
Computer Vision Winter Workshop 2010, Libor Špaček, Vojtěch Franc (eds.)
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Abstract The paper presents two new encoding schemes
for representation of the intensity function in a local neigh-
borhood. The encoding produces binary codes, which are
complementary to the standard local binary patterns (LBPs).
Both new schemes preserve an important property of the
LBP, the invariance to monotonic transformations of the in-
tensity. Moreover, one of the schemes possesses invariance
to gray scale inversion. The utility of the new encodings is
demonstrated in the framework of AdaBoost learning.

The new LBP encoding schemes were tested on the face
detection, car detection and gender recognition problems us-
ing the CMU-MIT frontal face dataset, the UIUC Car dataset
and the FERET dataset respectively.

Experimental results show that the proposed encoding
methods improve both the accuracy and the speed of the fi-
nal classifier. In all tested tasks, a combination of the encod-
ing schemes outperforms the original one. No LBP encoding
scheme dominates, the relative importance of the schemes is
problem-specific.

1 Introduction
Object detectors based on boosted combinations of effi-
ciently computable features such as Haar wavelets or Lo-
cal binary patterns (LBP) represent the state-of-the-art for
a wide range of detection problem. In particular, detectors
exploiting LBPs have achieved highly competitive results in
areas including texture and dynamic texture classification
[14, 15, 28, 29], face detection [4, 7, 26, 23], face recog-
nition [2, 27, 25, 11], gender classification [20] and facial
expression recognition [29, 30].

The LBP is a simple local descriptor which generates a
binary code for a pixel neighbourhood. Despite its simplic-
ity, a number of LBP modifications and extensions have been
proposed. Most of the changes focus either on the definition
of the location where gray value measurement are taken or
on post-processing steps that improve discriminability of the
binary code.

In this work, the power of LBP features is enhanced by in-
troducing two new schemes for generating binary codes, also
referred to as “rules”. The new rules are compatible with the
original methodology, i.e. the same number of bits is gen-
erated. The new rules preserve an important property of the
original LBP, the invariance to monotonic transformations
of the intensity functions. As a novelty, one of the rules also
possesses invariance to gray scale inversion. The new rules
are intended to supplement and complement, not substitute,
the original LBP coding scheme.

We experimentally show that, in conjunction with the al-
gorithms for feature selection like AdaBoost and WaldBoost,
the combination of different encoding rules improves accu-
racy and speed of the final classifier when compared with a
classifier based on a single rule.

The new ensemble of LBP features is compared with the
original and Haar-like features on a face detection task using
CMU-MIT frontal face test set [17], on a car detection task
using UIUC multiscale test [1] and on a gender recognition
task using FERET dataset [16].

The paper is structured as follows. Section 2 introduces
local binary patterns methodology and its modifications. In
this section we also introduce two new encoding rules for
binary code generation. Experimental validation and com-
parison of our extensions are presented in Section 3 and the
paper is concluded in Section 4.

2 Local Binary Pattern and its modifications
Local binary patterns have gone through a large number of
changes and adjustments, which lead to generalization or
improvement of some of their specific characteristics. The
changes can be viewed from several perspectives. In Sec-
tion 2.1, changes from the perspective of the measurement
processes are reviewed. Next, in Section 2.2, we look at en-
coding method for the measurements. Finally, in Section 2.3,
two novel encoding methods are introduced.

2.1 What is measured
The local binary pattern [14] operator, also known as cen-
sus transform [24], is a non-parametric gray-scale descrip-
tor invariant to monotonic transformations of the intensity
function. The basic version of LBP considers measurements
from a 3x3 pixel square.

