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Abstract—Sparse Representation-Based Classification (SRC) is a face

recognition breakthrough in recent years which has successfully addressed the

recognition problem with sufficient training images of each gallery subject. In this

paper, we extend SRC to applications where there are very few, or even a single,

training images per subject. Assuming that the intraclass variations of one subject

can be approximated by a sparse linear combination of those of other subjects,

Extended Sparse Representation-Based Classifier (ESRC) applies an auxiliary

intraclass variant dictionary to represent the possible variation between the

training and testing images. The dictionary atoms typically represent intraclass

sample differences computed from either the gallery faces themselves or the

generic faces that are outside the gallery. Experimental results on the AR and

FERET databases show that ESRC has better generalization ability than SRC for

undersampled face recognition under variable expressions, illuminations,

disguises, and ages. The superior results of ESRC suggest that if the dictionary is

properly constructed, SRC algorithms can generalize well to the large-scale face

recognition problem, even with a single training image per class.

Index Terms—Face recognition, sparse representation, undersampled problem,

feature extraction.
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1 INTRODUCTION

WITHIN the last two decades, face recognition systems were known
to be critically dependent on discriminative feature extraction
methods, such as Fisherfaces [1], [2], [3] and Laplacianfaces [4], [5],
[6]. Of late, there has been a debate on the significance of feature
extraction. Wright et al. have demonstrated that, once the test
image can be approximated by a sparse linear combination of the
training images, the choice of feature space is no longer critical [7].
This surprising claim is supported by the experimental results that
Sparse Representation-Based Classification (SRC) with random
projections-based features can outperform a number of conven-
tional face recognition schemes, such as the nearest-neighbor
classifier with Fisherfaces and Laplacianfaces-based features. It is
commonly believed that SRC always requires a rich set of training
images of each subject that can span the facial variation of that
subject under testing conditions [8]. To fulfill this requirement,
Wagner et al. [8] recently designed a system that acquires tens of
images of each subject to cover all possible illumination changes.
However, many important applications on law enforcement and
homeland security can only offer a few, or even single, facial
images per subject. This is often called the undersampled problem
of face recognition, which has become one of the challenges in real-
world applications.

In this paper, we propose an Extended Sparse Representation-

Based Classifier (ESRC) for undersampled face recognition, which

is effective even when there is only a single training image per

subject. Taking advantage of the observation that the intraclass

variability, caused by variable expressions, illuminations, and
disguises, can be shared across different subjects, ESRC constructs
an intraclass variant dictionary to represent the possible variation
between the training and testing images. The recognition problem
is cast as finding a sparse representation of the test image in terms
of the training set as well as the intraclass variant bases, and the
nonzero coefficients are expected to concentrate on the training
samples with the same identity as the test sample and on the
related intraclass variant bases. Fig. 1 illustrates this simple idea of
ESRC to address the challenging face recognition problem despite
disguise and side light.

Experimental results on the AR [9] and FERET [10] databases
show that the usage of intraclass variant dictionary can largely
improve the sparse representation-based face recognition accuracy.
In most cases, ESRC can improve the accuracy of SRC by a margin as
large as 5-40 percent. We empirically show that adding the intraclass
variant bases of 5-10 generic faces (outside the gallery) improves the
recognition rate significantly. On the feature representation of the
proposed method, we make two valuable observations: 1) using
local features, such as Gabor wavelet and Local Binary Pattern (LBP)
instead of pixel feature can largely improve Sparse Representation-
Based Performance; 2) for local features, dimension reduction such
as random projections would lose useful information. In particular,
Gabor feature-based classification using ESRC yields 99 percent
accuracy on the AR data set, and LBP feature-based classification
using ESRC achieves a 92.3 percent recognition rate on the most
challenging FERET dup2 probe set. These excellent results suggest
that once the dictionary is properly constructed, SRC algorithms can
generalize well to the large-scale face recognition problem, even
when there is only a single training image per subject.

