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Abstract. Sparse distributed memory (SDM) is an auto-associative memory 
system that stores high dimensional Boolean vectors. SDM uses the same vector 
for the data (word) and the location where it is stored (address). Here we present 
an extension of the original SDM that uses word vectors of larger size than address 
vectors. This extension preserves many of the desirable properties of the original 
SDM: auto-associability, content addressability, distributed storage, robustness 
over noisy inputs. In addition, it adds new functionality, enabling an efficient auto-
associative storage of sequences of vectors, as well as of other data structures such 
as trees. Simulations testing this new memory are described. 

Keywords. Sparse Distributed Memory, Episodic Memory, Sequence 
Representation, Cognitive Modeling 

Introduction 

First proposed by Kanerva [1], sparse distributed memory (SDM) is based on large 
binary vectors, and has several desirable properties. It is distributed, auto associative, 
content addressable, and noise robust. Moreover, this memory exhibits interesting 
psychological characteristics as well (interference, knowing when it doesn’t know, the 
tip of the tongue effect), that make it an attractive option with which to model episodic 
memory [2, 3]. SDM is still being implemented for various applications (e.g., [4-6]). 
Several improvements have been proposed for SDM; for example Ramamurthy and 
colleagues introduced forgetting as part of an unsupervised learning mechanism [7, 8]. 
The same authors also proposed the use of ternary vectors, introducing a “don’t care” 
symbol as a third possible value for the dimensions of the vectors [9, 10].  

Sequences are important representations for cognitive agents. Agents act over time 
and cognitive agents adapt and act over time. Simple events can be combined into more 
complex ones forming sequences, or even trees, of simpler events [11-13]. Kanerva, in 
his original work, described using SDM to store sequences. His procedure has the 
disadvantage of losing most of the auto-associativeness and noise robustness of the 
memory. Later he proposed hyperdimentional arithmetic as a new mechanism for 
storing sequences and other data structures such as sets and records [14]. Even though 
this new mechanism is an improvement over the original SDM mechanism, it is still 



limited in its noise robustness, and is very sensitive to interference (see below). 
Although interference is a desirable property of the memory because it mimics 
psychological effects, in this case it diminishes the capacity to retrieve sequences. 

Here we propose a variant to the original SDM, called Extended Sparse Distributed 
Memory (ESDM) that is especially suitable for storing sequences and other data 
structures such as trees. This new extension considerably improves the performance of 
sequence storage of the memory as compared to both the original SDM memory 
sequence storage and the hyperdimensional arithmetic sequence storage version 
introduced by Kanerva [14]. 

This paper is a follow up of [15] where we first introduced ESDM. In this present 
work we expand the description of the algorithm and include the results of several 
experiments not present in the previous paper. The memory was tested first by storing a 
large training set and analyzing its noise robustness. Then sequence storing was 
simulated, and finally an important parameter k (see later) was studied for different 
scenarios of sequence storage.   

In the following section we briefly describe SDM and compare it with other 
memory models. Then we introduce Extended SDM, discussing several uses of this 
extension and its results. Several simulations are then presented and discussed. Finally 
we propose some future directions. 

1. Sparse Distributed Memory 

Here we present a brief introduction to SDM concepts. Both leisurely descriptions [16] 
and highly detailed descriptions [1] are available. Readers already familiar with SDM 
can skip this section. 

