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In Poincaré gauge theory of gravity developed previously, we show that there is a structurg,
which is an extension of spinor structure, on the space-time manifold. An internal Poincaré gauge
transformation induces a Poincaré transformation on the tangent affine space at each point of the
space-time. Corresponding to the extended spinor structure, a spinor field ¢ having the “intrinsic”
energy-momentum (=the quantum number associated with the internal translation) P,=K y:(1—sy5)
is defined. We give an action I of ¢ on the Minkowski space-time, which leads to the Klein-Gordon
equation. The action I™ is invariant both under the “internal Poincaré” and the “Poincaré coor-
dinate” transformations, and there are four conserved physical quantities correspondingly. They
are the “intrinsic” and canonical energy-momenta and spin and orbital angular momenta. The
“Poincaré coordinate” transformation can be regarded as a kind of internal transformation. For the
interacting. system of ¢ and Poincaré gauge fields, we have only fwo conserved quantities: one
energy-momentum and one angular momentum. The “intrinsic” and canonical energy-momenta (the
spin and orbital angular momenta) of the field ¢ are transformed into each other through the
Poincaré gauge interaction. A brief comment on the second quantization of the free p-field on the
Minkowski space-time is given.

§1. Introduction

In a series of papers,””® a theory of gravity, named a Poincaré gauge theory of

gravity, has been developed. This theory has the covering group of the Poincaré
group as the internal gauge group, and the possible existence of fields, named exotic
fields, with non-vanishing “intrinsic” energy-momentum P, has been pointed out.”
No particle of this kind has been observed, but we believe, notwithstanding, that the
possibility of exotic fields is worth exploring because of the following reasons: (1)
The internal translation functions effectively in our gauge theory. (2) Exotic fields
definitely discriminate our theory from the other theories of gravity such as the
Kibble-type Poincaré gauge theory.”® ; :

In the present paper, we consider an extended spinor structure on the space-time
M and an associated spinor field ¢, named exotic spinor field, with the “intrinsic”
energy-momentum Pr=Ky.(1—sys). Also, we clarify the intuitive meaning of the
internal Poincaré® gauge transformation. In § 2, we discuss a structure, which is an
extension of spinor structure, and a spinor field associated with it is introduced. The
transformation induced on an tangent affine space by the internal Poincaré gauge
transformation is also discussed. In § 3, considering the field ¢ on the Minkowski
space-time, we give an invariant action and the generators of the “internal Poincaré”
and “Poincaré coordinate” transformations. The discussion is given in an arbitrary
coordinate system. In §4, we discuss the interaction of ¢ with Poincaré gauge fields

*) The word (or rather symbol). Poincaré is used for the covering group of the Poincaré group.
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Extended Spinor Structure and Exotic Spinor Field ' 851

A*, and A%.. In §5, a summary and remarks are given.

§ 2. Extended spinor structure, exotic spinor field ¢
and transformation induced on tangent affine space

Our theory is formulated® on the basis of the principal fiber bundle
"‘C’PZ{P)My 71-; P;b 130_’ Ua, ¢a}, ‘7 (2.1)

over the space-time manifold M having the covering group P, of the proper ortho-
chronous Poincaré group Ps as the structure group. Here P, 7 and ¢. are the bundle
space, the projection and the coordinate function, respectively.

We consider the affine frame bundle” '

AM)={AM), M, ms, GA(4, R), GA(4, R), V, pa}. , (22
This has a subbundle P(M) having the group P, as the structure group:
P(M)={P(M), M, zp, Po, Po, Us, @ra} (2-3)
with |
def
P(M)zyygja[{(l‘ — ¢o(¥)) e (), L'rearM(t, LYEPR], &, 1=0,1,2,3,
(2-4)

where? ¢ and e are the Higgs type field ¢* and the vierbein field e, respectlvely,
corresponding to the local cross section” de:

def
Ua(y)=¢a[y, (0, [2)] ,  VyEU.. (2+5)
In Eq. (2:3), #e is the projection, and the coordinate function @rq is defined by
def . ’
oraly, (t, L)={(t — ¢o(¥)) ' €r(¥), Lr€ri(y)}, VyEU., V(t,L)ER.
. (2-6)
There is a 2 to 1 bundle homomorphism®* F: & - (M) defined by
def !
F(u)={(ts— $o(3)) ex(y), [A @ )s€ ()}, YV u=@dy,(ts, as)IEP
2-7

with A being the covering map from SL(2, C) to the proper orthochronous Lorentz

group. Also, the mapping F is a bundle homomorphism from £ oxto the subbundle

P(M). Thus, we have a structure {F, &, L(M)}, which is an extension of the spinor

structure® {Fo, S, L(M)}, and it will be called an extended spinor structure hereafter.
The internal Poincaré gauge transformation

d(»)=0()-(t), a()), (), aY))EP (2-8)

induces the transformation
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852 T. Kawai

- F(o(y)-(t(), a)={t"()ex(y)+ P(y), [A(a(y)]ed»)}, (2-9)
where we have expressed .
F(o(y))={P(»), ex(»)} . _ (2-10)

Thus, the internal Poincaré gauge transformation o(v)—o'(y) induces a Poincaré
transformation on the tangent affine space at each point v of the space-time.

Corresponding to the extended spinor structure {F, ®, P(M)}, we can define a

field ¢ which transforms according as
?'(v)=o(y)—it*(y) Prp() —%wk‘(y)Mkm(y) , (2-11)

under the transformation (2-8) with
(Ala(y)) ="+ w* (), (2-12)

where #* and w*=—@" are infinitesimal functions.
In Eq. (2-11), we have defined®

def

def y '
szK)’k(l‘Sﬁ) , Mklz_TZ[Yk, 7’1] (2'13)

with K being a constant complex c-number and s?=1. The matrices P, Mx; satisfy
the commutation relations of the Poincaré algebra:
[P, P1=0,  [Mus, Pul=isnPi— imPs,
[ Mit, Mnn)= inemMin~+ i90Mpn — 1920 M im— 591mM . (2-14)
We have the relations
P.P=0, T.I=0, : . (2-15)

- where I% is the Pauli-Lubanski operator:

def 1

I =7€klmanmPn 7 ) (2‘ 16) .
with exmna being the Levi-Civita symbol. Equation (2-15) implies that the eigenvalues
of P, and of I are all vanishing. '

The field ¢ will be called an exotic spinor field.

§3. Field ¢ on the Minkowski space-time, invariant action and generators

3.1. Imvariant action and field equation

The action

" def . : . -
IszLMd y - | 8-1)

*) The y-matrices are defined in Appendix A.
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Extended Spinor Structure and Exotic Spinor Field 853

with
=/—gL"=y—g o((J—m’)p (3-2)
leads to the Klein-Gordon equations
O-m?e=0, O-m*)g=0. \ ~ (3-3)
Here,
def X def . .
g=9*n,  p=—1ir(p+iqys) - (3-4)

with p and ¢ being real constants satisfying the conditions
(K+EK¥p+is(K—K*)gq=0, pP+g+0. (3+5)

In Eq. (3-2), gd—-ejdet(gpu) with gus being the component of the Minkowski metric in an
arbitrary coordinate system {y*, =0, 1, 2, 3}, and the d’Alembertian has the expres-
sion

= p*- o _ Bl ad (e” d > ’ (3.6)
T axFoxt T ¢ FayF\C o7

with {2*, £=0, 1, 2, 3} being a Minkowskian coordinate system and &” kdgay“/ax".
The coordinate {x*, £=0, 1, 2, 3} is regarded as a “field” on the space-time and the
Euler derivative SL¥/0x*® is given by
) (- SLM | SLM >
orF NP T O

37

Thus, the field equation of x* is automatically satisfied if Eq. (3-3) is satisfied, which
is quite reasonable because x* is not a dynamical variable. This corresponds to the
statement A(iv) of section 9 of Ref. 1), and x* is the special relativistic correspondent
of the Higgs type field ¢*.

