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Abstract 

Quantification of the similarity of objects is a key concept in many areas of computational science. This includes 
cheminformatics, where molecular similarity is usually quantified based on binary fingerprints. While there is a wide 
selection of available molecular representations and similarity metrics, there were no previous efforts to extend the 
computational framework of similarity calculations to the simultaneous comparison of more than two objects (mol-
ecules) at the same time. The present study bridges this gap, by introducing a straightforward computational frame-
work for comparing multiple objects at the same time and providing extended formulas for as many similarity metrics 
as possible. In the binary case (i.e. when comparing two molecules pairwise) these are naturally reduced to their well-
known formulas. We provide a detailed analysis on the effects of various parameters on the similarity values calculated 
by the extended formulas. The extended similarity indices are entirely general and do not depend on the fingerprints 
used. Two types of variance analysis (ANOVA) help to understand the main features of the indices: (i) ANOVA of mean 
similarity indices; (ii) ANOVA of sum of ranking differences (SRD). Practical aspects and applications of the extended 
similarity indices are detailed in the accompanying paper: Miranda-Quintana et al. J Cheminform. 2021. https:// doi. 
org/ 10. 1186/ s13321- 021- 00504-4. Python code for calculating the extended similarity metrics is freely available at: 
https:// github. com/ ramir andaq/ Multi pleCo mpari sons.
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Introduction
A large number of molecular representations exist, 

and there are several methods (similarity and dis-

tance measures) to quantify the similarity of molecular 

representations [1, 2]. �ese similarity and distance 

measures (coefficients) accompany the entire process of 

drug design: virtual screening, [3] hit-to-lead optimiza-

tion, [4] QSAR modeling, [5] finding activity cliffs, [6] 

drug target prediction, [7] etc.

Molecular similarity has been established as the basis 

of ligand-based virtual screening, as well as molecular 

informatics (a collective term encompassing various spe-

cific applications of cheminformatics principles, such as 

compound library design or molecular property predic-

tions) [8]. Information theory has also provided some 

metrics on similarity. However, molecular similarity plays 
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a crucial role in quantum chemistry as well [9–14]. �e 

merits of pairwise fingerprint comparisons have been 

exhausted on a large scale [15]. Todeschini et al. summa-

rized many of the binary similarity coefficients that have 

been developed so far [1, 16].

In our earlier works we have investigated the appli-

cability of binary similarity coefficients, proved their 

equivalency or superiority [17–19]. We could find better 

similarity coefficents than the most frequently applied 

Tanimoto index [2] and formulated constraints about 

finding the best equations for fitting data [20].

It is somewhat odd that the similarity evaluations are 

exclusively based on pairwise comparisons of two mol-

ecules. By analogy, multiple linear regression is not exclu-

sively based on univariate correlations between each 

predictor and the response, but takes into account multi-

ple correlations. (Two descriptors together might be sig-

nificant in a model predicting the response whereas none 

of them correlates with it significantly alone.) Hence, it 

is natural to consider the extension of the standard com-

parative indices such that they can be used to compare 

more than two objects (e.g., molecules, fingerprints) at a 

time. �is will provide unparalleled flexibility to the tra-

ditional algorithms that aim to quantify molecular simi-

larity, since one will have the freedom of choosing how 

many molecules are to be compared simultaneously. �is 

will in turn allow us to gain further insight regarding the 

relations among the compounds in a given dataset (by 

providing more complete measures of chemical diver-

sity), which can then be used to shed more light on their 

structures and properties.

While to our knowledge, comparing multiple objects at 

the same time has not yet been introduced for molecu-

lar fingerprints, it is worth to note that other studies 

have combined multiple comparative measures in other 

contexts in the field. For example, in a recent study, an 

iterative virtual screening strategy was designed and eval-

uated on 25 diverse bioactivity data sets from ChEMBL, 

to benchmark the performance of multiple machine 

learning methods [7]. �e study emulates the typical 

scenario of early drug discovery (lots of data on inactive 

compounds vs. almost no information on actives) and 

extends the comparisons to multitarget drug discovery 

setups, where activities are predicted simultaneously for 

more drug targets. Another example is Pareto-Optimal 

Embedded Modeling (POEM), a non-parametric, super-

vised machine learning algorithm developed to generate 

reliable predictive models without need for optimization. 

POEM’s predictive strength is obtained by combining 

multiple different representations of molecular structures 

[21].

In this study we propose a novel alternative to pairwise 

similarity calculations. Instead of using multiple binary 

comparisons to analyze a dataset, we present multiple 

classes of comparative measures that can be used to com-

pare an arbitrary number of molecules at the same time. 

�e central element of our work is to provide a general 

framework for comparing multiple objects at the same 

time, which naturally extends the range of validity of 

most of the similarity indices commonly used in chemin-

formatics and drug design. �is was based on a compre-

hensive analysis of the binary similarity measures defined 

so far, which allowed us to identify their fundamental 

defining features (e.g., similarity/dissimilarity counters, 

coincidence thresholds), which are the key to defin-

ing fully general n-ary similarity indices. We performed 

variance analyses in order to decompose the effects of 

various factors: number of molecules compared simul-

taneously, effect of weighting, types of similarity coeffi-

cients, and length of the fingerprint. �ese new families 

of indices considerably expand the scope of the com-

parative analysis since they provide new dimensions to 

what is currently achievable with standard binary com-

parisons. Moreover, beyond their intrinsic theoretical 

interest, we anticipate that n-ary comparisons can have 

important practical applications ranging from estimat-

ing set-similarity to providing new rigorous ways to study 

chemical diversity and explore compound databases. In 

particular, we have found that calculating the introduced 

n-ary comparisons for large datasets is excessively faster 

than the traditional approach of calculating full pairwise 

similarity matrices to quantify the diversity of a com-

pound set. After introducing the theoretical basis of the 

n-ary fingerprint comparisons here, we share our detailed 

results on the practical applicability of this framework in 

the accompanying paper [(part 2) 22]. Meanwhile, the 

Python code for calculating the extended similarity met-

rics is freely available at https:// github. com/ ramir andaq/ 

Multi pleCo mpari sons.

Theory of �ngerprint comparisons
Binary comparisons

Similarity measures/indices are generally presented as 

binary relations, in the sense that they assign a (real) 

number to a pair of molecules. �ese relations are based 

on a suitable representation of the molecules, either in 

terms of graphs, lexicographical tools (like the SMARTS 

or SMILES formats), field-based quantities (like the 

electron density or the molecular electrostatic poten-

tial), or the widely used molecular fingerprints. Here, we 

will focus on the latter, particularly on the well-known 

binary fingerprints, where a molecule is represented as a 

string of 1′s and 0′s (without restricting the scope of our 

approach).

It is important to point out that the word “binary” has 

two meanings in our context. On the level of fingerprints, 

https://github.com/ramirandaq/MultipleComparisons
https://github.com/ramirandaq/MultipleComparisons
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it means that a fingerprint consists of a string of two pos-

sible values (0 and 1). Let us call such strings as dichoto-

mous variables further on. On the level of comparisons, 

it means that two objects (molecules, fingerprints) are 

compared simultaneously. Since in the present work, we 

exclusively apply binary (dichotomous) fingerprints, our 

use of the word “binary” will refer to comparisons of two 

objects/molecules, in contrast to the simultaneous com-

parison of multiple objects (“n-ary comparisons”), which 

is the central concept of this study.

In the case of the binary comparison of (dichotomous) 

fingerprints, there are four basic quantities that we can 

calculate for each pair of fingerprints:

a: the number of coincident 1′s (number of common on 

bits).

b: number of 1′s present in the first fingerprint but 

absent in the second.

c: number of 1′s present in the second fingerprint but 

absent in the first.

d: the number of coincident 0′s (number of common off 

bits).

