
 Open access Proceedings Article DOI:10.1109/CDC.2017.8263805

Extended reliable robust motion planners — Source link

Adina M. Panchea, Alexandre Chapoutot, David Filliat

Institutions: Université Paris-Saclay

Published on: 12 Dec 2017 - Conference on Decision and Control

Topics: Approximation algorithm, Algorithm design and Robustness (computer science)

Related papers:

 Efficient Algorithms for Maximum Consensus Robust Fitting

Two algorithms for global optimization of one-variable functions based on the smallest estimate distances between
extremes and their number

Fast Marching Trees: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions -
Extended Version.

 A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning

 Path Integral Stochastic Optimal Control for Reinforcement Learning

Share this paper:

View more about this paper here: https://typeset.io/papers/extended-reliable-robust-motion-planners-
25dhvnhq9j

https://typeset.io/
https://www.doi.org/10.1109/CDC.2017.8263805
https://typeset.io/papers/extended-reliable-robust-motion-planners-25dhvnhq9j
https://typeset.io/authors/adina-m-panchea-4oe2aof1dk
https://typeset.io/authors/alexandre-chapoutot-ryibjb16ee
https://typeset.io/authors/david-filliat-2x4kwt09nt
https://typeset.io/institutions/universite-paris-saclay-26bb7z4n
https://typeset.io/conferences/conference-on-decision-and-control-1msdazxf
https://typeset.io/topics/approximation-algorithm-3j82mu0v
https://typeset.io/topics/algorithm-design-1xp44pcx
https://typeset.io/topics/robustness-computer-science-gkpqgcat
https://typeset.io/papers/efficient-algorithms-for-maximum-consensus-robust-fitting-4we07t5i5d
https://typeset.io/papers/two-algorithms-for-global-optimization-of-one-variable-272gmaj1m2
https://typeset.io/papers/fast-marching-trees-a-fast-marching-sampling-based-method-2ad8bomsh9
https://typeset.io/papers/a-fast-saddle-point-dynamical-system-approach-to-robust-deep-291r19lrwc
https://typeset.io/papers/path-integral-stochastic-optimal-control-for-reinforcement-45icx0sh1k
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/extended-reliable-robust-motion-planners-25dhvnhq9j
https://twitter.com/intent/tweet?text=Extended%20reliable%20robust%20motion%20planners&url=https://typeset.io/papers/extended-reliable-robust-motion-planners-25dhvnhq9j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/extended-reliable-robust-motion-planners-25dhvnhq9j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/extended-reliable-robust-motion-planners-25dhvnhq9j
https://typeset.io/papers/extended-reliable-robust-motion-planners-25dhvnhq9j

HAL Id: hal-01493576
https://hal.archives-ouvertes.fr/hal-01493576

Submitted on 28 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Reliable Robust Motion Planners
Adina Panchea, Alexandre Chapoutot, David Filliat

To cite this version:
Adina Panchea, Alexandre Chapoutot, David Filliat. Extended Reliable Robust Motion Plan-
ners. 56th IEEE Conference on Decision and Control, Dec 2017, Melbourne, Australia.
10.1109/CDC.2017.8263805. hal-01493576

https://hal.archives-ouvertes.fr/hal-01493576
https://hal.archives-ouvertes.fr

Extended Reliable Robust Motion Planners ∗

Adina M. Panchea †, Alexandre Chapoutot and David Filliat‡

March 21, 2017

Abstract

A new method to plan guaranteed to be safe paths in an uncertain environ-

ment, with an uncertain initial and final configuration space, while avoiding static

obstacles is presented. First, two improved versions of the previously proposed

BoxRRT algorithm are presented: both with a better integration scheme and one

of them with the control input selected according to a desired objective, and not

randomly, as in the original formulation. Second, a new motion planner, called

towards BoxRRT*, based on optimal Rapidly-exploring Random Trees algorithm

and using interval analysis is introduced. Finally, each of the described algorithms

are evaluated on a numerical example. Results show that our algorithms make it

possible to find shorter reliable paths with less iterations.