The binary code that describes the local texture pattern is
obtained by thresholding the eight neighborhood pixel val-
ues by the gray value of the center, see Figure 1(a). The
operator was extended to rotation symmetric and multiscale
version [15], see Figure 1(b). This version of the LBP is
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(a) (b)
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Figure 1: LBP comparison values: (a) original LBP (b) rotation
symmetric and multiscale LBPP,R (c) Examples of multi-block lo-
cal binary pattern (MB-LBP)

parametrized by the neighborhood size P and the radius R
and is defined as

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p, (1)

where
s(x) =

{
1 if x ≥ 0
0 if x < 0

,

gp are gray values of pixels regularly spaced on circle and
gc is the gray value of the center pixel. Gray values at non-
integer positions are obtained by interpolation. Another en-
coding, the LGBP, was introduced by Zhang at al. [27],
who calculate LBPs on images preprocessed with Gabor
wavelets.

All the LBPs described above are commonly used in
conjunction with classification of distributions (histograms),
calculated in a semi-local neighbourhood. In detection and
recognition approaches exploiting spatial appearance of fea-
tures, single LBP measurements are unstable and sensitive to
noise and localization. The problem was addressed by Zhang
at al., who introduced a Multi-Block LBP (MB-LBP) [26],
which is inspired by Haar features [22]. Instead of compar-
ing pixel values, Zhang compares mean values of 3x3 adja-
cent rectangular blocks, which can be done in constant time
using the integral image [22].

The MB-LBPs enable generating large sets of operators
with different scales and aspect ratios, see Figure 1(c). Simi-
larly to Haar features, integrating larger areas makes the mea-
surements more stable and suitable for spatial appearance
classification methods. However, this modification does not
possess LBP’s invariance to monotonic intensity transforma-
tions, only invariance to affine intensity changes is preserved.
The MB-LBP feature also appears in the literature as the Lo-
cally Assembled Binary (LAB) feature [23].

2.2 Encoding methods
Improvements of LBP aimed at modifying the resulting bi-
nary code started with the rotation symmetric and multiscale
2
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Figure 2: Extended set of LBPs: (a) conventional LBP thresh-
olded by center pixel value; (b) 8-bit coded modified LBP (mLBP)
thresholded by pixels mean value; (c) transition coded LBP
(tLBP),see Eq.(2); (d) direction coded LBP, see Eq. (3);

LBPs of Ojala [15]. The rotation invariant encodings, de-
noted LBPri

P,R (which can be found also as Advanced LBP -
ALBPP,R [10]), are restricted to a subset of so-called ”uni-
form” patterns (LBPriu2

P,R).
Froba at al. introduced a modified census transform [4],

which was adopted also as a modified LBP (mLBP) [21].
The Modified LBP uses the mean value of all measured pix-
els as a threshold, so the final code then generates 29 − 1 =
511 unique values instead of 28 = 256 of LBP codes. Be-
cause of compatibility with the original LBP, we adopted
only code generated by eight border pixels with 28 unique
values, see Figure 2(b). Heikkilä at al. in [6] introduced a
center symmetric LBP (CS-LBP) modification for descrip-
tion of interest regions. Their rule encodes the sign of the
difference of two border pixels symmetrically placed due to
the center, thus the final code of CS-LBP generates 24 = 32
unique codes.

2.3 The novel encoding methods
To introduce new encoding rules we were motivated by spa-
tial appearance classification models, which enables to effec-
tively combine different features. The evaluation complexity
of the model does not increase, provided that the computa-
tion cost of each feature is approximately equal. Extension
of the feature set from which the features are chosen increase
only training time but not the evaluation time. This lead us
to propose encoding rules, which should not be competitive
with LBP but complementary and extend a set of feature can-
didates. In order to preserve compatibility with LBP, we set
the restriction on dimension of generated binary code to be
the same as the original.

Transition Local Binary Patterns (tLBP) - The LBP en-
coding rule thresholds the neighbor gray values by its center
pixel value. This gives rough knowledge of pixel with respect
to the center one, but relations between pixels with the same
binary value are lost. Binary value of transition coded LBP
is composed of neighbor pixel comparisons in clockwise di-
rection for all pixels except the central, see figure 2(c). Thus
this rule encodes relation between neighbor pixels. It can be
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Figure 3: Examples of generated codes and schemes of possible
pixel intensity values for a given pixel sequence: (a) LBP encoding
rule, (b) dLBP encoding rule

also seen as an information about partial ordering of border
pixels. Each sequence of the same binary values indicates
ordered sequence of pixel intensities.