For instance, in the following example:

a = 2, b = 2, c = 1, d = 3.

�ese numbers can then be combined in many differ-

ent ways in order to define multiple similarity indices (for 

a comprehensive list see the Additional file 1). In general, 

the similarity indices have the following form:

where Gi, gi1 and gi2 represent functions in general. For 

example, the Kulczynski (Kul) index is given by:

Nonetheless, there are other indices (which we will 

call additive) for which we only need the sum of b and c, 

namely:

like the Sokal-Michener (SM) index:

where p = a + b + c + d.

(1)
A = (10110100)

B = (00100101)

(2)s =

∑

i
Gi

(

gi1(a, d, b, c)

gi2(a, d, b, c)

)

(3)sKul =
1

2

(

a

a + b
+

a

a + c

)

(4)s =

∑

i
Gi

(

gi1(a, d, b + c)

gi2(a, d, b + c)

)

(5)sSM =
a + d

p

Finally, within the additive indices we encounter a sub-

class of indices that we will call asymmetric, because they 

depend on a, but not on d, that is:

a representative example of this class would be the Jac-

card-Tanimoto (JT) index (widely known as Tanimoto 

similarity in the cheminformatics and drug discovery 

communities):

n-ary comparisons

In the effort to extend the expressions of the binary com-

parisons in order to simultaneously compare an arbitrary 

number n of molecular fingerprints (n-ary comparisons), 

the first step is to introduce the notation Cn(k) to repre-

sent the number of times that we find k coinciding 1′s 

between n bitstrings (irrespective of the order in which 

we consider the fingerprints). (Notice that 0 ≤ k ≤ n .) 

For instance, in the binary (n = 2) case: C2(2) = a , 

C2(1) = b + c , C2(0) = d . Obviously, with this simple 

notation we can only discuss additive indices for now (see 

Eq.  4). We defer to a future work a discussion of n-ary 

comparisons applicable to general indices Eq. (2).

�e key detail that we need to notice is that, in the case 

of binary comparisons, pairs of fingerprints with large 

values of a and d will be more similar, and pairs of fin-

gerprints with large values of b and c will be less simi-

lar. �en, it makes sense to classify a and d as similarity 

counters (in particular, a will be a 1-similarity counter 

and d a 0-similarity counter), and b and c as dissimilar-

ity counters. Extending this notion to n-ary comparisons 

requires us to classify Cn(k) as similarity and dissimilarity 

counters as well. We do this with the help of the follow-

ing indicator:

It is clear that a bigger value of �n(k) will imply that 

the given strings have more elements in common (either 

1′s or 0′s). Now we must define a minimum value that 

determines from what point a given number of occur-

rences can be considered as coincident. We will denote 

this coincidence threshold as γ. �ere are many possible 

ways to define this threshold, for instance, a somehow 

contrived possibility would be to set γ =

⌈

n

2

⌉

 (where ⌈x⌉ 

is the ceiling function). However, perhaps a better option 

(in the sense that it maximizes the number of similarity 

counters) will be to take γ = nmod2 . (Roughly speak-

ing, this choice of γ means that the fingerprints will be 

(6)s =

∑

i
Gi

(

gi1(a, b + c)

gi2(a, b + c)

)

(7)sJT =
a

a + b + c

(8)�n(k) = |2k − n|
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“similar” at a given position if more than half of the bits 

have the same value in that position.) In any case, we will 

take Cn(k) as a similarity counter if �n(k) > γ , and as a 

dissimilarity counter when �n(k) ≤ γ . In particular, Cn(k) 

will be a 1-similarity counter if 2k − n > γ , and a 0-simi-

larity counter if n − 2k > γ . Notice that, as expected for 

the n = 2 case, C2(2) and C2(0) will be 1- and 0-similarity 

counters, respectively, while C2(1) will be a dissimilarity 

counter.

Finally, we should discuss the relative relevance that dis-

tinct types of similarity and dissimilarity counters have 

within a given similarity index. For instance, let us consider 

n = 4 and set γ = 0 . In this case, both C4(4) and C4(3) will be 

1-similarity counters, but the first one indicates when we 

have a 100% coincidence among the compared fingerprints, 

while the latter indicates when we have a 75% concord-

ance among the compared fingerprints. �erefore, it seems 

natural to weight these counters differently. We can do this 

according to the following convention: If Cn(k) is a similarity 

counter, then it should be multiplied by a factor fs
(

�n(k)

)

 

that is an increasing function of �n(k) . Contrary, if Cn(k) is 

At this point we have all the necessary ingredients to 

generalize the binary comparisons. An additive index like 

the one presented in Eq. (4) can now be rewritten as:

Let us briefly explain the notation in the previous 

expression: the summations over 1-s, 0-s, and d represent 

the sum over the 1-similarity, 0-similarity, and dissimilar-

ity counters, respectively. �e subscript 1s_wd indicates 

that we are distinguishing between the 1- and 0-similar-

ity counters (hence the “1” in the similarity “s” part), and 

that the counters in the denominator are weighted (hence 

the “w” in the denominator “d” part). We introduce this 

distinction because we can propose yet another generali-

zation for the additive indices, in the form of:

Notice that now we are not weighting the counters in 

the denominator (which is reflected in the subscript 

1s_d).

As an example of these two possible extensions, let us 

once again revisit the SM index (detailed expressions for 

the remaining additive indices are given in Appendix 1: 

Table 1):

Here and in the following we will distinguish the 

extended (n-ary) versions of the similarity indices by 

including an “e” as a subscript (notice the difference with 

respect to Eq. (5).

Since the asymmetric indices are a sub-class of the 

additive indices they can also be extended in this form, 

namely:

(10)s1s_wd =

∑

i
Gi

(

gi1
(
∑

1−s fs
(

�n(k)

)

Cn(k),
∑

0−s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

gi2
(
∑

1−s fs
(

�n(k)

)

Cn(k),
∑

0−s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

)

(11)s1s_d =

∑

i
Gi

(

gi1
(
∑

1−s fs
(

�n(k)

)

Cn(k),
∑

0−s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

gi2
(
∑

1−s Cn(k),
∑

0−s Cn(k),
∑

d Cn(k)

)

)

(12)seSM(1s_wd) =

∑

1−s fs
(

�n(k)

)

Cn(k) +
∑

0−s fs
(

�n(k)

)

Cn(k)
∑

1−s fs
(

�n(k)

)

Cn(k) +
∑

0−s fs
(

�n(k)

)

Cn(k) +
∑

d fd
(

�n(k)

)

Cn(k)

(13)

seSM(1s_d) =

∑

1−s fs
(

�n(k)

)

Cn(k) +
∑

0−s fs
(

�n(k)

)

Cn(k)
∑

1−s Cn(k) +
∑

0−s Cn(k) +
∑

d Cn(k)

(14)s1s_wd =

∑

i
Gi

(

gi1
(
∑

1−s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

gi2
(
∑

1−s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

)

a dissimilarity counter, it should be multiplied by a factor 

fd
(

�n(k)

)

 that is a decreasing function of �n(k) . In both 

cases we must have: fs(n) = fd(nmod2) = 1 . As it was the 

case for γ , there are many ways of choosing fs and fd. One 

possibility would be to set fs
(

�n(k)

)

= 2
−(n−�n(k)) and 

fd
(

�n(k)

)

= 2
−(�n(k)−nmod2) . However, this might put too 

harsh a penalty on the different counters. For this reason, 

in the following we will use instead these weight functions:

(9)

fs
(

�n(k)

)

=

�n(k)

n
, fd

(

�n(k)

)

= 1 −

�n(k) − nmod2

n
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Moreover, there are further possibilities, if we replace 

the sum over the 1-similarity counters with a sum over all 

the similarity counters:

Now the summation over s indicates the sum over all 

similarity counters. Also, we do not include the “1” in the 

subscript because now we are not distinguishing between 

the 1- and 0-similarity counters. As it was the case in 

Eqs. (9) and (10) the presence (absence) of the “w” in the 

subscript indicates that we are (or are not) weighting the 

counters in the denominator. In Appendix 2 we include 

a detailed step-by-step calculation of the SM index for 

4-ary and 5-ary comparisons.