1 Introduction

The motion planning problem, as addressed in this paper, consists in finding a path,

or a sequence of control policy which drives a mobile robot, with a given dynamics

description, from a given initial state region to a given goal region while avoiding

collisions with a given set of obstacles.

The development of efficient and intelligent motion planning algorithms used for

autonomous navigation, which is at the core of autonomous mobile robotic devices,

remains a challenge in particular when trying to guarantee the safety of the vehicle. The

guarantee of vehicle’s safety implies that the motion planning should take into account

uncertainties usually resulting from the approximate initial mobile robot localization,

from imperfect embedded sensors or from the approximate models used to describe the

behaviour of the robotic devices.

Related work

Many motion planning algorithms have been proposed in the literature. When dealing

with complex environments, non-holonomic vehicles or high-dimensional state-space,

a popular approach is to use stochastic sampling to discretize the configuration space.

Among the existing approaches, we focus on the Rapidly-exploring Random Trees

∗This work was supported by DGA MRIS.
†Adina M. Panchea is with COSYNUS/LIX UMR 7161, Ecole Polytechnique, Palaiseau, France

panchea@lix.polytechnique.fr
‡Alexandre Chapoutot and David Filliat are with the U2IS, ENSTA ParisTech, Univ. Paris-Saclay,

Palaiseau, France {chapoutot, filliat}@ensta-paristech.fr

(RRT) ([12, 14, 10, 13]) path planning algorithm and its many variants. These algo-

rithms have the advantage of rapidly covering the whole configuration space and of

easily integrating complex robot models.

However, RRT lacks in guaranteeing an optimal solution. The (asymptotic) op-

timality of the solution is provided by the optimal Rapidly-exploring Random Trees

(RRT*) first proposed in [8] and recently used, for example to plan trajectories for

aerial vehicle ([24, 23]). In [18], a survey on motion planning algorithms based on

RRT∗ is given.

Uncertainty in path planning has been considered using several representations

such as set-membership ([19, 21]) or covariance matrices ([11, 22, 4]). While the

latter is able to find paths with a collision probability under a given threshold, set-

membership approaches can guarantee safe trajectories under a bounded noise assump-

tion.

The localization information provided by imperfect proprioceptive sensors, while

represented by Gaussian functions ([11, 22]) can guarantee the safety of the path at

a certain confidence threshold. Recently, [20] provided the guarantee of a safe path

to imperfect proprioceptive sensors, while considering the uncertainties bounded with

know bounds. Under the latter uncertainty representation, [21] introduced a prelimi-

nary conceptual reliable and robust path planner based on RRT principles and solved

in an interval analysis ([15, 7]) framework. The interval analysis framework was pre-

viously used ([6]) along with graph algorithms to find collision-free short paths in a

given configuration space.

Contributions

This study presents motion planning algorithms which can guarantee safe paths in an

uncertain configuration space, where all approximate initial and final mobile robot lo-

calisation are bounded with known bounds. Improving the motion planner (denoted

BoxRRT) proposed in [21], our first contribution consists in an improved BoxRRT

planner which makes use of modern and new tools ([1, 2]) for the guaranteed numeri-

cal integration employed by the motion planner combined with methods coming from

constraint satisfaction problems. The second contribution consists in a second im-

proved BoxRRT algorithm which makes use of the guaranteed numerical integration

improvements along with the choice of the control input according to a desired objec-

tive and not randomly, as already proposed in the literature. As a third contribution,

a preliminary attempt towards a new reliable and robust motion planning algorithm

based on RRT∗ principles is introduced.

This paper is organized as follows. First, Sect. 2 introduces the problem formu-

lation, while Sect. 3 provides two improved versions of BoxRRT algorithm. Next,

Sect. 4 describes the new planner based on RRT∗. The resulting three proposed reli-

able and robust path planners are applied to plan paths of a non-holonomic vehicle in

Sect. 5, where the simulations results are provided. Finally, some concluding remarks

and perspectives are drawn in Section 6.

2 Problem Statement

This paper considers a mobile robot which has to be driven in a two-dimensional static

environment from an initial state to a desired one while avoiding obstacles represented

by polygons shapes.