More precisely, let gp correspond to gray value p-th
neighbor of center pixel, then

tLBPP,R = s(g0 − gP−1) +

P−1∑
p=1

s(gp − gp−1)2
p. (2)

We can see that tLBP is gray-scale invariant and can also
benefit from rotation invariant extension and uniform exten-
sion of LBP (LBPriu

P,R).
Direction coded Local Binary Pattern (dLBP) - Mo-

tivation of dLBP is to provide better information of local
pattern in sense of direction functions similarly to CS-LBP.
For simplicity, let us consider the basic LBP operator. We
can see that there are four base directions through the center
pixel in LBP, see Figure 2(d). We encode intensity variation
along these directions into two bits, thus the binary word has
the same length as the original LBP. In contrast to the CS-
LBP, we also use center pixel information for encoding. The
first bit encodes, whether the center pixel is an extrema and
the second bit encodes, whether the difference of border pix-
els due to the center one grows or falls. In Figure 3 we can
see comparison of LBP and dLBP rules for a given direction.
Both the LBP and the dLBP rules encodes if center pixel is
an extrema. Unlike the LBP rule, the dLBP does not encode
it as maximum or minimum but encodes if sign of first and
second differential is the same. This gives to the dLBP not
only gray-scale intensity invariance property, but also the in-
tensity inversion invariance property.

Formally, let LBPP,R have P = 2P ′ neighbors, then

dLBPP,R =
P ′−1∑
p′=0

(
s(gp′ − gc)(gp′+P ′ − gc)2

2p′
+

s(|gp′ − gc| − |gp′+P ′ − gc|)22p
′+1
)
(3)

3 Experiments
In all the detection and classification experiments, only the
multi-block extensions of LBP were evaluated as they have
outperformed the standard LBP. The extended MB-LBP set
(EMB-LBP) included the MB-LBP, mMB-LB, tMB-LBP
and dMB-LBP, see Figure 2(a-d).

The tests evaluated performance of different LBP types
in the process of boosting a detector (or a classifier). The
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Figure 4: Frontal face detection - The ROC curve on the CMU-
MIT data set

Figure 5: Some detection results on the CMU-MIT data set

EMB-LBP set was tested on face and car detection tasks us-
ing the WaldBoost[19] detector and on gender recognition
task using AdaBoost classifier. The reason is that for gen-
der recognition, speed of the classifier is not important as
only one window per face is classified. On the other hand, in
the car and face detection problems, hundreds of thousands
of windows are evaluated and speed, the main advantage of
WaldBoost over AdaBoost, is a critical parameter.

WaldBoost is an AdaBoost-based algorithm which auto-
matically builds a fine-grained detection cascade of the Vi-
ola and Jones type [22] based on Wald’s sequential proba-
bility ratio test (SPRT). The training runs in loops, the first
iteration is a standard AdaBoost learning search for the best
weak classifier. Then the Wald’s thresholds are estimated on
a large pool of data (we used 20.109 samples). After that, the
pool is pruned and bootstrap strategy is used to collect non-
object examples. To speed-up the AdaBoost learning step, a
smaller set was sampled from the pool using QWS+ strategy
[8]. The weak classifiers are build on MB-LBPs by estimat-
ing the weighted error for each code as in the confidence-
rated classification approach [18], which enables a fast look-
up table based implementation.

In all experiments, three classifiers were trained. The first
was learned with Haar features (including six types of fea-
tures ), the second with MB-LBP
features and the third one with the EMB-LBP feature set.
3
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Figure 6: Car detection - The recall-precision curve on the UIUC
car data set

method recall
Agarwal at al. [1] 39.6%
Fritz at al.[5] 87.8%
Mutch at al.[13] 90.6%
Lampert at al.[9] 98.6%
WaldBoost, Haar1 91.4%
WaldBoost, MB-LBP1 95.7%
WaldBoost, EMB-LBP1 97.1%
1 our implementation

Table 1: Recalls on the UIUC Car dataset at the point of equal
precision and recall.