Notice that when n = 2 this generalization will be 

equivalent to substituting a by a + d (and leaving p 

unchanged wherever it appears). �is makes easier to 

realize that this procedure will be redundant in most 

cases, in the sense that we will just obtain the expression 

for an already known (additive) index. �is is actually the 

case for six of the seven asymmetric indices considered 

here; Consoni-Todeschini (3) (CT3), Consoni-Todeschini 

(4) (CT4), Gleason (Gle), Russell-Rao (RR), Jaccard-Tani-

moto (JT), and Sokal-Sneath (1) (SS1):

�e Jaccard (Ja) index is the only one that actually leads 

to a new result:

(15)s1s_d =

∑

i
Gi

(

gi1
(
∑

1−s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

gi2
(
∑

1−s Cn(k),
∑

d Cn(k)

)

)

(16)

ss_wd =

∑

i
Gi

(

gi1
(
∑

s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

gi2
(
∑

s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

)

(17)

ss_d =

∑

i
Gi

(

gi1
(
∑

s fs
(

�n(k)

)

Cn(k),
∑

d fd
(

�n(k)

)

Cn(k)

)

gi2
(
∑

s Cn(k),
∑

d Cn(k)

)

)

(18)
sCT3 =

ln(1+a)
ln(1+p)

sCT4 =
ln(1+a)

ln(1+a+b+c)

→ sCT1 =
ln(1 + a + d)

ln(1 + p)

(19)sGle =
2a

2a + b + c
→ sSS2 =

2a + 2d

p + a + d

(20)
sRR =

a
p

sJT =
a

a+b+c

→ sSM =
a + d

p

(21)sSS1 =
a

a + 2b + 2c
→ sRT =

a + d

p + b + c

In the general n-ary case, the four possible variants of 

the Jaccard index are:

It is important to realize that all of these different gen-

eralizations will naturally reduce to the standard binary 

expressions when we substitute n = 2 in the above 

formulas.

Before concluding this section, it is worth noting that 

while we have focused on generalizing different similar-

ity indices, the concepts introduced above can be used to 

generalize several dissimilarity indices. In Appendix 3, we 

briefly touch on this subject, with the particular case of 

the Hamming distance.

Computational methods
Development of sum of ranking di�erences (SRD)

�e sum of ranking differences (SRD) algorithm was 

introduced in 2010, [23] showing practical examples and 

its validation by a permutation test. SRD was first dem-

onstrated to solve method-comparison problems in a fast 

and easy way: the smaller the sum, the better the method 

(i.e. closer to the gold standard or best consensus). In 

the beginning, validation was done by running SRD on 

randomly generated variables in the size of the input 

data matrix. �e obtained histogram shows whether the 

ranking is comparable with random ranking (e.g. when 

the original variables overlap with the random variables) 

[23]. �e theoretical SRD distributions were defined for 

different sample sizes up to 13. �e theoretical SRD can 

be well approximated with a Gaussian distribution, if the 

(22)

sJa =
3a

3a + b + c
→ sJa0 =

3a + 3d

3a + 3d + b + c
=

3a + 3d

p + 2a + 2d

(23)

seJa(1s_wd) =
3

∑

1−s fs
(

�n(k)

)

Cn(k)

3
∑

1−s fs
(

�n(k)

)

Cn(k) +
∑

d fd
(

�n(k)

)

Cn(k)

(24)seJa(1s_d) =
3

∑

1−s fs
(

�n(k)

)

Cn(k)

3
∑

1−s Cn(k) +
∑

d Cn(k)

(25)

seJa(s_wd) =
3

∑

s fs
(

�n(k)

)

Cn(k)

3
∑

s fs
(

�n(k)

)

Cn(k) +
∑

d fd
(

�n(k)

)

Cn(k)

(26)seJa(s_d) =
3

∑

1−s fs
(

�n(k)

)

Cn(k)

3
∑

1−s Cn(k) +
∑

d Cn(k)
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the number of rows (n) in the input matrix exceeds 13 

[24]. Later, the SRD algorithm was extended to repeated 

observations (ties) [25]. Exact theoretical distributions 

were derived for 4 < n < 9 and a reasonable approxima-

tion works for n > 8, using Gaussian distribution fitted on 

three million n–dimensional random vectors [25]. Cou-

pling SRD with variance analysis (ANOVA) provided a 

unique way of decomposing the effects of different fac-

tors influencing the comparions [26, 27].

Recent examinations have unambiguously shown that 

sum of ranking differences (SRD) realizes a multicriteria 

optimization [28, 29]. Lourenço and Lebensztajn have 

illustrated on two practical examples that SRD realizes a 

consensus of eight different multicriteria decision mak-

ing (MCDM) methods [29], whereas any of the individual 

ones selects various parts of the Pareto front as optimal. 

Hence, the individual usage of any MCDM tools is lim-

ited; moreover, the selection of weights is a highly subjec-

tive and individual process.

Here, we will use the SRD approach to compare the 

extended similarity metrics with each other and study 

the effects of the various possible choices (e.g. weighting, 

value of n).

Description of the SRD procedure

�e variables or methods (here, similarity coefficents) to 

be compared should be arranged in the columns, and the 

objects (here, objects are the simulated dichotomous fin-

gerprints) are arranged in the rows of the input matrix. 

�e SRD technique needs a gold standard (benchmark or 

reference) to be defined for ranking. In lack thereof, this 

reference can be provided by data fusion as summarized 

by Willett [30] and should be selected according to the 

nature of the data.

�e SRD algorithm consists of three stages:

1. Definition of the reference vector: Selection of a 

gold standard (benchmark) depending on the features 

of the dataset. �is is straightforward, if there is a clearly 

defined reference vector (e.g. experimentally determined 

reference values); in other cases, data fusion from the 

compared data vectors is recommended. Perhaps the 

most frequently applied data fusion possibility is the 

usage of mean values. �e basic assumption of their 

usage is that the random errors cancel each other out. 

�e systematic errors behave similarly; provided they 

are numerous (above or around seven sources). Even if a 

(small) bias remains we are better off by using the most 

probable value (consensus) instead of any individual one. 

In fact, we have shown that the mean values as reference 

are inherently robust when including/omitting methods 

that rank the objects highly consistently, or even identi-

cally. [19] Of course other data fusion options also exist: 

it is “natural” to select the row minima for residuals, 

errors or misclassification rates. Similarly, row maximum 

is a suitable gold standard for the best classification rates, 

explained variance, etc. Recently, we have extended SRD 

with an option to compare each method pair-wise and 

present the results in a heatmap format [31].

As we have remarked before: “If the true (ideal) rank-

ing is not known, it is expedient to substitute it with the 

average of all methods for each object (row average). 

�is is the key step: the ranking by average values can 

be accepted as ’’ideal’’, since the errors cancel each other.” 

[23] �is is precisely the approach we use here.

2. Calculation: Calculation of absolute differences 

between each rank-transformed individual vector values 

and the reference (benchmark) column (ranks, with par-

tial rankings being used for ties), and sum the absolute 

differences for each object (compound) together. �ese 

values are called SRD values and rank the individual vari-

ables (similarity coefficents). SRD values are normalized 

between 0 and 100 to obtain comparability between vari-

ous data sets. �e smaller the SRD value, the closer the 

variable is to the benchmark (consensus). For an easy 

visual representation of the SRD procedure, we refer the 

reader to our earlier work (more specifically an anima-

tion, supplied as Additional file 3 in ref. [19]). Because the 

values in the columns cannot always be strictly monoto-

nously ordered, the way of determining the index vectors’ 

coordinates is known as ranking with ties [25].