SDM implements a content addressable random access memory. Its address space 
is of the order of 21000 or even more. Both addresses and words are binary vectors 
whose length equals the number of dimensions of the space. This memory is based on 
the properties of high dimensional spaces. In binary spaces with high dimensionality, 
on the order of 1,000 or 10,000 dimensions, the distribution of the distances from a 
point of the space to any other point in the space are highly concentrated at around half 
of the maximum distance. To calculate distances between two vectors the Hamming 
distance is used here, but other metrics can be used as well. For example, for a space of 
1,000 dimensions, more than 99.9999% of the vectors are at a distance between 422 
and 578 from a given vector of the space [1]. A memory with such a high dimensional 
address space is impossible to build. The number of locations in such an address space 
can be compared with the number of atoms in the universe [16]. Thus, to construct the 
memory, a sparse, uniformly distributed sample of addresses is chosen. In our example, 
the sample size is on the order of 220. These addresses are called hard locations. The 
number of hard locations, also the size of the memory, is denoted by s. The distribution 
of the hard locations need not be uniform. For example Ratitch and Precup [17] created 
the hard locations as needed, distributing the hard locations following the distribution 
of the data. This design does not require allocating memory for hard locations that are 
not used, as is done in the original SDM. Also Fan and Wang [18], and Anwar and 
colleagues [19] used genetic algorithms to distribute the hard locations.    

Only hard locations can store data. Several hard locations participate in the storing 
and retrieving of any single word of data. Each hard location has a fixed address, and 
contains one counter for each dimension. In our example, each hard location has 1,000 



counters. A counter is just an integer counter that can be incremented or decremented 
in steps of size one; they have a range of -40 to 40 for our example. Kanerva [1] proved 
that this range of the counters is enough, considering the capacity of the memory, for 
the size of the memory in the example. For other sizes this range may vary.  

To write a word vector in a hard location, for each dimension, if the bit of this 
dimension in the word is 1, the corresponding counter is incremented. If it is 0, the 
counter is decremented. To read a word vector from a hard location, we compute a 
vector such that, for each dimension, if the corresponding counter in the hard location 
is positive, 1 is assigned to this dimension in the vector being read, otherwise 0 is 
assigned.  

When a vector is written to an address in the SDM, it is stored in several hard 
locations. In the same way, to read from an address in the SDM, the output vector is a 
composition of the readings of several hard locations. An activated hard location is one 
that participates in a reading or writing operation. To determine which hard locations 
are activated, i.e. used to read or write, an access sphere is defined. The access sphere 
for an address vector is a sphere with center at this address that on average encloses a 
proportion p of all the hard locations of the memory. Notice that p is also the 
probability of activation of a hard location. The radius of the access sphere depends on 
the number of dimensions of the space and the probability of activation p. For example, 
for a SDM with 1,000 dimensions and p equal to 0.1%, the radius of the access sphere 
is 451. In the example, the access sphere will contain any hard location whose address 
is less than 451 away from the address vector.  

The activation of the hard locations can be achieved using other strategies. Jaeckel 
[20, 21] proposed several alternatives for their activation, and Karlsson [22] introduced 
a fast activation mechanism based on Jaeckel’s work.  

To write a word vector in any address of the memory, the word is written to all 
hard locations inside the access sphere of the address. To read from any address, all 
hard locations in the access sphere of the address vector are read and a majority rule for 
each dimension is applied, i.e., the output vector will have a value equal to 1 at a 
particular dimension if the majority of the vectors read from the hard locations in the 
access sphere have a 1 in that dimension, or a value equal to 0 otherwise.  

Several authors have studied the capacity of SDM: Kanerva [1, 23], Chou [24] and 
Keeler [25]. In particular Keeler compared the capacity of SDM with the capacity of a 
binary Hopfield net. He showed that both memories have the same capacity per storage 
element or counter. However, SDM presents an interesting advantage over Hopfield 
nets. In the former, the size of the words is independent of the number of storage 
elements; on the other hand, in the Hopfield nets the size of the words determines the 
capacity of the memory. Doubling the hard locations in SDM doubles the capacity of 
the memory for a given word size [23].  

Willshaw networks [26], can achieve an information capacity of 0.69, which is 
higher than for SDM. However, this Willshaw maximum capacity can only be achieved 
for very sparse vectors, i.e. vectors in which the number of 1’s are much less than n, 
where n is the dimensionality of the vector. Knoblauch and colleagues [27] extensively 
analyzed the performance of Willshaw networks and pointed out the importance of 
relating the capacity of associative memories with their fidelity. Comparing SDM with 
Willshaw networks in these terms can be interesting. However it is outside of the scope 
of this work.  