3.1 Face detection
The face detectors were trained on 5500 face images and on
more than 3000 background images. We set the minimum
resolution of the detector to 24x24 pixels and its length to
1000 weak classifiers. SPRT parameters were set to allow
10% false negative rate and no false positives on the training
data.

The detectors were tested on standard the CMU-MIT
frontal face database [17], which consists of 130 images with
507 labeled frontal faces. Some detection results can be seen
at Figure 5. The ROC curves for the three detectors are
shown in Figure 4. The detector using the EMB-LBP fea-
ture set slightly improves recall for all levels of false positive
rates.

3.2 Car detection
The side car detection performance is evaluated on the UIUC
car dataset [1], which consists of 550 positive training sam-
ples and the multi-scale and the single-scale test sets. We

Figure 7: A samples of detection results on the UIUC Car set
4

Training algorithm face size trn/tst1 Accuracy
AdaBoost, pixel comparison [3] 20x20 YES 94.4%
SVM (RBF) [3] 20x20 YES 93.5%
SVM (RBF) [12] 20x20 NO 96.6%
AdaBoost, LBP[20] 120x144 ? 95.7%
AdaBoost, Haar2 20x20 YES 92.4%
AdaBoost, MB-LBP2 20x20 YES 93.8%
AdaBoost, EMB-LBP2 20x20 YES 94.6%
1 each person in the data set is included only either in the training or test set
2 our implementation

Table 2: FERET dataset - gender classification accuracy
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Figure 8: Gender recognition: mean cross validation error as a
function of classifier length (i.e. the number of features)

trained the detectors on 16x40 pixels windows and allowed
5% false negative rate on the training set; classifier length
was set to 500 features.

For the experiment, we chose the multi-scale test set,
which consists of 108 images containing 139 car side views.
The set includes instances of partially occluded cars, cars
that have low contrast with the background, and images with
highly textured backgrounds. Sample detection results are
displayed in Figure 7.

As is common for the UIUC Car dataset, we measure the
performance by the 1-precision vs. recall curve. Figure 6
shows the curves for different feature sets. The detector us-
ing EMB-LBP feature set improves recall for all levels of
precision and dominates both MB-LBP features to Haar fea-
tures. The difference in performance is impressive for high
precisions where a recall of 95% was achieved with 100%
precision. Table 1 compares recalls at the point of equal pre-
cision and recall with the state-of-art results. The EMB-LBP
is highly competitive.

3.3 Gender recognition
The gender recognition experiment was carried out on the
Feret data set [16], which is a standard data set for face recog-
nition task and has also been used as a gender recognition
benchmark data set. Data set contains several photos of per-
sons with different pose; we used only frontal images labeled
”fa” and ”fb” in the database. The dataset includes 1006 per-
sons (599 males, 407 females). For evaluation, we adopted
Baluja’s methodology [3] which uses 5-fold cross validation.
Each partition splits the training and testing data 80:20 in
such a way that each individual appears only in the training
set or the test set. It is important to note that Moghaddam at
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(a)
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Figure 9: Examples of correct (a) and wrong (b) classification of
sex between men (left) and women on the FERET dataset. Note
that gender classification for images showed in (b) is difficult even
for humans.
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Figure 10: Frontal face detection - the average number of used
features per scanning position

al. [12] split the data so that images of a the same individual
appears both in the training and the test set. This is impor-
tant, because when persons are mixed in sets, the resulting
gender classifier has a tendency ”remember” individuals and
their gender.

The training set contained 2350 faces (1500 males, 850
females) and the test set contained 600 faces (380 males, 210
females). We have trained five AdaBoost classifiers with en-
larged data set using small face alignment perturbations to
enlarge collected data 20 times. For AdaBoost, learning we
sampled 5000 males and 5000 females using QWS+ sam-
pling strategy. The length of learned classifiers was set to
2000 features.