2 FROM SRC TO ESRC

In this section, we first discuss the ability of SRC to address the
densely sampled face recognition problem, and then present our
intuition and algorithm that extend SRC to the undersampled
problem.

2.1 Densely Sampled Problem: Dealing with Small Dense
Noise

The densely sampled problem is defined as follows: Given sufficient
training samples of the ith object class, any test sample from the
same class will approximately lie in the linear span of the training
samples associated with object i. Denote the training samples of all
k classes as the matrix A ¼ ½A1; A2; . . . ; Ak� 2 IRd�n, where the
submatrix Ai 2 IRd�ni stacks the training samples of class i. Then,
the linear representation of a testing sample y can be rewritten as

y ¼ Ax0 þ z; ð1Þ

where x0 is a sparse vector whose entries are zeros except those
associated with the ith class, and z 2 IRd is a noise term with
bounded energy kzk2 < ". The theory of compressed sensing reveals
that if the solution of x0 is sparse enough, it can be recovered
efficiently by the following ‘1-minimization problem [11]:�

‘1
s

�
: x̂1 ¼ arg minkxk1; s:t: kAx� yk2 � ": ð2Þ

Ideally, the nonzero entries in the estimate x̂1 will all be associated
with the column of A from a single class.

Based on the compressed sensing theory, SRC has been
successfully applied on densely sampled face recognition: In light
of the theory of illumination cones [12], a small number of
illuminations can linearly represent a wide range of illuminations,
and the noise term z is reasonable to counteract the sensory noise
and the non-Lambertian effect on the facial surface. SRC has
achieved nearly perfect accuracy on the Extended Yale B database
by sampling 32 differently illuminated images per subject [7]. Face
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recognition across expression is also a densely sampled problem if
the testing expressions, such as smile, anger, and scream, appear
in the training images of the same identity. It has been evidenced
by the excellent accuracy of SRC on the expressional faces of the
AR database [7]. The disguise problem is solved by adding a
complete set of single-pixel-based bases to the dictionary of SRC
[7]. Recently, the uncontrolled illuminations, pose variations, and
face alignment have been handled simultaneously by a deformable
sparse recovery and classification algorithm [13].

2.2 Undersampled Problem: Dealing with Large Deviation

The undersampled problem is defined as follows: Given insuffi-
cient training samples of the ith object class, any test sample of the
same class will largely deviate from the linear span of the training
samples associated with object i. In the representation model (1),
due to the lack of samples in Ai (we assume the test sample y

belongs to class i), the noise term z becomes a large representation
error. Since the assumptions of SRC are violated, the sparse
representation x̂1 computed from the ‘1-minimization (2) is no
longer useful for recognition. As evidence, a recent evaluation of
SRC on the large-scale FERET database, where there is a single
training image per subject, reported a recognition accuracy of only
20.3 percent on the dup2 set [13]. In general, SRC is not designed for
undersampled face recognition.

For instance, if the gallery set consists of a single natural image
(such as a passport photograph) for each subject, the test images in
real-world applications may contain complex variations of expres-
sions, illuminations, and disguises. Since the test image deviates
largely from the linear span of the correct gallery image, the nonzero
coefficients of x̂1 in (2) would not concentrate on the correct gallery
image. It is the significant difference between test image and gallery
image that makes the sparse representation become uninformative.
Fig. 2 illustrates some possible intraclass differences, displayed in
downsampled image form, from four subjects of the AR database.
One can see from the figure that the intraclass difference of the four

subjects is similar since the shapes of human faces are highly
correlated. Given a data set with a sufficiently large number of
subjects, one can readily find these similarly shaped faces.
Intuitively, we make the following assumption:

Assumption 1. The intraclass variation of any gallery face can be

approximated by a sparse linear combination of the intraclass

differences from sufficient number of generic faces.

Based on Assumption 1, the large deviation from the test image
to the correct gallery images may be linearly approximated by the
intraclass differences of generic subjects. If such an approximation
could help compensate for the representation error z in model (1),
it is possible that the ‘1-minimization (2) would become desirable
again. It is this intuition that inspires us to extend SRC to
undersampled face recognition by representing the intraclass
variability by a set of universal bases for all subjects.