SDM can be seen as a synchronous, fully connected, three-layer, feed-forward 
artificial neural network [23]. The input layer is just the input vector. The hidden layer 



corresponds to a vector of size s that represents the active hard locations. The matrix 
composed by the hard locations’ addresses corresponds to the matrix of synaptic 
weights between the input and hidden layers. The output layer is the output vector. 
Finally, the matrix of synaptic weights between the hidden and output layers is 
determined by the counters of the hard locations. In practice, due to the mechanism and 
characteristics of SDM, its training is faster than that of back propagation networks. 
Even one-shot learning is possible using SDM.  

The complexity of the SDM algorithm is dominated by the activation of the hard 
locations. It has a time complexity O(sn), where s is the size of the memory and n the 
number of dimensions. As discussed above, the capacity of SDM linearly increases 
with s. Thus, the time increment due to increasing the capacity of the memory is linear 
even for large values of s. Nevertheless, the time complexity can be improved using the 
Karlsson [22] design. Also SDM can be easily implemented as a parallel algorithm or 
even implemented in hardware [23].  

In general, the SDM is used as an auto-associative memory, so the address vector 
is the same as the word vector. In this case, after writing a word in the memory, the 
vector can be retrieved using partial or noisy data. If the partial vector is inside a 
critical distance from the original one, and it is used as address with which to cue the 
memory, the vector read will be close to the original one. This critical distance depends 
on the number of vectors already stored in the memory. If the process is repeated, using 
the first recovered vector as address, the new reading will be even closer to the original. 
After a few iterations, typically fewer than ten, the readings converge to the original 
vector. If the partial or noisy vector is farther away than the critical distance, the 
successive readings from the iterations will diverge. If the partial vector is about at the 
critical distance, the iterations yields vectors that are typically at the same critical 
distance from the original vector. This behavior mimics the “tip of the tongue” effect. 

When storing sequences of vectors in this SDM, the address cannot be the same as 
the word, as it is in the auto-associative case. The vector that represents the first 
element of the sequence is used as address to read the memory. The vector read is the 
second element in the sequence. This second vector is used as address to read the 
memory again to retrieve the third element. This procedure is repeated until the whole 
sequence is retrieved. The problem with this way of storing sequences is that it is not 
possible to use iterations to retrieve elements of the sequence from noisy input cues. 
So, the memory is far less robust. 

Kanerva [14] introduced hyperdimensional computing, based on large binary 
vectors, as an appropriate tool for cognitive modeling, including holistic representation 
of sets, sequences and mappings. Among the various vector operations proposed, 
multiplication of binary vectors by bitwise xor, permutation, and sum with 
normalization are relevant to the present work, and will be discussed here.  

When two binary vectors are combined using bitwise xor, the result of this 
operation is a new vector of the same dimensionality as the original ones. This 
operation has several interesting properties. First, the resulting vector is dissimilar to 
the two original ones, i.e. farther than the critical distance. Second, the xor operation is 
reversible. Third, this operation preserves Hamming distances.  

Permutation is an operation that shuffles the positions (dimensions) of one vector. 
Mathematically, this corresponds to multiplying the vector by a square matrix M with 
one 1 in each row and column while the other positions contain 0. This operation is 
also reversible, multiplying by MT, and it preserves Hamming distances as well. 



Finally, the sum operation is the arithmetic (integer) sum of the values of each 
dimension of two or more vectors. For this operation the bipolar representation of the 
vectors is used, i.e., the value 0 is replaced by -1. The resulting vector is an integer 
vector. To transform this vector into a binary vector, a normalization operation is 
required. If one dimension has a positive value, the normalized binary vector has a 1 in 
this dimension. If the value is negative, the normalized vector has a 0 in this dimension. 
Ties are resolved at random. The sum with normalization has interesting properties: the 
resulting vector is similar to each of the vectors summed up; i.e. the distance between 
them is less than the expected distance between any two vectors in the space. Also, xor 
multiplication distributes over the sum.  

