which appears frequently in quantum gravity 
calculations where it is called the 'tadpole integral'. To deal with these integrals, 
Leibbrandt and Capper (1974), for example, have proposed a redefinition of the 
generalised gaussian integral in n-dimensional Euclidean space which involves the 
addition of a 'continuity function' to the argument of the exponentials. What this 
function does, essentially, is to avoid the disappearance of the exponentials in the 
parametric integrals so that we can still have recourse to Euler's representation of the y 
function. 

Using the method of Leibbrandt and Capper, the 'tadpole integral' is regularised to 
zero and the second integral, after removing the poles at dimension four, yields 

However, as Capper and Leibbrandt (1974) themselves point out, one could choose 
other continuity functions and regularise the tadpole integral to any other finite value. 
Therefore we write our matrix element as 

(5.8) 

where I is zero in the Capper and Leibbrandt method but it is left out explicitly in 
equation (5.8) to emphasise the basic ambiguity of this result. 

For Im rI2 the calculation proceeds from equation (5.6) without ambiguity and the 
result is 

mK Imr I2=- -  g2 sin 2a. 
1 6 ~  

(5.9) 

Because the spinor chronons are massless there will always be non-vanishing 
transition probabilities for the real decays a + cE and 3 + cE. Consequently, the model of 
this example is intrinsically a milliweak model for T violation. 
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Could it nevertheless be consistent with the experimental data when applied to the 
neutral kaon system? If I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 the model is ruled out by experiment in the neutral kaon 
system because then, from equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 . 9 ,  (5 .8) ,  (5.9) and (As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- A L ) e x p =  
(-0,535 -i0.559) X 10'' s-' one obtains 

mK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E = ( A s  -AL) - 'g2  sin = 1.3g2 sin 2a- exp(i8) 

1 6 ~  
(5.10) 

with 6 = -35.8". 

experimental value 
The parameter-free prediction of the phase 6 = -35.8" compares poorly with the 

1 
E = 5(277+- + qoo) = 2.29 x exp(i45"). 

However, because of the ambiguity in the calculation of Im M12, we cannot have full 
confidence in the result of equation (5.10). Therefore, leaving I undetermined and 
turning our reasoning around, we might say that because the data are still consistent 
with IIm r121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 5 x l o5  s-' it follows from equation (5.9) that g2 sin 2 a  need not be 
smaller than 

2 
g sin 2 a  s 0.3 x 

Then, because g2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb g2 sin 2a, this would imply that one could have decay rates for 
KO, Ko+cE as large as lo6 s-'. Such a rate is still comparable with the decay rates for 
K L  + 3 ~ ;  hence, if one could account for all kaons in a KL decay experiment, one might 
find some 'missing kaons' corresponding to those that decay to chronon-antichronon 
pairs. 

In conclusion, either the model of example 1 is inconsistent with experiment or, if 
consistent because it is a milliweak model, one might expect to find the 'missing kaon 
effect' mentioned above. 

In the simple-minded comparisons of this model with the neutral kaon case the 
neutral field was identified with the kaon field. From what we seem to understand about 
compositeness, quark models, etc, it may not be such a good idea to consider kaons as 
elementary fields. However, this does not preclude the application of this simple model 
because it may be simply extended to a scheme where kaons are composite and which 
leads essentially to the same results. In that case 4 ( x )  would be identified with an 
intermediate neutral boson field which interacts with chronons in the manner specified 
by L?, and in a C, P, T-invariant manner with the quark fields. The relevant T-violating 
diagrams would then be those of figure 3, which clearly have the same consequences as 
those of figure 2. 

5.2. Example 2 

In the second example we consider a spinless Hermitian chronon field coupling to the 
strangeness-changing scalar neutral current &i6 - iA7)q: 

where q is assumed to be a triplet of quark-like fields and the up, down and strange- 
quark notation is used in the second equality. The Feynman rules for the vertices are as 
displayed in figure 4. 
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Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiagrams for a modified model 1 with an intermediate boson field and composite 
kaons. 

Figure 4. Vertex factors for model 2. 

The lowest-order diagrams that contribute to Im M12 in this case are drawn in figure 
5. The diagram of figure 5(b)  is proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg2  exp(i2a)/(m$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- m?). For the 
diagram of figure 5(a) ,  if one considers the kaon as formed by quasifree quarks, as is 
implied by some confinement models, for the virtual KO - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?' transition it will be p1 = p 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p3 = p4 and p1 - p3 = 0. Therefore the contribution is proportional to -g2 exp(i2a)lm:. 