2.3 Extended Sparse Representation Classifier

Let a basis matrix DI represent the universal intraclass variant
bases. When the gallery data matrix A does not contain sufficient
samples, the model (1) can be modified to account for large
variation between the training and test images by writing

y ¼ Ax0 þDI�0 þ z; ð3Þ

where the intraclass variant matrix DI usually represents
unbalanced lighting changes, exaggerated expressions, or occlu-
sions that cannot be modeled by the small dense noise z. If there
are redundant and overcomplete facial variant bases in DI , the
combination coefficients in �0 are naturally sparse. Hence,
the sparse representation x0 and �0 can be recovered simulta-
neously by ‘1-minimization.

Since, we assume that the intraclass variations of different
subjects are sharable, the variant bases could be acquired either
from the gallery samples themselves (if there are multiple samples
per subject) or from the subjects outside the gallery. In general, the
bases of dictionary DI can be generated in various ways as long as
they can reflect the intraclass difference.1 For instance, given a data
set with multiple images per subject, the mi samples of subject i,
stacked as vectors, form a matrix Di 2 IRd�mi , i ¼ 1; . . . ; l,Pl

i¼1 mi ¼ m. If there is a sample that is labeled as “natural” for
each subject, the variant bases can be obtained by subtracting the
natural image from other images of the same class:
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Fig. 2. Example of intraclass difference images of four subjects. Each row
represents the bases of one subject which are simply generated by subtracting the
(downsampled) natural image from the (downsampled) images with the variations
of expressions, illuminations, and disguises.

Fig. 1. The basic idea of ESRC. Top: The intraclass variant basis of a person can
be shared by other people. For instance, a facial image with disguise and side
light can be approximated by a natural (training) image of this person plus a
variant basis image of another person. Bottom: The nonzero coefficients of the
sparse representation are expected to concentrate on the training samples with
the same identity as the test sample and on the related intraclass variant bases.
Note that the intraclass variant bases can be acquired from any subject of the
training set. By using the ‘1-minimization technique to find out the sparse
representation, robust face recognition can be performed with a few, even a
single, training images per person.

1. In fact, the generic samples themselves can be used as the bases of the
intraclass variant dictionary because any intraclass difference is a linear
combination of them. The purpose of using class differences as bases is to
remove the specific identity information and extract common expressions,
illuminations, and occlusions (see Fig. 2 for examples) so that
‘1-minimization may yield more stable and informative results. As
evidence, experiments show that the sample-differences yield superior
performance to the raw samples for constructing intraclass variant
dictionary (see Fig. 7 for details).



D
ð1Þ
I ¼ ½D�1 � a�1e1; . . . ; D�l � a�l el� 2 IRd�ðm�lÞ; ð4Þ

where ei ¼ ½1; . . . ; 1� 2 IR1�ðmi�1Þ, a�i is the natural samples in class i,
and D�i is the reduced data matrix of class i removing the natural
sample. If the “natural” sample is not available, the intraclass
variant bases could be calculated as follows:

D
ð2Þ
I ¼ ½D1 � c1e1; . . . ; Dl � clel� 2 IRd�m; ð5Þ

where ei ¼ ½1; . . . ; 1� 2 IR1�mi , ci is the class centroid of class i. In
addition, the pairwise difference between samples can also be
utilized to form intraclass variant bases. Let columns of matrix
Pi 2 IRd�½miðmi�1Þ=2� be the pairwise difference vectors between the
samples of class i; an overcomplete variant dictionary could be
constructed as follows:

D
ð3Þ
I ¼ ½P1; . . . ; Pl� 2 IRd�

P
i
½miðmi�1Þ=2�: ð6Þ

Based on the model (3), we propose an Extended Sparse
Representation-Based Classification which casts the recognition
problem as finding a sparse representation of the test image in
term of the training set as well as the intraclass variant bases. The
nonzero coefficients are expected to concentrate on the training
samples with the same identity as the test sample and on the
intraclass variant bases.