The action ¥ is invariant under the three kinds of transformatlons

xt=x*, yr=y*, ¢’(y’)=¢(y)—ickPk¢(y)—7ldklez¢(y), (3-8)
2= CP— Rt yr=y" () =a(y), ' (3-9)
xt=zt, VE=yr v, () =a(y). (3-10)

Here, c¢* d*=—d%*, C* and Q"’d—ifvl’”.kaZ — Q% are all infinitesimal real constants.

Neither of the transformations (3-8) and (3-9) is not the global correspondent of
the transformation described by Egs. (2-8), (2-11) and (2-12), but only their combina-
tion with the condition

cF=C*, d*=0", (3-11)

corresponds™® to Egs. (2-8), (2:11) and (2-12). In view of this, the transformations

*) See also Eq. (4-23) and its footnote.
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854 ' T. Kawai

(3-8) and (3-9) will be referred to as “internal Poincaré” and “Poincaré coordinate”
transformations, respectively.

The transformation (3:10) is a general coordmate transformation.

3.2. Generators —— two energy-momenta and two angular momenta ——

The generator G'”'(o) of the “internal Poincaré” transformation (3-8) is given by

GO e)=c*M?, +%dkzs(¢)kl . (3-12)

with .
def def
M(w)sz T(w)kﬂdo-ﬂ , S(W)kz=/S(¢)kz#ddy , (3, 13)
o o
where
def .
T =iy—9 g™ (@ ,Pro— 8Prp.) , (3-14)
def )
SO F=id—g (B .LSup— PSrp,v), ’ (3-15)

and (¢*) is the inverse of the matrix (gw).
The generator G'”*(o) of the “Poincaré coordinate” transformation (3-9) is given

by
G<¢)2(O.)= _ CkM(sv)ck +%_‘leL(¢)kl - (3 . 16)
with
" def def
MPZ [ T0do.,  LOW= [ M@ .tdon, (3-17)
where |
def N
TO% =& L"+V—g " {e*: @10, — §(e*rp)a} (3-18)
M @2zl L+ V=G g Bat— P u ) N — V=G e n 9.1
' (3-19)
These generators are conserved, -
G (02)=G""Y(a1), G 02)=G"%(01), : (3-20)
if ’
AT d S ) dou=0 (3-21)
and

f{_ Ck T(sv)ck/z _{_%leM(?)klﬂ}dG#:O , (3 22)
c
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Extended Spinor Structuve and Exotic Spinov Field 855

respectively, where C is the hyper-cylinder at spatial iriﬁnity between the space-like
surfaces o1 and 0,. The conditions (3+21) and (3+22) are satisfied, if*

= O( 1/2+e>, = 0( 3/2+e), 0= 0( 5/2+e> (e>0) ’ (3-23)

with »& / @+ @2+ ()¢ and e being positive but otherwise arbitrary. The
conservations of G”(¢) and of G®?*(0) correspond to the invariance of I* under the
transformations (3+8) and (3-9), respectively.

The quantities M”, and M‘P°, are the “intrinsic” energy-momentum and the
canonical energy-momentum,** respectively, and also S and L' are the spin
angular momentum and the orbital angular momentum, respectively. It is remark-
able that these four ave separately conserved. :

~ The generator G'*”*(0) of the general coordinate transformatlon 3 10) Vamshes
identically

G®*(5)=0, ' ' : (3-24)

as is easily shown.

§4. Interaction of ¢ with the Poincaré gauge fields A%,
and A*. and conserved quantities

The interaction of ¢ with Poincaré gauge fieldsis introduced by the feplacement?"**)
DTl 9= (7 0) st A%l s+ iAWPT 0 AP ng|  (401)
with
4 k¢=e”k[¢,y+%A‘“Mzm¢+ iA‘pcho], _ (4-2)
in the Lagrangian L".

The total action for the interacting system of the fields ¢, A*» and A*. is given
by****)

I= /Ld“y | (4-3)

with -

*) For Eq. (3-21), the condition for d.di in Eq. (3+23) is not necessary.