The average accuracy on cross validation test sets is dis-
played in Table 2 (the table contains results for classifiers
of length 1000 features for comparison with [3]). Depen-
dence of mean cross validation error due to the length of the
classifier is displayed in Figure 8. The EMB-LBP improves
MB-LBP classifiers and achieves results comparable to the
state-of-art results.

3.4 Speed comparison
For both detection tasks (faces, cars) the average number of
evaluated features per scanning window position was mea-
sured. The average number of evaluated features is a pre-
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Figure 11: Car detection - average number of features used per
scanning position

LBP
Haar MB mMB tMB dMB

Haar 1.000 1.114 1.117 1.207 1.242
MB-LBP 0.898 1.000 1.003 1.011 1.114

Table 3: Comparison of the relative feature evaluation time

cise predictor of running time. Dependences of the number
of evaluated features on the detector length are displayed in
Figures 10 and 11. The face detectors were set up very much
like the Viola’s cascade in terms of accuracy and speed, see
Haar-like detector. (Viola’s detector uses an average of 10
feature evaluations per scanning window.) Therefore, it is
clear that EMB-LBP feature set improves both the accuracy
and detection speed, which is nearly two times faster than
Haar-like detector in terms of feature evaluation.

It may be expected that calculation time of xMB-LBPs
can be longer than for Haar-like features. Therefore we
measured evaluation time of 10000 randomly generated fea-
tures on 10000 image patches for sets of Haar-like, MB-
LBP, mMB-LBP, tMB-LBP and dMB-LBP features. Table
3 shows the relative time cost of our implementation of fea-
tures w.r.t. Haar-like features (line 1) and to MB-LBP fea-
tures (line 2). We see that the acceleration in the case of face
detection is still at least one-third.

3.5 Feature preferences
AdaBoost learning algorithm can bee seen also as a bench-
mark tool for feature strength comparison, if the same classi-
fier is used. It uses greedy approach to minimize training er-
ror and at each stage chooses the best weak classifiers. Thus,
frequency of feature selection indicates how often a given
feature dominates the others. However, it does not show how
much better than the other it was. Dependence of feature se-
lection on the length of classifier is shown in Figure 12. It
can be seen that for different tasks the ratio of representa-
tion of features differs significantly. For face detection the
contribution of dMB-LBP features are negligible, but they
dominate others for gender recognition. The standard MB-
LBP features [26] perform surprisingly poorly and as Figure
12 shows for car side detection they were not used at all.

4 Conclusions
Two new encodings of LBPs have been presented. We have
trained spatial appearance models based on multi-block mea-
5
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MB . . .multi-block measure of gray values, see Sec. 2.1
LBP . . .original LBP encoding rule, Eq. 1

mLBP . . .modified LBP encoding rule, mean of gray values is used instead of the center
tLBP . . . transition LBP encoding rule, Eq. 2
dLBP . . .direction LBP encoding rule, Eq. 3

Figure 12: EMB-LBP feature representation: (a) Face detector, (b) Car side detector, (c) Gender classifier.
surements of LBP. Instead of direct comparison of every
new rule with other LBP methodologies, we have used a
trained classifiers using an ensemble of different LBP en-
coding rules. In experiments we have made comparisons
with standard LBP encoding rule and traditional Haar fea-
tures. We have tested detectors based on the extended set of
LBP features on the CMU-MIT frontal face data set and on
the UIUC car side data set. Experiments on gender recogni-
tion task used the Feret dataset. In all cases, the extended set
of LBP features dominates both the LBP features and Haar
features. For the detection tasks, the proposed LBP set has
improved speed of learned detectors, in case of the face de-
tection task almost two times. The price paid for achieved
improvements of the detectors and classifiers has been only
the increase in the training time. In experiments we have
shown that the importance each of the encoding rules de-
pends on the task and there is no dominant rule.
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