To illustrate how Algorithm 1 works, Fig. 3 shows the sparse
coefficients of a test image with sunglasses using ESRC. In this
example, we use the downsampled images of size 27� 20 as
features (see Section 3.2 for details). The first 80 coefficients, i.e., x̂1,
correspond to 80 gallery images (with a single image per subject),
and the remaining 120 coefficients, i.e., �̂1, correspond to the
variant bases computed from 10 generic subjects. There are
10 variant bases, marked by red circles, which describe the
differences between the generic faces with and without sunglasses.
As expected, one can see from the figure that the test image with
sunglasses is actually the sparse linear combination of the gallery
image of the same identity (without sunglasses) and several
intraclass variant bases related to sunglasses. Since the coefficients
are sparse and the dominant coefficient is associated with subject
six, the smallest residual corresponds to the correct subject. Besides
the disguise case, similar working schemes have been observed on
recognizing images under variable illuminations and expressions.

Algorithm 1. Extended Sparse Representation-Based

Classification

1: Input: a matrix of training samples A ¼ ½A1; A2; . . . ; Ak�
2 IRd�n for k classes, a matrix of intraclass variant bases

DI 2 IRd�p (the dictionary size p depends on the data source

and construction method), a test sample y 2 IRd, and an

optimal error tolerance " > 0.

2: Normalize the columns of A and DI to have unit ‘2-norm.

3: Solve the ‘1-minimization problem

h
x̂1

�̂1

i
¼ arg min

���h x
�

i���
1
; s:t:

���½A;DI �
h
x
�

i
� y
���

2
� " ð7Þ

where x; x̂ 2 IRn, �; �̂ 2 IRp.

4: Compute the residuals

riðyÞ ¼
�����y� ½A;DI �

"
�iðx̂1Þ
�̂1

#�����
2

; ð8Þ

for i ¼ 1; . . . ; k, where �iðx̂1Þ 2 IRn is a new vector whose only

nonzero entries are the entries in x̂1 those are associated with

class i.

5: Output: IdentityðyÞ ¼ arg miniriðyÞ.

3 EXPERIMENTAL RESULTS

In this section, we present experiments on publicly available
databases for face recognition to demonstrate the efficacy of the
proposed ESRC. For fair comparisons, both SRC and ESRC use the
Homotopy2 method [15], [11] to solve the ‘1-minimization problem
with the error tolerance " ¼ 0:05 and identical parameters3 so that
the performance difference will be solely induced by the adoption
of intraclass variant dictionary.

3.1 Recognition from Insufficient Training Samples

The first experiment is designed to test the hypothesis that given
insufficient training images, ESRC can largely improve the
generalization ability of SRC by exploiting the observation that
intraclass variation can be shared across different subjects.
Specifically, we use the AR database, which consists of over
4,000 frontal images for 126 individuals [9]. In the experiment, we
chose a subset of the data set consisting of 50 male subjects and
50 female subjects, and the images are cropped with dimension
165� 120. For each subject, 14 images with only illumination
change and expression are selected: the seven images from
Session 1 for training and the other seven from Session 2 for
testing. Gabor feature is effective to improve the conventional face
recognition algorithms [16], [17]; we therefore apply it to SRC/
ESRC to test whether similar improvement can be achieved.
The images are first resized to a resolution of 128� 128, and then
the 10,240D Gabor feature vector is extracted according to [3]. We
selected a dimension of 540 for Pixel and Gabor-based random-
faces, and a resolution of 27� 20 for downsampled images.

To test the undersampled effect, we reduce the number of
training samples per class one by one from seven to two. The
intraclass variant dictionary of ESRC is computed from the training
samples according to (5). Fig. 4 shows the comparative perfor-
mance of SRC and ESRC. As expected, SRC deteriorates rapidly as
the number of training images decreases. In all 24 test cases
(4 features � 6 sample sizes), ESRC performs better than SRC. In
general, the superiority of ESRC becomes more and more
significant as the sample size decreases.