Based in these properties, it is sometimes possible to retrieve the individual added 
vectors from the sum vector. This is feasible only if the number of vectors added is 
small, i.e. three or fewer vectors. Even with this small number, the interference among 
the vectors in the sum makes the retrieval of the original vectors from the sum not very 
reliable.  

Kanerva describes how to store sequences of vectors using hyperdimensional 
arithmetic [14]. We will briefly describe this procedure and compare it with our 
implementation in section 3. The main problem with this procedure is that it uses the 
sum operation, and so shares the same problems with the sum mentioned above while 
reconstructing the sequence. Also it uses permutation, and as we discussed before, this 
operation requires matrices that are outside of the binary vector domain. 

2. Extended SDM 

Here we present a novel structure, built upon SDM, that we call extended sparse 
distributed memory (ESDM). The main idea of this new memory structure is the use of 
vectors with different lengths for the addresses and the words. A word has a longer 
length than the address in which it is stored. Each address has n dimensions while each 
word has m dimensions with n<m. Moreover, the address vector is included in the word 
vector (See Figure 1). Formally, in a word of length m and with an address with length 
n, the first n bits of the word compose the address.  

 

 
Figure 1 A word vector with its address section. 

 
The structure of this new memory system is similar to the original SDM. It is 

composed of hard locations, each of which has an address and counters. The address is 
a fixed vector of length n. But each hard location has m counters, where m is greater 
than n. To store a word vector in the memory, the procedure is the same as described 
for SDM, except that now the first n bits of the word are used as address. To read from 
an address in the memory, again the procedure is similar to the one used for SDM. 



During each iteration, a word is read from the memory and its first n bits are used to 
read in the next iteration.  

Formally, the address vector is A = (WM)T, where A is an address vector of size n, 
W is the word vector of size m and M is a n x m rectangular diagonal matrix with all 1s 
in the diagonal.  

It is important to notice that the whole word vector, including the address, 
comprises the useful data. Conceptually, this memory is a mix of auto-associative and 
hetero-associative memories. The address part of the word is auto-associative whereas 
the rest of the word is hetero-associative. This allows us to preserve, and even to 
improve, the desirable characteristics of the SDM. First, with an initial vector as 
address to cue the memory, it is possible to retrieve the corresponding word, even if the 
initial vector is a noisy version of the stored one. This means that ESDM maintains the 
noise robustness characteristic of SDM. Second, the data of each vector is stored in a 
number of hard locations in a distributed way. So, it is also robust in the case that some 
hard locations are corrupted or lost. Third, the previously discussed psychological 
characteristics in SDM are also present in ESDM. Finally, the hetero-associative part of 
the words in ESDM allows storing other data related with the address data but without 
interfering with it. This is a notable improvement over the original SDM that relies on 
the flawed sum operation to achieve the same goal but with far less effectiveness. 

Lawrence and Trappenberg found similar conclusions with different associative 
memory architectures [28]. They studied the advantages of using a combination of 
auto-associative and hetero-associative neural networks especially for sequence 
learning. In particular, they emphasized the importance of both the auto-associative and 
hetero-associative parts to achieve robust sequence memory. The auto-associative part 
is important for noise robustness allowing cueing the memory with partial or noisy 
inputs, whereas the hetero-associative part points to the next element in the sequence.  

3. Storing sequences and other data structures 

In section 1 we mentioned two approaches suggested by Kanerva [1, 14] for 
storing sequences in SDM. We also mentioned that both approaches have important 
disadvantages that weaken the auto-associatively, content addressability and noise 
robustness properties of the memory.  