3. Validations: a permutation test is applied as part 

of the validation phase, termed comparison of ranks 

with random numbers (CRRN). �e result is shown as 

a cumulative frequency distribution curve in the SRD 

plots. Moreover, k-fold cross-validation was realized in 

two ways and the results of them were used together. A 

contiguous k-fold cross-validation and a randomized 

k-fold cross-validation (boosted repeated resampling, 

with return) were applied, while the number of folds can 

be varied (5 < k < 10) according to the number of samples 

in the original matrix [27].

�erefore, SRD is not simply a distance metric (exten-

sion of Spearman’s footrule to including repeated obser-

vations), but a multistep procedure including data fusion 

and validation steps [32, 33]. As SRD realizes a multicri-

teria (multiobjective) optimization, it selects and groups 

a smaller set of alternatives from the Pareto front [29].

SRD is developed as an MS Excel macro and is available 

for download at http:// aki. ttk. mta. hu/ srd.

Factorial ANOVA

�e mean of the extended similarity coefficents were ana-

lyzed using factorial analysis of variance (ANOVA) [34]. 

�e following factors were considered: number (n) of 

objects compared (fingerprints or other representations), 

14 levels: n = 2, 3, … 15; m—length of the fingerprints, 

http://aki.ttk.mta.hu/srd
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four levels: m = 10, 100, 1000, 100  000 (fingerprints are 

generated as random dichotomous vectors with length 

m); role of weighting, two levels: weighted and non-

weighted versions of novel similarity coefficients, and 

the similarity coefficient themselves, 19 levels. Factorial 

ANOVA was also applied for the SRD values, with the 

already mentioned factors (with more input data due to 

the validation protocols of SRD, see section “Analysis of 

SRD data”).

Results
Individual index variations

To explore how the introduced extended similarity 

metrics behave for different input data, we have gen-

erated random dichotomous fingerprints of various 

lengths (m = 10, 100, 1000 or 100,000) and calculated the 

extended similarity values for various numbers of com-

pared objects (here fingerprints, n), according to both the 

weighted (w) and non-weighted (nw) formulas. In each 

case we randomly generated 16 fingerprints. First, let us 

study how the average (of the absolute value) of the com-

parisons for an individual index s (average |s|) changes 

when we change n (see Fig. 1 for some examples and the 

Additional file 1 for the complete results).

Of the 19 indices studied, the alternating (zigzag) 

pattern (with local maxima for even values of n and 

local minima for odd values of n) observed for the 

eSM index appears in 16 cases. �is has to do with our 

choice of γ = nmod2 . Notice that n = 2l → γ = 0 , and 

hence we only have one type of dissimilarity counter, 

C2l(l) . On the contrary, for odd values of n we will have 

n = 2l + 1 → γ = 1 . Hence, in this case there will be two 

types of dissimilarity counters, C2l+1(l) and C2l+1(l+1) . 

Now notice that when we go from n = 2l to n = 2l + 1 the 

amount of similarity counters remains constant, while 

the amount of dissimilarity counters increases (from 1 to 

2). �is implies that, for a given similarity index s:

Moreover, when we go from n = 2l + 1 to n = 2l + 2, the 

amount of dissimilarity counters decreases (from 2 to 1) 

and the amount of similarity counters increases (from 2l 

to 2l + 2), so:

�e combination of Eqs. (26) and (27) explains the 

observed alternating pattern:

On the other hand, the extended Sokal-Sneath (2) 

(eSS(2)) and extended Jaccard (eJa0) indices (in their 

non-weighted variants) at some point start to mono-

tonically decrease with n. �is has to do with the more 

(26)sn=2l+1 < sn=2l

(27)sn=2l+1 < sn=2l+2

(28)sn=2l > sn=2l+1 < sn=2l+2

prominent role of the similarity counters in the denomi-

nators of these indices. In these cases the increase in 

the types of similarity counters with increasing n actu-

ally causes the numerator to grow less rapidly than the 

denominator (since the counters in the latter are not 

weighted). Finally, the extended Goodman–Kruskal 

(eGK) is a singular example, since it clearly presents an 

alternating pattern, but with local maxima for odd values 

of n and local minima for even values of n. �is behavior 

can be explained by the unique way in which the similar-

ity counters are considered in the definition of this index. 

Before concluding this analysis it is worth noting that, as 

seen in Fig.  1, the general trends observed in the varia-

tion of the average (of the absolute value) of the compari-

sons for an individual index do not depend strongly on 

the fingerprint length.

Analysis of mean similarity indices

A simple box and whisker plot shows the variability of 

novel indices: median, interquartile range, minimum and 

maximum are plotted (Fig. 2).

In Fig. 2, the indices occupy different ranges and cover 

the domain from zero to (almost) 1. No definite trend 

can be observed. Hence, the idea seems to be plausible: 

all extended similarity indices express the similarity of 

molecules with error. �en, variance analysis is a suit-

able technique to decompose the effects of different fac-

tors. �e following factors were considered: F2–number 

(n) of objects (fingerprints) compared, 14 levels: n = 2, 

3, …15; F3–role of weighting, two levels: weighted and 

non-weighted versions; F4–the extended similarity coef-

ficients themselves: 19 levels; F5–length of the finger-

prints, four levels: m = 10, 100, 1000, 100 000 (F1 being 

a dummy factor for the cross-validation iterations). Alto-

gether 14*2*19*4 = 2128 items (averages of similarity 

indices) have been decomposed into the above factors. 

As expected, the means of the extended indices also show 

a characteristic zigzag pattern with homogeneous vari-

ance (see Additional file 1: Figures S1–S20), which is con-

sistent with the results shown in Fig. 1.

�e effect of fingerprint length on the overall means is 

plotted in Fig. 3: here, a definite increasing trend can be 

seen. Moreover, the variances are also increasing with the 

fingerprint length (heteroscedasticity). It seems that the 

curve approximates a limit value (saturation) at a rela-

tively small number: ~ 0.38–0.39.

�e means of extended similarity coefficients can be 

decomposed into interaction terms, as e.g. F2*F3. �e 

role of weighting as a function of the multiplicity of fin-

gerprint comparisons is illustrated in Fig. 4.

�e previously observed zigzag pattern can also be seen 

here, but the patterns split at n > 3: means of nonweighted 

coefficients show a damped zigzag pattern. Although 
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the gap between weighted and non-weighted means 

increases as the number of compared objects increases, 

the difference gets smaller between odd and even val-

ues of n. �e variances remain almost constant, as the 

multiplicity of comparisons increases. �e conclusion 

is obvious, there is no use of weighting for binary and 

ternary comparisons. �e largest difference in terms 

of weighting is for even numbers and 14-ary compari-

sons (in the studied range of n at least). Notice how the 

weighted versions of coefficients have higher means than 

Fig. 1 Variation of the average (of the absolute value) of all possible n-ary comparisons over 16 fingerprints of length m = 10 (a, c, e) and 
m = 100,000 (b, d, f) for different values of n for the extended Goodman–Kruskal (a, b), extended Sokal-Michener (c, d) and extended Sokal-Sneath 
(e, f) 2 indices
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the non-weighted versions. �is is an expected result, 

since while the numerators of both the weighted and 

non-weighted indices are the same, the denominators of 

the former are never greater than those of the latter.

�ere are many more interactions between the factors, 

but most of them are hard to perceive. However, the cou-

pling between F4*F5 shows a different behavior of the 

extended similarity coefficients as a function of finger-

print lengths (Fig. 5).

�e individual coefficients cover different ranges as 

in Fig.  1 and their variances are also highly divergent. 

eCT2_1, eRR_1 and eSS1_1 exhibit small variances, 

whereas those of eGK_1, eJa_0 and eSS2_1 are higher. 