For Im r12 the lowest-order graphs that will contribute are drawn in figure 6. These 
graphs, which correspond to real KO+ 3c and I?'+ 3c transitions, are of higher order 
than those contributing to Im M12 and, furthermore, they will be non-vanishing only if 
mKO > 3m,. Therefore the present model leads to an approximate hyperweak theory or 
even to an exact hyperweak theory if mKO<3m,, which is quite possible because 
spinless chronons may be massive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl b l  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Lowest-order diagrams contributing to Im M12 in model 2. 

s b 

Figure 6. Lowest-order diagrams contributing to Im zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr12 in model 2 
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Besides its possible relevance to T violation in the neutral kaon complex, the model 
also predicts some other processes. For example, in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 we have drawn diagrams 
contributing to T"+ 2c and 77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2c decays which, of course, will contribute to real 
processes only if m,o> 2m, and in,, > 2m, respectively. These processes are of second 
order in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, i.e. the same order as T violation in neutral kaons, but because of the 
opposite phases in the couplings at the two vertices they are T conserving. 

If chronons are massive the best chance to look for them as real states would be in 
reactions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA potentially interesting one, implied by the present model, would be 
chronon production in kaon-nucleon collision Kp + cp (see figure 8), or the reverse 
reaction cp+ Kp which might provide a convenient chronon detection method by 
looking for 'unaccompanied production of kaons'. 

Y O - - - -  -7: - - - 
Figure 7. Diagrams contributing to 7ro and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt) decay into chronons. 

Figure 8. Chronon production in kaon-nucleon interactions. 

In conclusion, it is quite possible that there might exist particles whose continuous 
kinematical invariance group is larger than the usual PoincarC group. If they do exist, 
although being otherwise non-exotic (i.e. non-superluminal), the very nature of their 
kinematical group has severe implications on their behaviour in relation to ordinary 
matter, namely there is a superselection rule and time reversal may be spontaneously 
broken. This last fact suggests that these states might be associated with the 
phenomenon of T violation in neutral kaon decays. Constructing models for this 
phenomenon, of which we gave two simple examples in this last section, one is able to 
predict processes where such particles might be found as real states and where it might 
be worthwhile to look for them. If they are found, their existence would have 
far-reaching implications concerning an underlying complex structure of the space- 
time manifold. 

Appendix 1. Complex Lorentz group 

The complex Lorentz group (of first kind) L(C)  is the group of 4 x 4 complex matrices h 
which preserves the metric matrix G with diagonal elements (1, -1, -1, -l), i.e. 

hTGA=G 



Extended relativity, T-violation and a new kind of particle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA499 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i.e. (Ak,Ak, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg W y ) .  The group has two connected components, L+(C) and L-(C), 
distinguished by the sign of the determinant, det A = *l .  

There is a two-to-one homomorphism between SL(2, C) x SL(2, C) (i.e. the group of 
ordered pairs of SL(2, C) matrices) and L,(C). The correspondence is obtained by 
defining the coordinate matrix x = x o l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ x .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and setting 

x’ = AxBC. (A.1) 

Since x ’ @  = $ Tr(x’7”) the complex Lorentz matrix corresponding to a given pair (A, B )  
is 

A(A, B)”y = $ Tr(7pAT”Bf). (A.2) 

The real restricted Lorentz group corresponds to the diagonal part of SL(2, C) X 

SL(2, C), i.e. to the set of pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A,  A). 
The group has 12 generators. Denoting by M $  and M z  respectively the genera- 

tors associated with the first and second SL(2, C) in SL(2, C) X SL(2, C) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[MG, w;) 1 = 0 (A.3) 
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Examples of some L+(C) coordinate transformations are 

(x" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= chu xO+shu x3 

exp( -i 0J3) 

[ x f3  = shu xo+chu x3 
' x l o -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

x l l=cos ox1-sinox2 
xr2 = sin ox1 + cos ox2 
x~3.... 3 

[ = xo 

- x  

- x  

XI1 = chu x1 - i  shu x2 
X I 2  = i shu x1 +chu x2 

exp( - i d 3 )  

[ + I 3  = x3 

[x'" cos 0xO-i sin ox3 

(A.9a) 

(A.9b) 

(A.9c) 

(A.9d) 

j x 1 3 = -  isin O X ~ + C O S  ox3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Appendix 2. Helicity spinors 

Massive helicity spinors are obtained from rest-frame solutions of the Dirac equation 

by application of a Lorentz transformation S composed of a boost along the three- 
direction followed by a rotation around an axis perpendicular to the plane defined by 
the three-axis and the final momentum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp :  
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2 where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p1 h ip  , The helicity spinors u ( p p )  and u ( p p )  are, as indicated, the 
columns of this matrix. They satisfy the Dirac equations 

( @ - m ) u ( w ) = 0  

( d +  m b ( w )  = 0 

and are eigenvectors of the helicity operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh: 

h u ( p + ) = i u ( p + )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hu(p-)=-:u(p-) hv(p+)= - i ~ ( p + ) .  

hv ( p - )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0 ( p - )  

Their normalisation and orthogonality properties are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C(pp)u(pp') = & & I  = -b(PP)v(PP') 

0 
I 

Other useful properties used in the text: 
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