Using associative memories for sequence storage has been long studied. Wang and 
Yuwono [29] described the problems of using several types of neural networks to store 
sequences, including Hopfield and Willshaw. Stringer et. al. [30] studied hetero-
associative continuous attractor networks to solve path-integration.  We have already 
mentioned the results of Lawrence and Trappenberg [28]; they also provided a good 
review of associative sequence models. Finally several authors have proposed 
variations of Hopfield and other memories to store sequences, for example [31]. 

The implementation of sequence storing in ESDM is straightforward and 
eliminates the disadvantages mentioned. The most basic implementation uses addresses 
of length n and words of length 2n, as shown in figure 2. The sequence is composed of 
vectors of length n. To store the sequence, the first two vectors E1 and E2 are 
concatenated forming a word of length 2n. We will say that the word has two sections 
of n bits each. This word is stored in address E1. Then E2 and E3 are concatenated and 
stored in address E2. The process continues until the full sequence is stored. A special 
vector can be used to indicate the end of the sequence. 



 

 
Figure 2 Basic sequence representation using 2n word vectors 

 
To retrieve the sequence, the initial vector of the sequence is used to read a word 

from the memory. This word is divided in two sections. The second section is the 
second vector in the sequence. Repeating this procedure, the whole sequence is 
retrieved. Notice that in each reading during the retrieval of the sequence, the vector 
used as address can have some noise, but the iterating reading from the memory cleans 
it up, as explained previously. One problem with this implementation occurs when two 
sequences are stored in the memory that share a common vector. For example: 

ABCDE and FGCHI 

In the example, the word CD is stored in address C but the word CH is stored in C 
also. This produces the undesirable interference between D and H that prevents the 
correct retrieval of one or even both of the sequences. One plausible solution is to use 
the same procedure proposed by Kanerva using hyperdimensional operations. The first 
reading from the memory again uses the initial vector of the sequence. But the 
following addresses are calculated using the previously read vectors of the sequence. 
An elegant combination is achieved using permutation and sum operations [14]. For 
example if Π denotes a random permutation, then the address for the third element of 
the sequence is: 

 
(1)   A3 = [Π(E1 ) + E2] 

 
With this address we read the memory, and from the word read the next vector of 

the sequence, i.e. E3, is retrieved. The following addresses are calculated in the same 
way.  
 
(2)   Ai+1 = [Π(Ai ) + Ei] 
 

An interesting option is to preserve the sum of the vectors in each reading and 
multiply it by a scalar k between 0 and 1, for example 0.8. This produces an effect of 
fading away of the old vectors of the sequence in the calculation of the next address. 



 
(3)   A’i+1 = k * Π(A’i) + Ei 

 
(4)   Ai+1 = [A’i+1] 
 

Where A’ is the real vector with the sum before normalization. 
 
The introduction of the scalar k has another critical function. The normalization 

required after the sum introduces excessive noise that diminishes the probability of 
recovering the sequence. See the simulations section below for a discussion of this 
subject. 

These equations can be used in the original SDM, as pointed out by Kanerva. In 
both situations, operations with sums are used but the advantage of this implementation 
is that the retrieval of the succeeding vector in the sequence does not depend on 
operations that extract the vector from the sum. Here the sum is used only to compute 
the next address, but the vector is extracted directly from the second part of the read 
word. 

In a similar way, other data structures can be stored in ESDM. For example, to 
store binary trees, addresses of length n and words of length 3n are used. With the 
address of the root of the tree the first word is retrieved. The word is divided into three 
sections, left, center and right. The left section holds the content of the node in the tree; 
the center section is used as an address with which to read the left child node of the 
tree; the right section holds the address of the right child node. This procedure is 
repeated until the whole tree is retrieved. Notice that here again noisy vectors can be 
used, and ESDM takes care of cleaning them up. Also, a similar mechanism to the one 
described for sequences can be used to avoid problems related to repeated vectors in 
several structures. 