Generally, shorter fingerprints show larger variances. In 

fact, most of the means of extended similarity coefficients 

are insensitive to the fingerprint lengths. However, three 

of the extended coefficients defined originally by Con-

sonni and Todeschini (eCT1_1, eCT3_1 and eCT4_1) 

exhibit highly diverging behavior as the fingerprint 

lengths increase, with two more coefficients (eCT2_1 and 

eGK_1) behaving similarly, but to a lesser extent. �e lat-

ter two produce a reverse ordering (c.f. color codes) than 

the highly diverging indices. �ese behaviors can be eas-

ily understood if we look at these indices’ formulas (see 

Appendix 1: Table 1). In most of the cases, the numera-

tors and denominators only include terms that are func-

tions of a, b, c, and d. As the fingerprint length increases, 

these terms also increase in a roughly proportional way, 

so their ratio will remain approximately constant. In the 

case of the CT indices, however, we have some “1 + ” 

terms that break this proportionality, which means that 

the mean value of these indices will indeed depend on the 

fingerprint length. �is explains why in the limit of infi-

nite fingerprint length, eCT1, eCT3, and eCT4 all tend to 

1, while eCT2 tends to 0.

�e features of the indices have far reaching conse-

quences. In the next chapter, we aim to determine which 

one should be chosen optimally.

Analysis of SRD data

As SRD is a preferable multicriteria optimization tool, it 

can be advantageously applied to select the best and rec-

ommendable indices for further usage. In our example, 

the total number of fingerprints was 16. �e SRD input 

matrix has been changed as the numbers of compared 

objects changed from n = 2 to n = 15. �e number of 

rows in the input SRD matrix was given by the binomial 

coefficients: 16!/[n!*(16-n)!] where 1 < n < 16. �e small-

est number of rows we considered was 15 for n = 2 and 

n = 15, then 120 for n = 3 and n = 14, and so on, whereas 

the largest number of rows was 12  870 for n = 8. �e 

extended similarity coefficients were enumerated in the 

columns of the SRD input matrix. No data preprocessing 

was necessary as all coefficients are scaled between 0 and 

1.

An example SRD result is shown in Fig. 6

�e information is represented in such SRD plots as 

distances from 0 and the random distribution, and the 

proximity and grouping of the lines. Several extended 

indices behave similarly (degeneration), coincidence can 

be seen on some of the lines in case of weighting.

�e following factors were considered: F1–variants 

of sevenfold cross-validation, 2 levels: contiguous and 

repeated resampling (without and with return, respec-

tively); F2–number (n) of compared objects (finger-

prints), 14 levels: n = 2, 3, … 15; F3–role of weighting, 

two levels: weighted and non-weighted versions; F4–the 

Fig. 2 Box and whisker plot of extended similarity coefficents. 
Maximum number of fingerprints to be compared is 16

Fig. 3 Mean of extended similarity coefficients as a function of 
fingerprint length. The length of the fingerprint is given as numbers 
of the x axis after m 
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similarity coefficients themselves: 19 levels; F5–length of 

the fingerprints: four levels m = 10, 100, 1000, 100  000. 

Altogether 2*7*14*2*19*4 = 29 792 SRD values were sub-

jected to variance analysis.

Although the ANOVA completed on SRD scores is 

basically the same as in the case of the mean similarity 

values, one crucial difference should be mentioned. As 

SRD is a city block (Manhattan) distance to a gold stand-

ard, the smallest SRD value means a better scenario, 

such a way the best/recommendable indices, number 

of objects compared, etc. can be revealed and selected. 

�is feature is not applicable on the mean similarity val-

ues (previous section). Hence, the box and whisker plot 

(Fig. 7) shows some rearrangements as compared to that 

of the similarity values (Fig. 2).

Fig. 4 The effect of weighting on the means of extended similarity 
coefficients as a function of compared objects (fingerprints), 
w = weighted, nw = non-weighted

Fig. 5 Means of extended similarity coefficients. Line plots 
correspond to the length of the fingerprints (F5). The abbreviations of 
coefficients can be found in Appendix 1

Fig. 6 SRD ordering of extended similarity coefficients for a realistic 
fingerprint length, m = 1000, weighting was applied, number of 
objects compared was n = 13. X and left Y axes plot the scaled SRD 
values between 0 and 100. The Gaussian approximation of the 
discrete random distribution (~ 60 < SRD <  ~ 70) was omitted for 
clarity. The abbreviations can be found in Appendix 1

Fig. 7 Box and whisker plot for scaled SRD values (between 0 and 
100)

Fig. 8 Sum of ranking differences (SRD) scores scaled between 0 and 
100 as a function of the number of compared objects (n)
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Two indices immediately arise as preferable ones (clos-

est to the reference): eBUB_1 and eFai_1, whereas eJa_0 

(which includes the 0-similarity counters) has the largest 

variability. �e nice behavior of the eBUB_1 index is in 

perfect agreement with the properties of the binary BUB 

index, as observed in our metabolomics study [17].

�e dependence on the multiplicity on comparisons 

preserves the zigzag pattern, but is somewhat distorted 

(Fig.  8). �e essential difference is that the generally 

decreasing trend has two jumps at n = 3 and n = 14, dis-

couraging the usage of these numbers of objects com-

pared. �e minimum is reached at n = 13, which is 

therefore suggested as the best number of objects to 

compare (closest to the reference).

�e above statement may be nuanced by the fact that 

weighting has a different effect on the multiplicity in case 

of the SRD values (Fig. 9), if n > 3.

While weighting has no influence at the beginning for 

n = 2 and 3; non-weighted coefficients show a somewhat 

increasing-alternating trend deviating from the gold 

standard. Comparison of 14 objects exhibits the highest 

gap between the weighted and non-weighted scenarios. 

In general, weighting is recommended above an n value 

of three.

Figure  10 shows the effects of weighting on the 

extended similarity coefficients. Generally, weighting is 

advantageous (smaller SRD values), and the confidence 

intervals are so small that they are barely visible (except 

for eJa_0 non-weighted). It means that all coefficients 

provided significantly different results, significantly dif-

ferent distances from the reference (consensus). �ere 

are some cases when weighting plays a subordinate role: 

eCT4_1 and eSS1_1. Two indices manifest highly advan-

tageous features (close to the reference): eBUB_1 and 

eFai_1, with and without weighting, alike. Some indices 

are relatively good, especially in weighted forms, and they 

are indistinguishable from each other: eGle_1, eJT_1, 

eJa_1, eRG_1, and eSS_1. �e Jaccard-Tanimoto coef-

ficient in its extended form is also an acceptable choice, 

though there are some “better” indices (i.e. more consist-

ent with the consensus).

Similarly, equivalent indices can be observed from 

among the non-weighted ones: eAC_1, eCT1_1, eRT_1 

and eSM_1. Finally, the interplay of three factors 

F2*F3*F5 is presented in Fig.  11: number of compared 

objects, weighting and fingerprint length. It is under-

standable that the smallest fingerprint length produces 

the smallest SRD values. �e realistic 1000 bit-length fin-

gerprint has an intermediate position, especially n = 14 is 

an outlier, still it is recommendable for further usage if 

using weighting.

Summary and conclusion
�e present work introduces a series of new similar-

ity indices, which can be applied for the comparison of 

more than two objects (bitvectors) at once. �e essence 

of the novel extended similarity coefficients is their abil-

ity to compare multiple objects at the same time. �e 

features of the average similarity coefficents was stud-

ied in detail: the effects of multiplicity, role of weight-

ing, and the fingerprint length have also been studied by 

variance analysis. A multicriteria decision tool (sum of 

ranking differences) allowed to select the most advanta-

geous similarity coefficents. We conclude that in gen-

eral, comparing a larger number of objects (n = 12–14) 

with weighted similarity indices is more advantageous. 