The configuration space S= Sfree∪Sobs is therefore composed of two subsets: the

free region subset Sfree = S \Sobs where the mobile robot is allowed to move and the

obstacle region subset Sobs which the mobile robot needs to avoid. Moreover, uncer-

tainties related to its initial and final position and orientation w.r.t. a frame attached to

the environment are considered.

2.1 Problem formulation

Consider the differential system which can describe the evolution of a mobile robot

system:

ṡ(t) = f(s(t),u(t)) (1)

where s ∈ S is considered to be the measurable state of the system, while u(t) ∈ U is

the admissible control input. The exact solution of (1) from the inital condition s0 is

denoted by s(t;s0). From an initial state s0 which belongs to a known set s0 ∈ Sinit ⊂
Sfree the system needs to reach a given set of goal states Sgoal ⊂ Sfree. The problem

formulation comes from [21].

The purpose of the robust motion planner is to provide a sequence of control inputs

u ∈ U
∆t
[u] bounded over intervals of time [K∆t,(K + 1)∆t[, with ∆t > 0 and K ∈ N,

which will drive the system to reach Sgoal while avoiding the non-admissible states

Sobs whatever the initial state s ∈ Sinit are. If such a sequence of control input u ∈ U
∆t
[u]

is proved to drive the system from any initial state s ∈ Sinit to a final state in Sgoal then

the found robust planned path is reliable.

The formulation of such a robust motion planner for which there exists a sequence

of control input u ∈ U
∆t
[u] to drive the system from an uncertain initial state to a set of

goal states Sgoal is as follows:

∃K > 0 and u ∈ U such that

∀s0 ∈ Sinit, ∀ s(K∆t;s0) ∈ Sgoal and

∀t ∈ [0,K∆t], s(t;s0) ∈ Sfree,

(2)

with s(t) the solution of (1).

3 Motion Planner Algorithms

This section recalls all necessary notation deployed in this study regarding interval

vectors or boxes ([7]) which are being used to represent the environment uncertainties.

Next, two new versions of BoxRRT motion planner: the random control input

BoxRRT (rciBoxRRT) motion planner algorithm and the selected control input

BoxRRT (sciBoxRRT) motion planner algorithm are introduced. Both algorithms

are based on RRT motion planner ([12, 13, 14, 10]) which is an incremental-based

method with the purpose of efficiently explore all the given configuration space from a

given starting configuration.

The idea of BoxRRT is not new, being previously proposed by [21, 20] for the case

where the uncertainties related to the configuration space are considered only on the

final state and not on the initial configuration state. While in this study the interest is to

consider uncertainties in the initial and final configuration state space. Moreover, the

improvements made on our new versions of BoxRRT are presented in the followings.

3.1 Interval analysis

A scalar (real) interval [x] = [x, x] is a closed and connected subset of R, where x

represents the lower bound and x represents the upper bound. Two intervals [u] and [v]
are equal if and only if u = v and u = v. An interval vector (or box) [x] is a subset of

R
n which is the Cartesian product of scalar intervals [x] = [x1]× [x2]×·· ·× [xn], where

the ith component is the projection of [x] onto the ith axis. The interval hull of a set A

is the smallest box which contains A, denoted by Hull(A). The inner approximation

of a set A, denoted Int(A), is a box included in A, i.e, Int(A) ⊂ A. The Hausdorff

distance [7, 17] of two intervals [x1] and [x2] is

d([x1], [x2]) = sup{|x1− x2|, |x1− x2|} (3)

Validated numerical integration methods are interval counterpart of numerical in-

tegration methods. A validated numerical integration of a differential equation, as de-

fined in (1) assuming piece-wise constant input, consists in a discretization of time,

such that t0 6 · · · 6 tend, and a computation of enclosures of the set of states of the

system s0, . . . , send, by the help of a guaranteed integration scheme. In details, a guar-

anteed integration scheme is made of:

• an integration method Φ(f ,s j, t j,h), starting from an initial value s j at time t j

and a finite time horizon h (the step-size), producing an approximation s j+1 at

time t j+1 = t j+h, of the exact solution s(t j+1;s j), i.e., s(t j+1;s j)≈Φ(f ,s j, t j,h);

• a truncation error function lteΦ(d,s j, t j,h), such that s(t j+1;s j) = Φ(f ,s j, t j,h)+
lteΦ(f ,s j, t j,h).