Other data structures can be easily derived from sequences and trees. A double 
linked sequence can be constructed adding another section of n bits to the word. The 
address of the previous element in the sequence is stored there. This allows navigating 
the sequence in reverse order. Something similar can be used to store the parent of a 
node in a tree. This allows navigating the tree from the bottom up. Finally, more 
sections of n bits can be added to each word in the tree so that trees with greater 
degrees can be stored. Interestingly, a tree can represent a more meaningful data 
structure, like a record, where each child node represents a field of the record, and the 
root the record itself. An even simpler representation for record is a word with several 
sections where each section represents a field of the record. 

4. Simulations 

For the simulation and testing of the ESDM we implemented the memory using a data 
base for the main storage of the hard locations, and a RAM cache to speed up the store 
and retrieve operations. This allows us to create large ESDMs, with millions of hard 
locations and word dimensions on the order of 1,000 or even 10,000 bits, even using 
modest computers.  

Several simulations were performed with the ESDM. First, the capacity and noise 
robustness of the extra bits of the words were compared with these same characteristics 
of the standard SDM. Second, the sequence storage and retrieval were tested for several 



values of k. Third, retrieving sequences from intermediate elements was analyzed. 
Finally, recovering sequences that have a common element, i.e. crossing sequences, 
was tried. In this section we present the details of these simulations, their results and a 
discussion. 

4.1. ESDM capacity and noise robustness 

These simulations test the capacity of the memory in comparison to its noise 
robusteness. Kanerva [1] proved that the critical distance of SDM is a function of the 
number of words stored in the memory. He also proved that the maximum capacity of 
the memory is reached when the critical distance reaches zero, and that it is 
approximately equal to 10% of the number of hard locations for a memory with vectors 
of 1,000 dimensions. After this number it becomes impossible to retrieve a stored 
vector even when cueing the memory with the same vector. For a complete analysis of 
SDM capacity see [23-25]. Reading from ESDM is essentially the same as from SDM, 
with the discarding of the extra bits of the word. Hence, convergence during a read in 
ESDM is the same as in SDM, and the critical distance and capacity are also similar to 
those of SDM. However, we need to show that the percentage of errors (changed bits) 
in the words read from ESDM is similar to the percentage of errors in the words read 
from a standard SDM. If only the address part of the vectors stored in ESDM is used, 
the memory is equivalent to the standard SDM, so the error comparison was performed 
between the address part and the whole word of the same simulation. 

Several simulations were performed to test the percentage of errors in the words 
read. An ESDM with 200,000 hard locations, an address length of 1,000 dimensions 
and a word length of 2,000 dimensions (including the address) was used for the 
simulations. The size of the memory, i.e. number of hard locations, was chosen to have 
enough hard locations in the access sphere for each read or write to support the desired 
properties of the ESDM, but to be as small as possible to limit the number of reads and 
writes required to perceive the effects of loading the memory. The size of the vectors 
was chosen to match those used by Kanerva [1]. For this particular simulation, a total 
of 10,000 random vectors were stored in the ESDM, which is roughly half of the 
memory capacity.  

The storing of vectors in the memory was done in stages, writing 1,000 vectors in 
each stage. At the end of each stage, the vectors were read from the memory. For the 
readings, 10% of the bits of each vector address were changed randomly, and these 
noisy vectors were used as cues. Table 1 and Figure 3 show the results of this 
simulation. 

An analysis of the retrieved vectors shows that the proportion of errors for the 
word and the address is constant and roughly proportional to the difference in size. i.e. 
a word that is twice as large as the address has twice the number of incorrect 
dimensions than the address. Also, the percentage of retrieved vectors is consistent 
with the diminishing of the critical distance as more vectors are stored in the memory 
[1]. 