Two indices are manifested as highly advantageous (close 

Fig. 9 Sum of ranking differences scaled between 0 and 100 as a 
function of the number of compared objects (n) for weighted and 
non-weighted extended similarity indices

Fig. 10 Effect of weighting on the extended similarity coefficients 
(w = weighted, nw = non-weighted)
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to the reference): eBUB_1 and eFai_1, with and without 

weighting, alike.

Currently, chemical diversity of a set of molecules 

is calculated as the mean of all the pairwise similari-

ties between the molecules of the set (order O(N2)). �e 

framework that we introduced here provides a new alter-

native, which allows to simultaneously compare more 

than two dichotomous vectors. �is scales in order O(N), 

presenting a tremendous speed gain: this is further dis-

cussed in the accompanying paper [22]. Applications 

include subset selection, clustering, diversity picking 

or we can even apply this methodology to estimate the 

diversities of entire compound libraries.

Appendix 1
See Table 1.

Appendix 2: Extended Sokal-Michener index 
for quaternary (4-ary) and quintenary (5-ary) 
comparisons
In order to exemplify the work with the new concepts 

introduced in the manuscript, and to illustrate the 

work with the n-ary similarity indices, here we present 

a detailed calculation of the eSM index in two different 

cases.

4-ary eSM:

To fix ideas, let us compare the following four 

fingerprints:

a) �e first step is to calculate the C4(k) counters, keep-

ing in mind that 0 ≤ k ≤ 4:

F1 = (10110100)

F2 = (00100101)

F3 = (10111001)

F4 = (00110100)

(2.1)

C4(4) = 1;C4(3) = 2;C4(2) = 2;C4(1) = 1;C4(0) = 2

Fig. 11 Effect of the number of compared objects on (weighted and non-weighted) extended comparisons of fingerprints with various lengths
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Table 1 Extended n-ary similarity indices

Additive indices

Label Type Notation Name Equation

eAC eAC_1 eACw extended
Austin-Colwell seAC(1s_wd) =

2
π
arcsin

√

∑

1−s
fs(�n(k))Cn(k)+

∑

0−s
fs(�n(k))Cn(k)

∑

s
fs(�n(k))Cn(k)+

∑

d
fd(�n(k))Cn(k)

eACnw
seAC(1s_d) =

2
π
arcsin

√

∑

1−s
fs(�n(k))Cn(k)+

∑

0−s
fs(�n(k))Cn(k)

∑

s
Cn(k)+

∑

d
Cn(k)

eBUB eBUB_1 eBUBw extended
Baroni-Urbani-Buser

seBUB(1s_wd) =
√

�
�

1−s
fs(�n(k))Cn(k)

��
�

0−s
fs(�n(k))Cn(k)

�

+
�

1−s
fs(�n(k))Cn(k)











�

�
�

1−s
fs

�

�n(k)

�

Cn(k)

��
�

0−s
fs

�

�n(k)

�

Cn(k)

�

+
�

1−s
fs

�

�n(k)

�

Cn(k) +
�

d
fd

�

�n(k)

�

Cn(k)











eBUBnw
seBUB(1s_d) =

√
[
∑

1−s
fs(�n(k))Cn(k)

][
∑

0−s
fs(�n(k))Cn(k)

]

+
∑

1−s
fs(�n(k))Cn(k)

{√
[
∑

1−s
Cn(k)

][
∑

0−s
Cn(k)

]

+
∑

1−s
Cn(k)+

∑

d
Cn(k)

}

eCT1 eCT1_1 eCT1w extended
Consoni-Todeschini (1)

seCT1(1s_wd) =
ln(1+

∑
1−s

fs(�n(k))Cn(k)+
∑

0−s
fs(�n(k))Cn(k))

ln(1+
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))

eCT1nw
seCT1(1s_d) =

ln(1+
∑

1−s
fs(�n(k))Cn(k)+

∑
0−s

fs(�n(k))Cn(k))
ln(1+

∑
s
Cn(k)+

∑
d
Cn(k))

eCT2 eCT2_1 eCT2w extended
Consoni-Todeschini (2)

seCT2(1s_wd) =
ln(1+

∑
s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))−ln(1+

∑
d
fd(�n(k))Cn(k))

ln(1+
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))

eCT2nw
seCT2(1s_d) =

ln(1+
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))−ln(1+

∑
d
fd(�n(k))Cn(k))

ln(1+
∑

s
Cn(k)+

∑
d
Cn(k))

eFai eFai_1 eFaiw extended
Faith

seFai(1s_wd) =

∑
1−s

fs(�n(k))Cn(k)+0.5
∑

0−s
fs(�n(k))Cn(k)∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eFainw
seFai(1s_d) =

∑
1−s

fs(�n(k))Cn(k)+0.5
∑

0−s
fs(�n(k))Cn(k)∑

s
Cn(k)+

∑
d
Cn(k)

eGK eGK_1 eGKw extended
Goodman–Kruskal

seGK(1s_wd) =
2min(

∑
1−s

fs(�n(k))Cn(k) ,
∑

0−s
fs(�n(k))Cn(k))−

∑
d
fd(�n(k))Cn(k)

2min(
∑

1−s
fs(�n(k))Cn(k) ,

∑
0−s

fs(�n(k))Cn(k))+
∑

d
fd(�n(k))Cn(k)

eGKnw
seGK(1s_d) =

2min(
∑

1−s
fs(�n(k))Cn(k) ,

∑
0−s

fs(�n(k))Cn(k))−
∑

d
fd(�n(k))Cn(k)

2min(
∑

1−s
Cn(k) ,

∑
0−s

Cn(k))+
∑

d
Cn(k)

eHD eHD_1 eHDw extended
Hawkins-Dotson seHD(1s_wd) =

1
2





�

1−s
fs(�n(k))Cn(k)

�

1−s
fs(�n(k))Cn(k)+

�

d
fd(�n(k))Cn(k)

+
�

0−s
fs(�n(k))Cn(k)

�

0−s
fs(�n(k))Cn(k)+

�

d
fd(�n(k))Cn(k)





eHDnw

seHD(1s_d) =
1
2





�

1−s
fs(�n(k))Cn(k)

�

1−s
Cn(k)+

�

d
Cn(k)

+
�

0−s
fs(�n(k))Cn(k)

�

0−s
Cn(k)+

�

d
Cn(k)





eRT eRT_1 eRTw extended
Rogers-Tanimoto

seRT (1s_wd) =

∑
s
fs(�n(k))Cn(k)∑

s
fs(�n(k))Cn(k)+2

∑
d
fd(�n(k))Cn(k)

eRTnw
seRT (1s_d) =

∑
s
fs(�n(k))Cn(k)∑

s
Cn(k)+2

∑
d
Cn(k)

eRG eRG_1 eRGw extended
Rogot-Goldberg seRG(1s_wd) =

∑
1−s

fs(�n(k))Cn(k)
2
∑

1−s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

+
∑

0−s
fs(�n(k))Cn(k)

2
∑

0−s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eRGnw
seRG(1s_d) =

∑
1−s

fs(�n(k))Cn(k)
2
∑

1−s
Cn(k)+

∑
d
Cn(k)

+

∑
0−s

fs(�n(k))Cn(k)
2
∑

0−s
Cn(k)+

∑
d
Cn(k)

eSM eSM_1 eSMw extended
Simple matching,
Sokal-Michener

seSM(1s_wd) =

∑
s
fs(�n(k))Cn(k)∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eSMnw
seSM(1s_d) =

∑
s
fs(�n(k))Cn(k)∑

s
Cn(k)+

∑
d
Cn(k)

eSS2 eSS2_1 eSS2w extended
Sokal-Sneath (2)

seSS2(1s_wd) =
2
∑

s
fs(�n(k))Cn(k)