*%) In this classical treatment, the canonical energy of ¢ is not positive definite. This point will be

discussed in § 5(e).- .

**%) In this section, e and gy are the components of the vierbein and the Lorentz metric tensor fields
introduced in Ref. 1). They agree with the correspondents in § 3, if the space-time is Minkowskian. Also,
unless otherwise stated, all the symbols, conventions, terminologies and the assumptions are the same as those
in Ref. 3). Some of them are enumerated in Appendix B for convenience.

*¥%%) To denote a coordinate system, we use here {y*, #=0, 1, 2, 3} instead of {x*, £#=0,1,2,3} in Ref. 3).
Also, it is assumed from the outset that Frobenius’s condition for the unit time-like vector field®® N is
satisfied. Hence, the space-time is sliced into a family & of space-like surfaces.
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856 . | T Kawai

def
L=L°+/—g o6n* V.V 10— m?ep) , : (4-4)

where L€ is a kinematical Lagrangian of the fields Ak‘p and A*.. In what follows, L¢.

is chosen to be that given by Eq. (4+8) of Ref. 3):
def __
L=L°+2a0.(J—ge*re”A*Y), (4-5)

__ def
L= «/—“j[ a’tklmtklm + kavk + yakak + d1AklmnAklmn + aszlmanz”m
+ as Cklmncszfm + a4EklEkz + ds[kl]kz + CZGR2+ CZR] . (4 . 6)

Here, a, B, 7, a: (1=1,2,-,6) and a are all real constants, fum, v» and .ax are the
irreducible components® of the field strength

Tklmzzeﬂleum(ek[u,ﬂ]+Akn[ﬂenu]) s (4‘7)

and Aximn, Brimn, Crinn, Ew, I and R are the irreducible components® of the field
strength

Remn=2¢e"ne"n(Aniy i+ ArrinAu) . (4-8)

By following the procedure developed in Refs. 3), 5) and 6), we can discuss the
generators of Poincaré and coordinate transformations.

As has been pointed out in Ref. 5), generators depend critically on the choice of
the set of independent field variables with which the generators are defined. When
we choose {¢*, A%, A*,, ¢} with ¥ '

Y=y GO O ), (B>0) (4:9)

as the set of independent variables, we get the following results:
(i) The generator G(o) of the Poincaré gauge transformation

() =0()-(t), a(»)) - | (4-10)
‘with '

(tM)=c*+b*y), (AlaW))=0"+d*+w*(y), (4-11)
has the expression ‘

G(o)= c"Mk-l-%dlekz , | (4-12)

when the field equations of A*. and of A*. are satisfied. Here,

ef def
Mkdz’/o.. tot Tk#dd/t , Skl:'/o-‘ t°tSk/‘ddy , c=F (4. 13)

with**
def

*) In Eq. (4-9), % L 1lim y-we®, ¢®* is a constant and B is positive but otherwise arbitrary. In
Eq. (4-11), ¢* and d*=—d" are infinitesimal constants, and 4* and w*'=— " are infinitesimal functions
vanishing at spatial infinity.”
*%) The signature of 74" is opposite to that in Ref. 3).
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Extended Spinor Structuve and Exotic Spinor Field 857

def L
tot Tkﬂz |:3u< agfpu >_ af/;lk‘ Ak v aj[

(o ( 0L \_ oL oL ] | _

+ Z<au< a¢,ﬂu > a§0 @ >Pk¢ a¢,#y Pk(o,u ’ (4 14) -
oL oL m oL
i =2 gt =0 G )+ s vl 28w
(o)L L] _
+ 2 <au< aqp’#y a¢ . >Mkl¢ 2 agp o Mkl¢ vi- (4 15)

The dynamical energy-momentum M, and the “spin” angular momentum Sx; are both
conserved. Also, the flux integral representation for M, is given by