Our validated numerical integration method is a two step method starting at time t j and

for which i) it computes an enclosure [s̃ j] of the solution of (1) over the time interval

[t j, t j+1] to bound lteΦ(d,s j, t j,h); ii) it computes a tight enclosure of the solution of

(1) for the particular time instant t j+1. There are many methods for these two steps

among Taylor series and Runge-Kutta methods see [16, 1] and the references therein

for more details.

As a result, validated numerical integration methods produce two functions depend-

ing on time

R :

{

R 7→ IR
n

t→ [s]
(4)

with for a given ti, R(ti) = {s(ti;s0) : ∀s0 ∈ [s0]} ⊆ [s], and

R̃ :

{

IR 7→ IR
n

[t, t]→ [s̃]
(5)

with R̃([t, t]) = {s(t;s0) : ∀s0 ∈ [s0]∧∀t ∈ [t, t]} ⊆ [s̃].

3.2 The rciBoxRRT and sciBoxRRT proposed motion planners

Let’s start by introducing the global description which is the same for both algorithms.

Next, the algorithm which gathers improvements regarding to the previously proposed

BoxRRT algorithm and which has the same formulation for both our new versions of

BoxRRT motion planner is introduced. Finally, each procedure of the algorithm is ex-

plained separately. The difference between the proposed algorithms lies in the choice

of the control input and it will be explained as follows.

Description: First the given initial configuration [sinit] is added to the exploration tree

G (Line 1). Then, a state [srand] ⊂ Sfree is randomly chosen by the procedure random-

box-GoalBias (Line 4). The nearest-neighbor procedure from Line 5 returns the closest

vertex [snear] to [srand] in the tree G, according to a certain metric d. A control input

u∈ [u] is chosen according to a specified criterion or randomly through the select input

procedure. Then, in the prediction procedure, (1) is integrated over a fix time interval

∆t with the initial condition [snear] and a constant control input u (given at Line 6) and

will result in a new state [snew] (Line 7). If it can be proved that all state values along the

trajectory between [snear] and [snew] lie in Sfree being a collision free path, then the path

between [snear] and [snew] is considered reliable and [snew] is added to G as a new vertex

and connected to its parent [snear] though the G.add-guaranteed-vertex procedure. Oth-

erwise, [snew] is not added to G. Lines 4 to 11 are repeated until a chosen number of

iterations MaxIter is reached or until a path is found meaning [snew] = [sgoal], or most

likely when [snew] ⊂ [sgoal]. Note that we have [sinit] = Hull(Sinit), [sobs] = Hull(Sobs)
and [sgoal] = Int(Sgoal) to ensure the soundness of the proposed algorithm.

input : [sinit]⊂ Sfree, [sgoal]⊂ Sfree, ∆t ∈ R
+, MaxIter ∈ N

output: G

1 G.init([sinit]);
2 i← 0;

3 repeat

4 [srand]← random-box-GoalBias(Sfree);

5 [snear]← nearest-neighbor(G, [srand]);
6 u← select input([srand], [snear]);
7 [snew]← prediction([snear],u,∆t);

8 if collision free path ([snear], [snew],u,∆t) then

9 G.add-guaranteed-vertex([snear], [snew], u);

10 return [snew]

11 return /0

12 until i++< MaxIter or ([snew] 6= /0 and [snew]⊂ [sgoal]);
13 return G

Algorithm 1: BoxRRT motion planner algorithm

Random box GoalBias procedure: This procedure, previously proposed in [21], con-

sists in choosing the random state in the final configuration state [srand]⊂ [sgoal] with a

probability p > 0. Other techniques towards a more improved random procedure can

be thought of, such as the use of the artificial potential field algorithms (APFs) as pro-

posed in [24, 23].

Nearest neighbor procedure: Finds the closest vertex to the [srand] one according to

a chosen metric d. The Hausdorff distance between two intervals as defined in (3) is

considered.