2
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eSS2nw
seSS2(1s_wd) =

2
∑

s
fs(�n(k))Cn(k)

2
∑

s
Cn(k)+

∑
d
Cn(k)
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Table 1 (continued)

Asymmetric indices

Label Type Notation Name Equation

eCT3 eCT3_1 eCT3w extended
Consoni-Todeschini (3)

seCT3(1s_wd) =
ln(1+

∑
1−s

fs(�n(k))Cn(k))
ln(1+

∑
s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))

eCT3nw
seCT3(1s_d) =

ln(1+
∑

1−s
fs(�n(k))Cn(k))

ln(1+
∑

s
Cn(k)+

∑
d
Cn(k))

eCT3_0 eCT30w
seCT3(s_wd) =

ln(1+
∑

s
fs(�n(k))Cn(k))

ln(1+
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))

eCT30nw
seCT3(s_d) =

ln(1+
∑

s
fs(�n(k))Cn(k))

ln(1+
∑

s
Cn(k)+

∑
d
Cn(k))

eCT4 eCT4_1 eCT4w extended
Consoni-Todeschini (4)

seCT4(1s_wd) =
ln(1+

∑
1−s

fs(�n(k))Cn(k))
ln(1+

∑
1−s

fs(�n(k))Cn(k)+
∑

d
fd(�n(k))Cn(k))

eCT4nw
seCT4(1s_d) =

ln(1+
∑

1−s
fs(�n(k))Cn(k))

ln(1+
∑

1−s
Cn(k)+

∑
d
Cn(k))

eCT4_0 eCT40w
seCT4(s_wd) =

ln(1+
∑

s
fs(�n(k))Cn(k))

ln(1+
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k))

eCT4nw
seCT4(s_d) =

ln(1+
∑

s
fs(�n(k))Cn(k))

ln(1+
∑

s
Cn(k)+

∑
d
Cn(k))

eGle eGle_1 eGlew extended
Gleason

seGle(1s_wd) =
2
∑

1−s
fs(�n(k))Cn(k)

2
∑

1−s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eGlenw
seGle(1s_d) =

2
∑

1−s
fs(�n(k))Cn(k)

2
∑

1−s
Cn(k)+

∑
d
Cn(k)

eGle_0 eGle0w
seGle(s_wd) =

2
∑

s
fs(�n(k))Cn(k)

2
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eGle0nw
seGle(s_d) =

2
∑

s
fs(�n(k))Cn(k)

2
∑

s
Cn(k)+

∑
d
Cn(k)

eJa eJa_1 eJaw extended
Jaccard

seJa(1s_wd) =
3
∑

1−s
fs(�n(k))Cn(k)

3
∑

1−s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eJanw
seJa(1s_d) =

3
∑

1−s
fs(�n(k))Cn(k)

3
∑

1−s
Cn(k)+

∑
d
Cn(k)

eJa_0 eJa0w
seJa(s_wd) =

3
∑

s
fs(�n(k))Cn(k)

3
∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eJa0nw
seJa(s_d) =

3
∑

s
fs(�n(k))Cn(k)

3
∑

s
Cn(k)+

∑
d
Cn(k)

eRR eRR_1 eRRw extended
Russel-Rao

seRR(1s_wd) =

∑
1−s

fs(�n(k))Cn(k)∑
s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eRRnw
seRR(1s_d) =

∑
1−s

fs(�n(k))Cn(k)∑
s
Cn(k)+

∑
d
Cn(k)

eRR_0 eRR0w
seRR(s_wd) =

∑
s
fs(�n(k))Cn(k)∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eRR0nw
seRR(s_d) =

∑
s
fs(�n(k))Cn(k)∑

s
Cn(k)+

∑
d
Cn(k)

eSS1 eSS1_0 eSSw extended
Sokal-Sneath (1)

seSS1(1s_wd) =

∑
1−s

fs(�n(k))Cn(k)∑
1−s

fs(�n(k))Cn(k)+2
∑

d
fd(�n(k))Cn(k)

eSSnw
seSS1(1s_d) =

∑
1−s

fs(�n(k))Cn(k)∑
1−s

Cn(k)+2
∑

d
Cn(k)

eSS1_1 eSS0w
seSS1(s_wd) =

∑
s
fs(�n(k))Cn(k)∑

s
fs(�n(k))Cn(k)+2

∑
d
fd(�n(k))Cn(k)

eSS0nw
seSS1(s_d) =

∑
s
fs(�n(k))Cn(k)∑

s
Cn(k)+2

∑
d
Cn(k)

eJT eJT_1 eJTw extended
Jaccard-Tanimoto

seJT (1s_wd) =

∑
1−s

fs(�n(k))Cn(k)∑
1−s

fs(�n(k))Cn(k)+
∑

d
fd(�n(k))Cn(k)

eJTnw
seJT (1s_d) =

∑
1−s

fs(�n(k))Cn(k)∑
1−s

Cn(k)+
∑

d
Cn(k)

eJT_0 eJT0w
seJT (s_wd) =

∑
s
fs(�n(k))Cn(k)∑

s
fs(�n(k))Cn(k)+

∑
d
fd(�n(k))Cn(k)

eJT0nw
seJT (s_d) =

∑
s
fs(�n(k))Cn(k)∑

s
Cn(k)+

∑
d
Cn(k)
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At this step we can do a quick check and test 

the following identity: 
∑

n

k=0
Cn(k) = m , where 

m is the length of the fingerprints. In this case 

C4(4) + C4(3) + C4(2) + C4(1) + C4(0) = 1 + 2 + 2 + 1 + 2 = 8

.

b) �e second step is calculating the �4(k) = |2k − 4| 

values:

c) �e third step is to select a coincidence threshold, γ. 

Here we will follow the same convention as in the manu-

script, taking γ = nmod2:

d) Now we can classify the C4(k) in 1-similarity (if 

2k − n > γ ), 0-similarity (if n − 2k > γ ), or dissimilarity 

(if �n(k) ≤ γ ) counters:

e) �e next step is to select the weight functions, 

fs
(

�n(k)

)

 and fd
(

�n(k)

)

 , and calculate the weigths 

associated to each C4(k) . We will make the same con-

vention as in the text, namely: fs
(

�n(k)

)

=

�n(k)

n  , and 

(2.2)

�4(4) = 4; �4(3) = 2; �4(2) = 0; �4(1) = 2; �4(0) = 4

(2.3)
γ = 4mod2

γ = 0

(2.4)

2 × 4 − 4 > 0 → C4(4) is a 1 − similarity counter
2 × 3 − 4 > 0 → C4(3) is a 1 − similarity counter
2 × 2 − 4 ≤ 0 → C4(2)is a dissimilarity counter
4 − 2 × 1 > 0 → C4(1) is a 0 − similarity counter
4 − 2 × 0 > 0 → C4(0) is a 0 − similarity counter

fd
(

�n(k)

)

= 1 −

�n(k)−nmod2

n  . In this particular case these 

translate to:

For the similarity counters:

For the dissimilarity counter:

f ) Finally, we just need to combine all of these mag-

nitudes according to the definitions of the extended 

index that we want to calculate. To do this we follow the 

expressions listed in Appendix 1. For the two seSM indices 

we have:

f1) seSM(1s_wd):

f2) seSM(1s_d):

(2.5)fs
(

�4(k)

)

=

�4(k)

4

(2.6)fd
(

�4(k)

)

= 1 −

�4(k)

4

(2.7)

fs
(

�4(4)

)

=
4

4
= 1

fs
(

�4(3)

)

=
2

4
=

1

2

fs
(

�4(1)

)

=
2

4
=

1

2

fs
(

�4(0)

)

=
4

4
= 1

(2.8)fd
(

�4(2)

)

= 1 −

0

4
= 1

(2.9)

seSM(1s_wd) =

∑

s fs
(

�n(k)

)