By globally comparing Figs. 4a with 4b, one can immediately
find that Gabor feature-based classification is more accurate than
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Fig. 3. Recognition with 27� 20 downsampled images as features using ESRC.
The test image belongs to subject six with sunglasses. The values of the sparse
coefficients recovered from ESRC are plotted together with the four bases that
correspond to the four largest sparse coefficients.

2. This optimization method had the best accuracy and fastest speed on
the comparative study in [14], and its source code was downloaded at
http://www.eecs.berkeley.edu/~yang/software/l1benchmark/.

3. To remove the bias caused by random number generator, we settle the
initial state to 0 for all random data partitions and all the random
projections of Randomfaces.



pixel-based classification for both SRC and ESRC, which is
consistent with the results found in the studies of the conventional
algorithms [16], [17]. In particular, as shown in Fig. 4b, Gabor
feature-based classification using ESRC achieves 99 percent
recognition rate when all seven training images are available. This
may be because Gabor feature is invariant to illumination change,
image misalignment ,and expressional distortion, which makes the
facial images of each class constrained to a linear subspace.

On the other hand, the accuracy of the best performed ESRC
drops to about 83 percent using two training samples per class,
which indicates that the intraclass variant dictionary from a few
gallery images themselves brings about a limited effect. For
satisfactory performance on undersampled face recognition, one
could resort to the dictionary constructed from the generic
subjects with sufficiently sampled images, which will be tested
in the following experiment.

3.2 Recognition from One Single Training Sample

The second experiment is designed to test the robustness of ESRC
against more severe intraclass variability using a single training
sample per subject. In this experiment, we chose a random subset
of the AR data set consisting of 80 subjects. For each subject,
13 images in Session 1 were selected: the single image with natural
expression and illumination for training, the other 12 images with
illumination change, expressions and facial disguises for testing.
The images are cropped with dimension 165� 120 and converted
to gray scale. We selected a feature dimension of 540 for Pixel and

Gabor-based randomfaces, and a resolution of 27� 20 for down-

sampled images.
Fig. 5 shows the 13 images of one subject in this test. As there is

only single natural training image, the tested classifiers need to

simultaneously handle the variations in expression, illumination,

and disguise of the testing images. To construct the intraclass

variant dictionary for ESRC, another 20 subjects (not overlapping

with the 80 testing subjects) are selected, also with 13 images per

subject. The intraclass variant dictionary contains 240 bases

(12 bases for each generic subject), which are computed by (4).

Fig. 2 has displayed the bases (in downsampled image form) of

four subjects. During the running of ESRC, we find that the

number of nonzero coefficients, i.e., k�̂1k0, ranges from about 20 to

60 out of the total 240 coefficients, which validates Assumption 1

about the sparse linear combination of intraclass differences.
Table 1 enumerates the recognition error rates for this experi-

ment, and one can see from the table that the error reduction by
switching SRC to ESRC is significant for all five types of features.
Further, we define an Error Reduction Rate (ERR), denoted by a
notion # , to characterize the proportion of the errors reduced by
switching SRC to ESRC. For instance, since the downsampled
image-based ESRC reduces the error rate from 43.44 to 11.98 per-
cent, the ERR is #72.42 percent [(43.44-11.98)/43.44], suggesting that
72.42 percent recognition errors can be avoided by using ESRC
instead of SRC. For the five types of tested features, the ERR is
about #60-#78 percent, strongly proving the effectiveness of ESRC.
In particular, only 5 percent error rate is achieved by Gabor feature-
based classification using ESRC.

As illustrated in Fig. 5, these test images of this experiment

contain four variabilities: expression, illumination, disguise, and

disguise+illmination. To better understand the effects of ESRC,

Table 2 separately enumerates the error rates of the four test

variabilities. Across all five tested feature types, the error reduction

rates for illumination and disguise (#63-#100 percent) are notably

higher than those for expression (#28-#50 percent). The relatively

low ERRs for expression indicate that the expression change is more

sensitive to the specific facial shape of different subjects than the

illumination and disguise, and it is more difficult to sparsely
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Fig. 4. The comparative recognition rates of the AR data set as the number of
training images per class decreases.