Prediction procedure: Finds a new state [snew] while integrating (1) with the selected

control input, given by the select input procedure, over an interval of time ∆t. This step

is based on validated numerical integration methods as explained in Section 3.1 and

using function R(t).
Collision free path procedure: If [sinit] and [sgoal] are, respectively, the imperfect initial

and final states, one has to show before starting the path planner that both sets of states

belong to Sfree. When it is proved that no collision occurs between any two consecutive

vertices of the tree, one proves by induction that the path between [sinit] and [sgoal] is

robustly reliable, if it exists. The techniques used in this procedure are based on new

tool and functions proposed by [3], which are capable of testing during the integration

procedure if a collision occurred. Therefore this procedure differs from the previously

BoxRRT one which uses wrap techniques [21, 20]. More precisely, using the enclosure

R̃(t) of the trajectory of (1), checking that no collision occurs is simply an interval test

which checks if R̃(t) does not intersect [sobs] for all t.

Select input procedure: This procedure is used to find a control input which finds a new

state starting from a given initial state. The difference between the two new versions

of BoxRRT is made in this procedure: the rciBoxRRT motion planner uses a control

input chosen randomly among the set of admissible values u ∈ U, while sciBoxRRT

motion planner uses a designed control input according to a desired behaviour or to a

chosen criterion (see Section 5 for an example).

4 Towards BoxRRT* Motion Planner Algorithm

This section introduces a new reliable robust path planner for uncertain environments

based on optimal RRTs (RRT∗)([8, 24, 23]), which is denoted tBoxRRT∗. A general

description of the algorithm is presented, followed by the description of the used pro-

cedures.

Description: As in RRT, the tree G is initialized with the given initial configuration

[sinit]. Then, a state [srand] ∈ Sfree is randomly chosen by random-box-GoalBias pro-

cedure and its nearest vertex [snearest] according to a defined metric d is provided by

the nearest-neighbor procedure. Steer procedure designs a control input according to

a desired behaviour or according to a specific criterion. Eq. (1) is integrated over a

fixed time interval ∆t with the initial condition [snearest] and a constant control input

u. Then a new state [snew] is found. If the trajectory between [snearest] and [snew] lie

in Sfree, then the path between [snearest] and [snew] is reliable and [snew] is a new ver-

tex added to G, with the cost function (cost([snew])) associated with the distance from

[sinit] to [snew] through its parent [snearest]. Next, the near procedure checks if a better

parent for [snew] can be found. Therefore, a list of potential vertices in a neighborhood

[snear] ∈ Snear of [snew] is selected. For each vertex ([snear]) from the list of potential

parents Snear is checked if the cost (according to the distance metric as defined in (3))

to arrive in [snew] through [snear] is better than cost([snew]). If it is the case and the path

is collision free then the rewire-parent procedure will update [snew] parent with [snear]
and its cost([snew]) accordingly. These steps (Lines 4 to 13) are repeated until the al-

gorithm reaches the MaxIter iterations or until [snew] = [sgoal], or more likely when

[snew]⊂ [sgoal]. Note that here as in Subsect. 3.2 [sinit] = Hull(Sinit), [sobs] = Hull(Sobs)
and [sgoal] = Int(Sgoal).
Random-box-GoalBias, Nearest-neighbor and Collision-free-path are already described

in Section 3.2.

Steer procedure: The control input used by this procedure is the same as the one

proposed for the sciBoxRRT motion planner, i.e. designed according to a desired be-

haviour or to a chosen criterion.

Near procedure: In this study, the k-nearest neighbors algorithm is employed to de-

termine the set of vertices nearest to the state [snew], according to the metric d, de-

fined in (3). At each iteration, Snear will contain the closest vertices with the metric

d([snew],G) < r. This means that the vertices contained in Snear are searched within

the area of a ball of radius r(n) = γ log(n), with γ > ε(1+ 1
dim

) or γ = 2ε as suggested

in [9] where ε is Euler’s number, n is the number of vertices in the tree at a given iter-

input : [sinit]⊂ Sfree, [sgoal]⊂ Sfree, MaxIter ∈ N

output: G

1 G.init([sinit]);
2 i← 0 ;

3 repeat

4 [srand]← random-box-GoalBias (Sfree);
5 [snearest]← nearest-neighbor(G, [srand]);
6 ([snew],u)← steer([snearest], [srand]);
7 if collision-free-path([snearest], [snew]) then