Cn(k)
∑

s fs
(

�n(k)

)

Cn(k) +
∑

d fd
(

�n(k)

)

Cn(k)

(2.10)seSM(1s_wd) =
fs
(

�4(4)

)

C4(4) + fs
(

�4(3)

)

C4(3) + fs
(

�4(1)

)

C4(1) + fs
(

�4(0)

)

C4(0)

fs
(

�4(4)

)

C4(4) + fs
(

�4(3)

)

C4(3) + fs
(

�4(1)

)

C4(1) + fs
(

�4(0)

)

C4(0) + fd
(

�4(2)

)

C4(2)

(2.11)seSM(1s_wd) =
1 × 1 + 0.5 × 2 + 0.5 × 1 + 1 × 2

1 × 1 + 0.5 × 2 + 0.5 × 1 + 1 × 2 + 1 × 2
=

4.5

6.5
= 0.6923

(2.12)seSM(1s_d) =

∑

s fs
(

�n(k)

)

Cn(k)
∑

s Cn(k) +
∑

d Cn(k)

(2.13)seSM(1s_d) =
fs
(

�4(4)

)

C4(4) + fs
(

�4(3)

)

C4(3) + fs
(

�4(1)

)

C4(1) + fs
(

�4(0)

)

C4(0)

C4(4) + C4(3) + C4(1) + C4(0) + C4(2)

(2.14)seSM(1s_d) =
1 × 1 + 0.5 × 2 + 0.5 × 1 + 1 × 2

1 + 2 + 1 + 2 + 2
=

4.5

8.0
= 0.5625
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5-ary eSM:

�e comparison of an odd number of molecules is 

largely equivalent to the comparison of an even number 

of object. Let us illustrate this with the comparison of the 

following five fingerprints:

a) Calculating the C5(k) counters, keeping in mind that 

0 ≤ k ≤ 5:

N o w 

C5(5) + C5(4) + C5(3) + C5(2) + C5(1) + C5(0) = 1 + 2 + 0 + 2 + 2 + 1 = 8.

b) Calculating the �5(k) = |2k − 5| values:

c) Selecting a coincidence threshold, γ. Here we will 

also take γ = nmod2:

d) Classifying the C5(k) in 1-similarity (if 2k − n > γ ), 

0-similarity (if n − 2k > γ ), or dissimlarity (if �n(k) ≤ γ ) 

counters:

F1 = (10110100)

F2 = (00100101)

F3 = (10111001)

F4 = (00110100)

F5 = (00110110)

(2.15)

C5(5) = 1;C5(4) = 2;C5(3) = 0;

C5(2) = 2;C5(1) = 2;C5(0) = 1

(2.16)

�5(5) = 5; �5(4) = 3; �5(3) = 1;

�5(2) = 1; �5(1) = 3; �5(0) = 5

(2.17)
γ = 5mod2

γ = 1

(2.18)

2 × 5 − 5 > 1 → C5(4) is a 1 − similarity counter
2 × 4 − 5 > 1 → C5(4) is a 1 − similarity counter
2 × 3 − 5 ≤ 1 → C5(3)is a dissimilarity counter
2 × 2 − 5 ≤ 1 → C5(2)is a dissimilarity counter
5 − 2 × 1 > 1 → C5(1) is a 0 − similarity counter
5 − 2 × 0 > 1 → C5(0) is a 0 − similarity counter

�is shows the biggest difference between the compar-

ison of even or odd numbers of molecules, namely, the 

presence of more dissimilarity counters when we com-

pare and odd number of molecules.

e) Selecting the weight functions, fs
(

�n(k)

)

 and 

fd
(

�n(k)

)

 , and calculating the weigths associated to 

each C5(k) . We will make the same convention, namely: 

fs
(

�n(k)

)

=

�n(k)

n  , and fd
(

�n(k)

)

= 1 −

�n(k)−nmod2

n  . In 

this particular case these translate to:

For the similarity counters:

For the dissimilarity counters:

f ) Finally, we combine all of these magnitudes accord-

ing to the definitions of the extended index that we want 

to calculate. For the two seSM indices we have:

f1) seSM(1s_wd):

(2.19)fs
(

�5(k)

)

=

�5(k)

5

(2.20)fd
(

�5(k)

)

= 1 −

�5(k) − 1

5

(2.21)

fs
(

�5(5)

)

=
5

5
= 1

fs
(

�5(4)

)

=
3

5

fs
(

�5(1)

)

=
3

5

fs
(

�5(0)

)

=
5

5
= 1

(2.22)
fd

(

�5(3)

)

= 1 −
1−1

5
= 1

fd
(

�5(2)

)

= 1 −
1−1

5
= 1

(2.23)

seSM(1s_wd) =

∑

s fs
(

�n(k)

)

Cn(k)
∑

s fs
(

�n(k)

)

Cn(k) +
∑

d fd
(

�n(k)

)

Cn(k)

(2.24)seSM(1s_wd) =
fs
(

�5(5)

)

C5(5) + fs
(

�5(4)

)

C5(4) + fs
(

�5(1)

)

C5(1) + fs
(

�5(0)

)

C5(0)

fs
(

�5(5)

)

C5(5) + fs
(

�5(4)

)

C5(4) + fs
(

�5(1)

)

C5(1) + fs
(

�5(0)

)

C5(0) + fd
(

�5(3)

)

C5(3) + fd
(

�5(2)

)

C5(2)

(2.25)seSM(1s_wd) =
1 × 1 + 0.6 × 2 + 0.6 × 2 + 1 × 1

1 × 1 + 0.6 × 2 + 0.6 × 2 + 1 × 1 + 1 × 0 + 1 × 2
=

4.4

6.4
= 0.6875
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f2) seSM(1s_d):

Appendix 3: Extended dissimilarity indices
�e concepts presented in the manuscript can be 

straightforwardly used to define n-ary dissimilarity indi-

ces. As a simple example we will consider the well-known 

Hamming distance, dHam , that measures the number of 

bits that are different between two given fingerprints. In 

the standard binary case (and using the notation intro-

duced at the beginning of this paper), this can be easily 

written as:

Now it is easy to see that the extended n-ary flavor of 

this index is nothing more than the sum of all the dissim-

ilarity counters, namely:

Finally, it is worth noting that we can define a normal-

ized version of the Hamming distance, deHam_n , by divid-

ing the standard expression for this index by the length of 

the fingerprints:

�is form is closely related to the Sokal-Michener 

index, since:

�en, we can trivially use the extended expressions of 

the Sokal-Michener index in order to obtain the n-ary 

forms of the normalized Hamming distance.

(2.26)seSM(1s_d) =

∑

s fs
(

�n(k)

)

Cn(k)
∑

s Cn(k) +
∑

d Cn(k)

(2.27)seSM(1s_d) =
fs
(

�5(5)

)

C5(5) + fs
(

�5(4)

)

C5(4) + fs
(

�5(1)

)

C5(1) + fs
(

�5(0)

)

C5(0)

C5(5) + C5(4) + C5(1) + C5(0) + C5(3) + C5(2)

(2.28)seSM(1s_d) =
1 × 1 + 0.6 × 2 + 0.6 × 2 + 1 × 1

1 + 2 + 2 + 1 + 0 + 2
=

4.4

8.0
= 0.5500

(3.1)dHam = b + c

(3.2)
deHam =

∑

d

fd
(

�n(k)

)

Cn(k)

(3.3)deHam_n =
b + c

p

(3.4)dHam_n =
b + c

p
= 1 −

a + d

p
= 1 − sSM

(3.5)

deHam_n(1s_wd) = 1 −

∑

s fs
(

�n(k)

)

Cn(k)
∑

s fs
(

�n(k)

)

Cn(k) +
∑

d fd
(

�n(k)

)

Cn(k)

�is simple procedure can be extended to other dis-

similarity indices.
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