Mu=2a¢"s [ 3:0A9g"*¢"}dou, (4-16)
while for Sk we have

Suu=eOues [ 3K do,—24 My (4-17)
with |

K"“"’—Za[ “0c{(—9)g" g%} — v 35{(— 9) g"* g7} + (— g) g* Vg — p*liy0)] -
(4-18)

for the asymptotically flat space-time. The quantities M. and Sk are the fotal
energy-momentum and fotal (=spin+ orbital) angular momentum, respectlvely )
(ii) The generator G*(o) of the transformation

vy =yt oy* - (4-19)
with

y'=0(r"%), (8y")=0(»"%), (£=0) - (4-20)
vanishes,

G*(0)=0, ' (4-21)

. when the field equations of A*. and of A*. are satisfied. In Eq. (4:20), ¢ is non-
negative but otherwise arbitrary.

For the case when Eq. (4+9) is replaced with the more general form® _
¢* = 0Pk, " + pOk 4+ O(1 /7 | (B>0) , ,(4 -22)

and for the case in which {¢, e*s, A*,, ¢} is chosen as the set of independent field

*) The expression (4-16) is different from the corresponding expression (5-3) of Ref. 3) by a factor of —1.
The expression (4-17) is-identical with Eq. (5-8) of Ref. 3). They essentially agree with the corresponding
expressions for the total energy-momentum and for the total angular momentum in general relativity,

respectively. For the asymptotically “non-flat” space-time, Su has the expression given by Eq. (6-4) of
Ref. 3).
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858 o T. Kawai

variables, we can easily discuss the generators by following the procedure given in
Refs. 5) and 6). ’ '

The following should be noted: There are four conserved quantities for the free
p-field on the Minkowski space-time, while we have only two for the interacting
system of the fields ¢, A*» and A*.. This corresponds to the fact that the action I
is not invariant under the transformation™

grE=9*—C*—Q%y", A*u=A%+ A% C — 2% A% ,

A,kl,u_:AklyfgkmAmly_.leAkmp , ¢/:¢_ iCkPk¢_7delel¢ (4_23)
with infinitesimal constants C*, 2%=—0Q%, c* and d*=—d*, unless
Ct=c* and Qr=d*. (4-24)

§5. Summary and remarks

The results obtained in the above can be summarized as follows:

(i) There is the extended spinor structure {F, @, P(M)} on the space-time M and the
exotic spinor field ¢ is defined correspondingly. _

(ii) The internal Poincaré gauge transformation o(y)— ¢’(y) induces a Poincaré
transformation on the tangent affine space at each point vy of M. This gives an
intuitive interpretation for the internal transformations in the present theory.

(iii) For the field ¢ on the Minkowski space-time, the action I of free field has been
given. It leads to the Klein-Gordon equation and is invariant under the “internal
Poincaré”, the “Poincaré coordinate” and the general coordinate transformations.
There are four conserved quantities M?y, S, M and L. The first two (the
second two) constitute the generator of the “internal Poincaré” transformation (3-8)
(the “Poincaré coordinate” transformation (3-9)), and their conservations correspond
to the invariance of I™ under the corresponding transformations.

The generator G'”*(o) of the general coordinate transformation (3-10) vanishes
identically and thus carries no dynamical information at all. The field equation of
the Minkowskian coordinate {z* £=0,1, 2, 3}, when z* is regarded as a “field”, is
automatically satisfied if the field equation of ¢ is satisfied. The “field” x* is the
special relativistic correspondent of the field ¢*.

(iv) For the interacting system of the fields ¢, A*% and A*,, there are fwo conserved
quantities M and Sk, which are the total energy-momentum and the tofal (=spin
+ orbital) angular momentum of the system. They constitute the generator of the
Poincaré transformation, while the generator G*(o) of the coordinate transformation
(4-19) vanishes. That we.do not have four conserved quantities now corresponds to
the fact that the action I is not invariant under the transformation (4:23). The
“intrinsic” energy-momentum and canonical energy-momentum of the field ¢ are
transformed into each other through the Poincaré (gravitational) gauge interaction.