8 cost([snew])← cost([snearest]) + d([snearest], [snew]);
9 Snear← near(G, [snew]);

10 ([snear],u)← NewParent(Snear, [snearest], [snew]);
11 G← Rewire-Parent([snear], [snew],G);

12 return [snew]

13 return /0

14 until (i++< MaxIter) or ([snew] 6= /0 and [snew]⊂ [sgoal]);
15 return G

Algorithm 2: Towards BoxRRT∗ motion planning algorithm

ation and dim represents the dimension of the configuration space.

NewParent procedure: When a vertex is added in G its cost is defined as: cost([snew]) =
cost([snearest]) + d([snearest], [snew]), where cost([snearest]) represents the distance from

the initial state ([sinit]) to the vertex initial parent [snearest]. This procedure verifies if

among the vertices in Snear a better parent can be found. For each vertex [snear]∈Snear

it is checked if the total cost to arrive to [snew], passing through [snear] is smaller than

cost([snew]). When a better parent for [snew] is found, the steer procedure is applied

from [snear] to [snew]. The control input applied can drive [snear]: (a) to [snew] state, (b)

inside [snew] state or (c) as close as possible and with as small cost to [snew].
Rewire-Parent procedure: If a better parent is found along with a control input which

connects it to [snew], by the NewParent procedure, the Rewire-Parent procedure will

update [snew] parent and cost value.

Even though the tBoxRRT∗ motion planner is build upon the original RRT∗ planner

principles, the rewire procedure, now denoted Rewire-Parent, searches only potential

parents and not potential children, as done in the original RRT∗ planner. Moreover,

the original RRT∗ planner stops the algorithm when a given number of iterations is

reached, while as seen in Algo. 2 our proposed planner stops when a solution is found.

Even if the choice of the stop criteria can have an impact in proving a near-optimal

solution for the proposed algorithm, the latter benefits of different advantages such as

guaranteeing the reliability and robustness of the found solution, if exists.

5 Numerical Example

The three proposed motion planners are applied on four different scenarios for which

the configuration space size is 0.6m ×0.6m×2πrad. The initial state [sinit] size for

each environment is: 0.2m×0.2m×0.02rad, 0.3m×0.3m×0.02rad, 0.4m×0.4m×
0.02rad, 0.2m× 0.2m× 0.02rad and has to reach the following final state [sgoal] size:

2m×2m×πrad, 3m×3m×πrad, 3m×3m×πrad, 6m×6m×πrad.

Each algorithm performs 50 iterations for each proposed scenario on a Intel Core

m7-6Y75 CPU at 1.20GHz×4. The used software consists in DynIBEX1 [5] which is

a library providing operators to deal with constraint satisfaction problems embedding

differential equations.

5.1 Robot mobile modelling

The considered mobile robot is represented by a simple car model, evolving in a 2D

environment. The car moves in a configuration s = (x y θ) with its position (x y) and

orientation θ w.r.t. a frame attached to the environment. The simple car model which

involves non-holonomic constraints is as follows:

ẋ = vcosθ , ẏ = vsinθ , θ̇ = v
L

tan(δ), (6)

where the control input u = [v δ] is represented by the longitudinal speed v ∈ [−1 1]
and the steering angle δ ∈ [−π

2
π
2
]. L = 1.5 represents the distance between the front

and back axes of the car.

While the control input employed by the rciBoxRRT planner is randomly chosen

in the admissible set, the one used by sciBoxRRT and tBoxRRT∗ planners is designed

in two steps, as follows. First, the car is oriented towards the target, case in which the

control input is obtained by considering the error between the orientation and direction

to the goal equal to zero: atan(
ytarget−ystart

xtarget−xstart
)−θtarget = 0, and using it to simulate (6) for

∆t. Once the car is oriented towards the target a second control input is designed to

move the car straight ahead to the target. The steering angle is equal to 0, while the

longitudinal speed is obtained from: v = ẋ
sin(θ) . Finally, (6) is simulated for ∆t with

this last control input.