 
 

Stage Retrieved 
Iterations Error mean 

mean Std address word 
1 100.00% 2.59 0.49 0.00 0.00 
2 100.00% 3.04 0.24 0.00 0.00 
3 99.80% 3.51 0.59 0.00 0.00 
4 98.40% 4.31 0.90 0.00 0.00 
5 90.30% 5.23 1.25 0.04 0.09 
6 71.20% 6.16 1.41 0.20 0.39 
7 47.60% 7.30 1.62 1.37 2.83 
8 22.30% 8.24 1.58 3.78 6.18 
9 15.00% 9.50 1.83 1.15 1.60 

10 12.60% 11.09 3.34 1.54 2.47 
 

 
 
 
 
 

 
Figure 3 Percentage of retrieved vectors in each stage, iterations (mean) required in each stage, and errors 
(number of changed bits) of the address part and the whole word of the retrieved vectors in each stage. 

Table 1. Simulation 1. ESDM capacity and noise robustness. In each stage 1000 
vectors were stored. Then the same vectors were retrieved after adding 10% noise to 
the cue (address). The number of iterations and errors correspond to the retrieved 
vectors. The address part is equivalent to the standard SDM result. 

 



 

 
Another simulation was performed to show the noise robustness of ESDM. The 

same ESDM was used as for the previous simulation, with 10,000 vectors already 
stored in the memory. The vectors were also preserved in a separate database so they 
could be used as cues or compared with the retrievals from the ESDM.  The simulation 
was performed in three stages. In each stage, one thousand vectors were randomly 
selected from the set of stored vectors, and the memory was read using the address part 
of these vectors with an amount of noise. The amount of noise changed in each stage: 
0% in the first stage, 5% in the second and 10% in the third. Table 2 summarizes the 
results of this simulation. 

 
 

 Stage Noise Retrieved Error mean 
 1 0% 100.00% 0.286 
 2 5% 97.00% 4.784 
 3 10% 14.80% 2.439 

 
 

The number of successful retrievals was high with a small amount of noise, and the 
error (number of changed bits in the retrieval) was very small, less than a bit on 
average. Even more, 93.3% of the vectors had 0 errors in stage 1 and 79% of the 
retrievals in stage 2 had fewer than 5 errors. As expected, the number of retrieved 
vectors decays abruptly when the vectors used as cues reach the critical distance. The 
critical distance is the distance from whence the probability to converging to the stored 
value is 50%. The critical distance is a function of the number of hard locations and the 
number of stored vectors in the memory. For the ESDM used in this experiment, with a 
load of 50% of its capacity, distances of 100 bits (10% of the address) from the original 
vectors are beyond the critical distance (see [1] for details). 

4.2. Sequences 

We performed several simulations to test sequences stored in ESDM. In each 
simulation 50 or 100 sequences of 20 elements each were stored. As in the previous 
simulations, ESDM memories with 200,000 hard locations, an address length of 1,000 
dimensions and a word length of 2,000 dimensions (including the address) were used 
for these simulations. For each simulation a new ESDM was used, the load of the 
memory in each simulation was between 5% to 10% of the memory capacity. This 
prevented interference among stored vectors. For these tries, we considered a sequence 
successfully retrieved if all of their elements were retrieved with a small amount of 
noise (less than 5%).  

The first simulation stored 50 sequences using equation (2). Using the same 
equation for retrieving, 49 sequences were restored. The same simulation was repeated 

Table 2. Simulation 2. ESDM capacity and noise robustness. In each stage 1000 
vectors were retrieved from a ESDM with 10,000 stored vectors , and an amount of 
noise was added in the cue (address). The number of errors corresponds to the 
successfully retrieved vectors and represents the average number of bits changed in 
each vector. 

 



with 100 sequences and none of the sequences could be restored. The load of the 
memory was 10%, so interference does not explain this result. The problem here is the 
normalization after the sum in equation (2). When the address is calculated the sum has 
only two binary vectors as operands. When in one dimension the two operands have 
different values, the value for this dimension is undetermined and then a random value 
is chosen during the normalization. Assuming that the vectors are uniformly randomly 
distributed, the average number of bits that are undetermined is 50% and this 
introduces excessive noise in the address preventing the retrieving of the element. 