*) This transformation corresponds to the product of the transformations (3+8) and (3-9), and if is a
constant Poincaré gauge transformation when the rvelation (4:24) holds.
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Exteha’ed Spino? Structuve and Exotic Spinor Field 859

The same holds true also for the spin and orbital angular momenta.

The following is worth mentioning: - i
(a) The “Poincaré coordinate” transformation (3-9) is a kind of “internal” transfor-
mation. Two kinds of “internal” transformations leave the action /¥ invariant,
which, however, is not inherited when the Poincaré gauge interaction takes part in.
" The field ¢ is quite distinctive also in this respect. There is no corresponding
situation for the Dirac field.® It should be minded here that these “internal” transfor-
mations ‘are qualitatively different from “genuine” internal transformations in the-
ories of strong and electro-weak interactions. The transformations (3-8) and (3-9)
(and also the Poincaré gauge interaction) are rather suitable to be called soldered-
internal (or semi-internal or quasi-internal) transformations.
(b) For the interacting system of ¢ and the Dirac field ¢® on the Minkowski space-
time, the Lagrangian

def L
L‘e“”z@(EI—mz)@-%(@”rkakqo’)—6‘::@“7’*40")—mD¢D¢”+f€5¢¢”¢D (5-1)

with m” and f being the mass of ¢” and the coupling constant, respectively, is
invariant under the transformations i

#(a) = pla) = ic*Pugx)— -+ d* M)
=zt ¢P(2)=¢"(x), ' (5-2)
o?(2)= ¢D(x)—7i.Qk‘Mu¢”(x) :

rh=x*—C*— Q% x", o' (x)=9p(x). (5-3)

There are four conserved quantities correspondingly. The “intrinsic” energy
momentum and the spin angular momentum of the field ¢ are both conserved by
themselves also for this system. Also, they are qualitatively different from the spin
angular momentum of ¢”, as is easily seen from Egs. (5-2) and (5-3): The “internal
Poincaré” transformation of ¢ is qualitatively different from the internal Pomcare
transformation of ¢”.

(c) For fields on the Minkowski space -time, there are four conserved quantities also
for the following cases:

(1) The field ¢ has (non-gravitational) gauge interactions.

(2) The field ¢ has non-gauge interactions such as @p¢°, where ¢° is a scalar

field.

Presumably, for all the interactions but for the Poincaré gauge interaction, there
are four conserved quantities for the field ¢, and it is very likely that the mutual
transformations between the “intrinsic” and canonical energy-momenta and between
the spin and orbital angular momenta can take place only through the Poincaré gauge
interaction.

(d) Although the field ¢ is a spinor field, ¢ does not have the Dirac magnetic moment
with the magnitude Q%/2me¢, even if it has the electric charge Q.
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(e) The canonical energy M‘”* is not positive definite, as has been mentioned in § 3.
‘This can be seen by examining the structure of L¥ given by Eq. (3-2). Consider the
case with p=1 and ¢=0, for simplicity, and express ¢ as

&\
= 5-4
@ ( g) (5-4)
with £ and ¢ being two component spinor fields. Then, L” takes the form A '
L"=/—g{-&*O0-m" &+ *O-m*) ¢}, , (5-5)

which implies that M is not positive definite. The positive definiteness of the
canonical energy of the classical free g-field may possibly be realized by imposing
some subsidiary conditions. :

Also, naive methods® of the second quantization does not work well for the free
p-field. This is deeply related with the structure of L™ mentioned above. Presuma-
bly, for the quantization of ¢, some techniques utilizing an indefinite metric Hilbert
space and subsidiary conditions will be necessary. It is very likely that the free
e-field itself (or a part of it) is a ghost.

(f) All the observed fields are not exotic fields.”? (1) It is possible that exotic fields
exist and they interact with usual fields only through the Poincaré gauge interactions.
If this is actually the case, it is natural that exotic fields have not been observed as yet.
One may speculate that the dark matter is composed of particles of this kind.
(2) Also, there is a possibility that all the exotic fields are ghosts. '

(g) As for the other theoretical possibilities of exotic fields, the following can be
known quite easily: } : A

(1) The scalar and vector fields cannot be exotic fields.