5.2 Simulations

All scenarios are performed with ∆t = 1s, a probability p = 0.33 mentioned in Sec-

tion 3.1 and the maximum limit of iterations fixed to MaxIter = 20.000. The three

proposed motion planners are performed on four different environments denoted env

i with i = 1..4 and illustrated on Fig. 3. On the same figure a solution found by each

algorithm is represented along with the exhibited total number of vertices and the com-

putation time (CPU [s]). When the complexity of the environment increase, as well

the algorithm’s performances in terms of CPU, number of vertices and distance for the

planned path will increase.

Fig. 1 reports the number of iterations necessary for the convergence of each al-

gorithm. We observe that rciBoxRRT which applies a random control input requires

the most iterations for convergence, while sciBoxRRT and tBoxRRT∗ which use a de-

signed control, presented above, converged after less iterations. Fig. 2 illustrates the

mean and standard deviation of computational time, number of vertices and length of

the planned path, for all simulations performed by the three planners. For all environ-

ments, as Fig. 2 stands for, while comparing the planners two different classifications

can be made which is the same for all 4 environments: (a) in terms of CPU time, the

order of the planners performance enumerated from the more expensive to the less one

is: rciBoxRRT, tBoxRRT∗ and sciBoxRRT; (b) in terms of number of vertices and

length of the planned path, the order of the planners performances given in decreasing

order is: rciBoxRRT, sciBoxRRT and tBoxRRT∗.

1http://perso.ensta-paristech.fr/∼chapoutot/dynibex/

These results suggest that the two planners for which a control input is designed

have better performances than the one in which a random control input is used. More-

over, it was not a surprise to see that tBoxRRT∗ is more time consuming than sci-

BoxRRT while the first one recalls multiples times the steer procedure (Lines 10-11 in

Algo. 2) so that better length path performances to be obtained.

6 Conclusion and Perspectives

Improved versions of the previously proposed boxRRT algorithm and a new motion

planner tBoxRRT∗ based on RRT∗ are presented in this paper. All motion planners are

able to find reliable and robust paths in an uncertain environment, where the uncertain

quantities are assumed to belong to boxes.

If the imperfections on the initial states are too large, the imprecision at each new

uncertain state can increase. This issue, which will be the topic of future studies, can

be encountered by our proposed planners and by the original BoxRRT planner as well.

For this reason, in practical settings the motion planners can be updated from time to

time by using observers to estimate the state evolution using informations provided by

sensors. This can be very useful in decreasing the large imperfections of these uncertain

new states. Also, the use of different control inputs between two states can limite the

uncertain new states growth.

In the presented version, the tBoxRRT∗ has a basic form in which not all the RRT∗

principles are employed (in particular the stop criteria and the rewire procedure). Ap-

plying those principles would improve the planned path length value. The proposed

planners can be adapted for cases where the free subspace of the configuration space

varies with time, to describe moving obstacles. Moreover, model or/and sensorial un-

certainties along with a more complex model of the mobile robot which takes into

account its dynamics can be considered. This should form the subject of future studies.

Acknowledgment

The authors would like to thank Oliver Mullier, Julien Alexandre dit Sandretto, Eric

Goubault and Benjamin Martin for useful comments and discussions.

Figure 1: Number of iteration for convergence required by each of the three proposed

algorithms.

(a) Computational time (s) re-

quired by the three proposed

algorithms for convergence

(b) Number of vertices for the

planned path obtained by the

three proposed algorithms

(c) Planned path length (cm)

obtained by the three pro-

posed algorithms.

Figure 2: The rciBoxRRT, sciBoxRRT and tBoxRRT∗ path planner found perfor-

mances for each of the four proposed scenarios.

References

[1] J. Alexandre dit Sandretto and A. Chapoutot. Validated explicit and implicit

Runge-Kutta methods. Reliable Computing, 2016.

[2] J. Alexandre dit Sandretto and A. Chapoutot. Validated simulation of differential

algebraic equations. Reliable Computing, 2016.