To avoid this problem, equations (3) and (4) were used. Since one of the operands 
has a smaller weight than the other, the sum has no undetermined dimensions, and the 
problem disappears. In a simulation where 100 sequences were stored using equations 
(3) and (4) with k = 0.8 all the sequences were restored with 0 errors in its elements. 

The use of the parameter k has other interesting consequences due to the fact that 
the weight of the previous elements diminishes as the sequence advances. It is possible 
to “step into” the sequence in the middle. However, more than one element may be 
required for the cue. For smaller values of k, fewer elements are required as part of the 
cue to step into the sequence. Conversely, if two (or more) sequences have common 
elements, the higher the value of k (nearly equal to one) the higher the chance of 
retrieving the correct sequence. The value of k is then a tradeoff between these two 
desirable properties. 

Several simulations with different values of k were performed. First, the step into 
property was tested. Three simulations with values of k equal to .7, .8 and .9 
respectively were performed. 100 sequences with 20 elements each were stored in each 
simulation. Then, 10 of the stored sequences were chosen, and for the elements of these 
sequences, the number of required elements in the cue to be able to step into the 
sequence at that element was evaluated. To avoid transitory effects, only elements after 
the fifth element in the sequences were used as points to step into. Table 3 shows the 
results of these simulations. 

 
 
 
 
 
 
 
 
 

 

 
 

Another series of simulations was performed to evaluate the retrieval of sequences 
with common elements, i.e. sequence intersection. Four simulations with values of k 
between .9 and .6 respectively were performed. Ten pairs of sequences with 20 
elements each were stored in each simulation. The sequences in each pair had a 
common element. In every case, the intersection was after the forth element in the 

Stage k 
Required Elements 

Average Std 
1 0.7 1.085 0.280 
2 0.8 2.697 0.679 
3 0.9 6.000 1.265 

Table 3. Effect of the parameter k in stepping into the sequence. In each stage, the 
number of required elements in the cue to step into the sequence at different points 
was evaluated.  

 



sequences. A number of random vectors were stored in the memory so as to achieve a 
load of 10% of the capacity of the memory.  

Then, each of these sequences was retrieved from the memory and the number of 
successfully recovered sequences noted. With all of these values of k, all sequences 
were successfully retrieved. This result shows that the feature of correctly retrieving 
intersecting sequences is invariant over the value of k. However, equations (3) and (4) 
suggest that if two sequences have more than one consecutive common element, higher 
values of k will perform better.  

Notice that when k is equal to or less than .5, the first term in equation (3) is 
always less than 1 and it does not contribute to the final value after normalization in 
equation (4). As a consequence, the next address is only a function of the previous 
element, so that most elements after the intersecting element are not able to be 
retrieved. This is because of the interference produced by the common element of the 
sequences.  

Comparing the results of the last two groups of simulations, a balance between the 
two characteristics, step into and crossing of sequences is achieved with a value of k 
between .6 and .8. Of course, the selection of the value of k depends on the 
requirements of the application of the ESDM.  

5. Conclusions 

Here we have presented an extension of the original SDM that addresses several of its 
difficulties with storing compound data structures like sequences, trees and records. 
Our ESDM preserves the desirable, biologically inspired, properties of the original. It is 
also still noise robust, auto-associative and distributed. These, combined with the 
possibility of storing sequences and other compound data structures, make ESDM an 
even more attractive option with which to model episodic memories. 

The simulations carried out successfully tested the performance of the ESDM in 
several scenarios. The importance of the parameter k was shown not only for the simple 
storage of sequences but also to achieve desired features of being able to step into in 
the middle of sequences, and to support common elements in different sequences.  

ESDM is compatible with other improvements already studied, such as the 
introduction of the “don’t care” symbol [9, 10], or the forgetting mechanism [7, 8]. 
Including this forgetting mechanism is a natural future step for this architecture. 

ESDM has the potential for further extensions. Representation of other data 
structures, and combining them with hyperdimensional vector arithmetic are possible 
paths for further development. 
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