(2) For the spinor fields ¢ (s=1, —1) with “intrinsic” energy-momentum P,

= K7.(1—s7s), we have the Poincaré gauge invariant Lagrangian

def —
LM =g FTAa+ 7)o = 5 (1= 1 s

7451 77 0= (L 7 4 ™)
— M1+ 79)p = m* § (1~ 75) o | (5:6)

with m being a constant and
Vep®= eﬂ-k[ 5(8),p'_“§“Almy¢(S)Mzm _ iAlﬂgﬁ(s)P(s)z] ) (5-7)

But, the energy-momentum P, does not play any role in the Poincaré gauge
interaction. Namely, P, in the covariant derivatives gives vanishing contribu-
tions to the Lagrangian L™, and also, the expressions of the energy-momentum
and of angular momentum of this system do not depend on P, explicitly.‘ The
“intrinsic” energy-mgmentum in this case seems “void”.

(3) A spinor-tensor field @i can have “intrinsic” energy-momentum
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(Pk)az:ik~~~;?lmnm:K( 7k(1_375))aﬂ6ilajmakn"' . : k (5'8)

(4) There are representations of Poincaré algebra with the generator of the
internal translation having continuous eigenvalues, but this case seems not to be

easily dealt with by standard methods of field theory, because it is too exotic. -
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Appendix A

The y-matrices used in the text are defined by

def def def

ve=ifax, k=1,2,3, n=—iB, r=inr:7sv (A-1)

wfth the matrices.

def{ ) O det ]2 0 .
= k=19 = .
@ (m 0), 2,3, B (O _]2), (A-2)

where oy is the Pauli matrix and £ is the 2X2 unit matrix. We have the relation
{72, v0=27m ' ‘ (A-3)

with (77kl) dlag (=1,1,1,1), and 7 and 7. (¢=1, 2, 3, 5) are anti- hermite and hermlte
respectively.

Appendix B

We enumerate here the symbols, terminologies and assumptions in Ref. 3) which
are presupposed in § 4.

(i) First,” A*. and A" are the Lorentz and translational gauge potentials, re-

' spectlvely They, together with the Higgs type ﬁeld ¢*, constitute the components
e*. of the duals of the vierbein fields:

T =t Al AR | (B-1)
They transform according as

¢t =A@ (' =t), A*=(A(aNUAUFt ut Alput™),

Ap=(Aa) nA el A @)1+ (Ala™))*n(A(@) ",
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e"u=(A(a™"))" ey, (B-2)
under the Poincaré gauge transformation ’

' (y)=0(»)-(t(»), a(»), tWET*, a(»)ESLE,C). (B-3)

(ii) By asymptotically flat space-time, we mean the space-time satisfying the follow-.

ing conditions:
1> The metric tensor

g=gpudy"®.dy“ (B-4)
with gyu e k. 7me'y has the asymptotic property
Doy =01 fr**™) m=0,1,2,3,4 (B-5)

Wlth y =/ WY+ () +(v*)? and Ao beln the m-th order partial derivatives of %
& G~ Dy With respect to y where (70)= diag (—1,1,1,1).
<2> The field strength R*,, has the asymptotic property

R¥u=0Q1/r**®), (a>0) (B-6)
with a being positive but otherwise arbitrary. The condition (B-6) is ensured if
=00/, AMum=0a/""), m=1,2, (B-7)

which shall be assumed in discussion for the case of the asymptotlcally flat space-time.
By asymptotically “non-flat” space-time, we mean the space-time satisfying the
above <1> and the condition :

2y AR =Ky + L% . ' (B-8)
with K*, being a constant and ,
L*=0Q1/r*), L*um=01/r*), m=1,2. (B-9)

(iii) In the discussion of angular momenta, we assume the following:
(a) <a+£a><,8——a>¢0 or a/z—B:—%a. , (B-lO)

(b) The dynamical system is at rest as a whole w1th respect to a frame deﬁned by the
family & of space-like surfaces.
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