Fig. 5. The cropped images of one person of the AR data set. The single natural
image is used for training, while the other 12 images with severe variation are used
for testing.

TABLE 1
Comparative Error Rates of SRC and ESRC

on the AR Database Using a Single Training Sample per Person



represent the expressional variations. In general, our ESRC methods
provide a novel and unified solution on the four variabilities.

Even with this excellent performance, an interesting question
remains: How many generic subjects are needed to construct the
intraclass variant dictionary? Fig. 6 shows a plot of error rate
versus the number of generic persons in the dictionary. For all
kinds of features, the intraclass variant bases of a small number of
subjects are sufficient to largely improve error rate. In particular,
the intraclass variant bases of a single generic subject reduce the
error rate from 43.44 to 23.85 percent, using downsampled image-
based ESRC. This finding suggests that, once the intraclass variant
bases are properly designed according to the testing condition, a
dictionary of 5-10 subjects is enough to dramatically boost face
recognition performance.

The final test of this experiment evaluates several options for
computing the bases of the intraclass dictionary: difference to
natural image (D

ð1Þ
I ), difference to the class centroid (D

ð2Þ
I ), pairwise

difference (D
ð3Þ
I ), and original generic samples themselves. Previous

tests show that 10 generic subjects are enough to improve
performance significantly; we therefore use the 130 images of these
generic subjects to compute the dictionaries. Fig. 7 shows that the
algorithms with the three sample difference-based dictionaries
perform almost equally, which is notably better than the one with
raw generic data. The similar performance of the first three
dictionaries indicates that ‘1-minimization is effective to recover
the sparse combination regardless of the dictionary size. Certainly,
because D

ð1Þ
I and D

ð2Þ
I contain much fewer bases than D

ð3Þ
I , one

should use the former two for the computational efficiency of ESRC.

3.3 Large-Scale Recognition Despite Complex Variation

The last experiment is designed to test the robustness of ESRC

against complex facial variation in the real-world applications.

The experiment follows the standard data partitions of the

FERET database.

. Generic training set contains 1,002 images of 429 people,
which are listed in the FERET standard training CD.

. Gallery training set contains 1,196 images of 1,196 people.

. fb probe set contains 1,195 images taken with an alternative
facial expression.

. fc probe set contains 194 images taken under different
lighting conditions.

. dup1 probe set contains 722 images taken in a different time.

. dup2 probe set contains 234 images taken at least a year
later, which is a subset of the dup1 set.

Note that the intraclass variability of the FERET database is more

difficult to represent than those of the AR database since those of

the AR data set are taken in a single laboratory circumstance, but

the FERET database is acquired in multiple sessions over several
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Fig. 6. The recognition error rate of ESRC as a function of the number of subjects
in the intraclass variant dictionary.

Fig. 7. The recognition error rate of ESRC using differently constructed intraclass

variant dictionaries of 10 generic subjects.

TABLE 2
Comparative Error Rates of SRC and ESRC on the AR Database Using a Single Training Sample per Person

Fig. 8. The cropped images of one person from the FERET database.



years. The image is first normalized by an affine transformation
that sets the centered intereye line horizontal and 70 pixel apart,
and then cropped to the size of 128� 128 with the centers of the

eyes4 located at (29, 34) and (99, 34) to extract the pure face region.
No further preprocessing procedure is carried out in our
experiments, and Fig. 8 shows some cropped images which are
used in our experiments.