[3] J. Alexandre dit Sandretto, A. Chapoutot, and O. Mullier. Formal Verification

of Robotic Behaviors in Presence of Bounded Uncertainties. In Conference on

Robotic Computation. IEEE, 2017.

[4] A. Censi, D. Calisi, A. De Luca, and G. Oriolo. A bayesian framework for op-

timal motion planning with uncertainty. In Proc. IEEE Int. Conf. Robotics and

Automation, pages 1798–1805, May 2008.

[5] J. Alexandre dit Sandretto and A. Chapoutot. DynIBEX: a differential constraint

library for studying dynamical systems (poster). In Conference on Hybrid Sys-

tems: Computation and Control. ACM, 2016.

[6] L. Jaulin. Path planning using intervals and graphs. Reliable Computing, 7(1):1–

15, fevrier 2001.

[7] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.

Springer-Verlag, 2001.

[8] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incre-

mental sampling-based methods. In Conference on Decision and Control, pages

7681–7687. IEEE, 2010.

[9] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-

ning. The international journal of robotics research, 30(7):846–894, 2011.

[10] J. J. Jr Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-

query path planning. In Conference on Robotics and Automation, volume 2, pages

995–1001. IEEE, 2000.

(a) rci-

BoxRRT env

1

(b) rciBoxRRT

env 2

(c) rciBoxRRT

env 3

(d) rciBoxRRT

env 4

(e) sciBoxRRT

env 1

(f) sciBoxRRT

env 2

(g) sciBoxRRT

env 3

(h) sciBoxRRT

env 4

(i) tBoxRRT∗

env 1

(j) tBoxRRT∗

env 2

(k) tBoxRRT∗

env 3

(l) tBoxRRT∗

env 4

Figure 3: (a) - (d) rciBoxRRT ((a) total vertices 2200 in 28 [s]; (b) total vertices 5880

in 103 [s]; (c) total vertices 3416 in 51 [s]; (d) total vertices 7802 in 141[s]). (e) - (h)

sciBoxRRT((e) total vertices 570 in 11 [s]; (f) total vertices 1149 in 32 [s]; (g) total

vertices 278 in 5[s]; (h) total vertices 978 in 26[s]). (i) - (l) tBoxRRT∗((i) total vertices

156 in 3 [s]; (j) total vertices 1088 in 38 [s]; (k) total vertices 786 in 20 [s]; (l) total

vertices 963 in 28[s]).

[11] A. Lambert and D. Gruyer. Safe path planning in an uncertain-configuration

space. Conference on Robotics and Automation, 2003.

[12] S. M. LaValle. Rapidly-exploring random trees: a new tool for path planning.

Technical report, Iowa State University, 1998.

[13] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

[14] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and

prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.

[15] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[16] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. validated solutions of initial

value problems for ordinary differential equations. Applied Mathematics and

Computation, 105:21–68, 1999.

[17] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University

Press, 1990.

[18] I. Noreen, A. Khan, and Z. Habib. Optimal path planning using RRT* based

approaches: A survey and future directions. Advanced Computer Science and

Applications, 7(11), 2016.

[19] L. A. Page and A. C. Sanderson. Robot motion planning for sensor-based control

with uncertainties. In Int. Conf. Robotics and Automation, volume 2, pages 1333–

1340 vol.2, May 1995.

[20] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planner. In Int. Conf.

Intelligent Robots and Systems. IEEE, 2008.

[21] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planning with application

to mobile robots. Int. J. Appl. Math. Comput. Sci., 19(3):413 – 424, 2009.

[22] R. Pepy and A. Lambert. Safe path planning in an uncertain-configuration space

using rrt. In Int. Conf. Intelligent Robots and Systems, pages 5376–5381. IEEE,

2006.

[23] P. Pharpatara, B. Hérissé, and Y. Bestaoui. 3-d trajectory planning of aerial vehi-

cles using RRT*. Trans. on Control Systems Technology, PP(99), 2016.

[24] P. Pharpatara, B. Hérissé, R. Pepy, and Y. Bestaoui. Shortest path for aerial vehi-

cles in heterogeneous environment using RRT*. In International Conference on

Robotics and Automation. IEEE, 2015.