For comprehensive results, we compare ESRC with SRC by the
classification of eight types of features, as listed in Table 3. For
detailed procedures of Gabor and LBP feature extraction please
refer to [17]. The intraclass dictionary of ESRC is computed by (5)
using the generic training set. Out of the 28 test cases (7 features
� 4 probe sets), ESRC raises the recognition rates in 26 cases. The
best recognition rate in each probe set is achieved by ESRC.
Specifically, Gabor feature-based ESRC, with 99 percent accuracy
on the fc set, is the best to handle the illumination changes, while
LBP feature-based ESRC, with 93.8 percent accuracy on the dup1
set and 92.3 percent accuracy on dup2 set, is expert in addressing
aging effects. The LBP feature is also robust to the registration error
[18], which is not explicitly tested in our experiment. Across all
tested features, the boost on recognition accuracy is significant on
the dup1 and dup2 image sets, which are acquired in uncontrolled
settings that are close to real-world conditions, indicating that the
intraclass variability of face is sharable even in a complex situation.
Compared to the performance enhancement on the AR data set
(Table 2), the enhancement by ESRC is not significant on the fc set,
which may be because the generic training set of FERET does not
contain sufficient illumination variations. Another interesting
finding is that, for both SRC and ESRC, using original high-
dimensional local feature vector instead of a random projections
(Randomfaces)-based one indeed increases the accuracy by over
10 percent on dup1 and dup2 set.

Finally, we discuss some computational issues in this large-
scale experiment. We implement the ESRC algorithm using 64-bit
Matlab platform on a PC with Dual Core 2.93 GHz Pentium CPU
and 4 GB memory. In this experiment, a simple heuristic is applied
to accelerate the residual-based classification: only compute the
residuals for the 10 classes associated with the largest entries in x̂1.
This heuristic approach speeds up the classification by a factor of
120 without any loss of accuracy.5 With this acceleration, ESRC

(including both ‘1-minimization and classification) takes only

1.2 seconds (on average) per test image using the 540D LBP-Rfaces
feature, and 13.1 seconds (on average) per test image using the

15,104D LBP feature.

4 CONCLUSION

The experiments suggest a number of conclusions:

1. When the training images of each class are insufficient to
linearly represent the testing variability, ESRC raises the
recognition rates of SRC by using the intraclass variant
dictionary. The superiority of ESRC appears to be more
significant as the number of training images decreases.

2. In the limit with a single training image per subject, ESRC
still works effectively and generalizes well to large-scale
databases using the intraclass variant dictionary con-
structed from generic subjects that are not in the gallery set.

3. If the generic images sufficiently cover the testing condi-
tions, adding the intraclass variant bases of 5-10 generic
classes to the intraclass variant dictionary improves
recognition rate significantly.

4. For both SRC and ESRC, local features such as Gabor-
based features and LBP features yield much better
recognition rates than pixel-based features, which suggests
that their invariant properties make the samples of each
class more constrained to a linear subspace.

5. When the training images of each class are insufficient,
dimension reduction of local features, such as random
projections, would lose useful information for both SRC
and ESRC.

Although we have shown that directly adding sample differences

as dictionary bases can improve SRC significantly, a well-learned
dictionary matrix may lead to higher performance with a smaller

number of bases [19]. We are studying ways to learn universal
intraclass variant dictionaries for unconstrained face recognition.
Furthermore, rejecting imposters is more challenging than identi-

fying the correct gallery subjects in face-recognition practice [20],
and we are working toward the undersampled open-set recogni-

tion via sparse representation.
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TABLE 3
Comparative Recognition Rates of SRC and ESRC on the FERET Database Using the FERET’96 Testing Protocol

4. We have found that there were slight errors on the eye coordinates of
the standard FERET distribution and remarked the eye coordinates of all
the FERET images accurately. To reproduce our experimental results, the
updated eye-coordinate file is available upon request. Note that our
(manual) accurate face alignment makes our SRC results on FERET
significantly different from Wagner et al.’s [13], where the system aligns
the faces in a fully automated way.

5. For all probe images, we have validated that the smallest residual of
the 1,196 classes is from one of the 10 classes with largest coefficients in x̂1.
Therefore, this heuristic approach significantly accelerates the computation,
but does not affect the accuracy of ESRC.
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