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�is paper is concernedwith the target tracking problem of an autonomous surface vehicle in the presence of amaneuvering target.
�e velocity information of target is totally unknown to the follower vehicle, and only the relative distance and angle between the
target and follower are obtained. First, a reduced-order extended state observer is used to estimate the unknown relative dynamics
due to the unavailable velocity of the target. Based on the reduced-order extended state observer, an antidisturbance guidance
law for target tracking is designed. �e input-to-state stability of the closed-loop target tracking guidance system is analyzed via
cascade theory. Furthermore, the above result is extended to the case that collisions between the target and leader are avoided
during tracking, and a collision-free target tracking guidance law is developed. �e main feature of the proposed guidance law is
twofold. First, the target tracking can be achieved without using the velocity information of the target. Second, collision avoidance
can be achieved during target tracking. Simulation results show the e	ectiveness of the proposed antidisturbance guidance law for
tracking a maneuvering target with the arbitrary bounded velocity.

1. Introduction

Recently, advanced motion control of marine vehicles has
received signi
cant attention due to its wide applications
in hydrological monitoring, channel exclusion, search and
rescue, biological detection, and so on [1–7]. Numerous
motion control scenarios of marine vehicles have been con-
sidered including path following [8–21], path tracking [22,
23], trajectory tracking [4, 24–26], and target tracking [2, 27–
34]. Target tracking is to track amaneuvering target where no
information about the target behavior is known in advance
except its instantaneous motion.

Various control methods have been developed for the
target tracking of marine vehicles [2, 27–34]. In [2], a posi-
tion tracking controller is developed for an underactuated
autonomous underwater vehicle based on a backstepping
technique and neural networks. In [27], a straight-line tar-
get tracking controller is developed for an underactuated
unmanned surface vehicle. In [28], a target tracking con-
troller is developed for underactuated autonomous surface

vehicles (ASVs) with limited control torques. In [29], a
fault tolerant target tracking controller is developed for
underactuated ASVs. In [2, 27–29], the velocities of the
targets are known as a priori. In practice, however, the
velocity information of the target may not be available by
the follower. In order to track the leader in the absence
of velocity information of target, a variety of methods are
available [30, 31]. In [30], a robust controller is designed for
target tracking of marine vessels where unknown velocity of
the leader is handled by using a sliding model control. In [31],
an adaptive leader-follower formation controller is designed
for ASVs based on a dynamic surface control and single-
hidden-layer neural networks, and an adaptive term is used
to estimate the unknown velocity of target. In recent years,
collision avoidance has been considered in motion control
[35, 36]. However, the collision avoidance problem during
target tracking is not considered in [2, 27–29].

Extended state observer as a key part of active disturbance
rejection control method was proposed by Han [37–39]. It
is a powerful tool to deal with the nonlinear systems in
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the presence of large uncertainty including internal model
uncertainties and external disturbances [40]. It has been
widely used in numerous engineering applications [11, 41, 42].
A reduced-order extended state observer (RESO) is able to
decrease the phase lag and simplify the observer structure
to reduce computation load. It has the advantages of fast
observation andnoovershooting. Because of its advantages, it
is desirable to employ the extended state observer to address
the uncertainty during target tracking.

In this paper, an antidisturbance guidance law for target
tracking is designed based on the reduced-order extended
state observer (RESO), where an ASV is requested to track
a maneuvering target. Only relative line-of-sight range and
angle between the follower and target are available for
feedback design. At 
rst, a RESO is used to estimate the
unknown relative dynamics due to the unavailable velocity of
the target. �en, an antidisturbance guidance law is proposed
based on the RESO and the stability of closed-loop guidance
system is analyzed via cascade analysis. �e above result is
extended to target tracking with collision avoidance of ASVs,
and a collision-free RESO-based guidance law is developed.
Simulation results are used to show the proposed collision-
free guidance law for tracking a maneuvering target.

�e contributions of this paper is twofold. First, an
antidisturbance guidance law for target tracking is designed
based on the reduced-order extended state observer where
target dynamics is not required to be known. Second, a
collision-free guidance law for target tracking is developed
such that the collision between the target and follower vehicle
can be avoided. �e main features of the proposed guidance
law are presented in this paper as follows. First, compared
with the target tracking controllers proposed in [2, 27–
29] where the velocity of the target should be known in
advance, the velocity of the target is not required to be
known and only the relative line-of-sight distance and angle
between the target and the follower are needed. Second,
compared with the target tracking controllers proposed in
[2, 10, 27–30, 34] where the collision avoidance problem is
not considered, a collision-free RESO-based guidance law is
proposed for target tracking of underactuated ASVs where
the collision between the target and follower can be avoid-
ed.

�is paper is organized as follows: Section 2 states the
preliminaries and problem formulation. Section 3 gives the
target tracking guidance law design and analysis. Section 4
introduces the collision-free target tracking guidance law
design and analysis. Section 5 presents the simulation results.
Section 6 concludes this paper.

2. Preliminaries and Problem Formulation

2.1. Collision Avoidance. In order to assure collision-free
target tracking, the following collision avoidance potential
functions are introduced [35]:

�� (�) = (min{0, �2 − 	2
�2 − 
2 })
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Figure 1: A geometrical illustration for tracking a target by an ASV.

where 	 > 
 > 0, 	 is the detection region, 
 is the radius
of the avoidance, and � is the distance between the target and
follower vehicles de
ned as

� = √(�� − �)2 + (�� − �)2, (2)

and ��, �� are positions of a target and �, � are positions of a
follower.

Function (1) will be in
nity when the distance between
the vehicle and obstacle approaches avoidance region and
is zero outside the detection region. In other words, the
function �� will a	ect the surge velocity when � is inside the
detection region.

Taking the partial derivative of the potential function ��
with respect to �, we can obtain [36]

{{{{{
����� = 4(	

2 − 
2) (�2 − 	2)
(�2 − 
2)3 (� − ��) , if 
 < � < 	,

0, otherwise,
(3)

and the partial derivative of function �� with respect to � is

{{{{{
����� = 4(	

2 − 
2) (�2 − 	2)
(�2 − 
2)3 (� − ��) , if 
 < � < 	,

0, otherwise.
(4)

2.2. Vehicle Kinematics. �e kinematics of an ASV can be
expressed by using an earth-
xed frame {�} and a body-
xed
frame {�} as shown in Figure 1. Let (��, ��, ��) and (�, �, �)
be the position and orientation of the target and follower,
respectively. ��, ��, 
� denote the surge velocity, sway velocity,
and angular rate of the target vehicle; �, �, 
 represent the
surge velocity, sway velocity, and angular rate of the follower
vehicle, respectively. �e kinematics of the target ASV is

�̇� = �� cos�� − �� sin��,
̇�� = �� sin�� + �� cos��,

�̇� = 
�,
(5)
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and the kinematics of follower ASV is

�̇ = � cos� − � sin�,
̇� = � sin� + � cos�,

�̇ = 
.
(6)

From Figure 1, the line-of-sight range and angle between
the target and the follower are de
ned as

� = √(�� − �)2 + (�� − �)2,
� = tan−1 (�� − �

�� − �) .
(7)

In the following sections, we 
rst consider the target
tracking guidance law design being lack of velocity informa-
tion of the target. Next, the result is extended to collision-free
RESO-based guidance law design.

3. Target Tracking

At 
rst, the relative dynamics between the target and follower
is derived. �en, a RESO is used to estimate the unknown
relative dynamics due to the unavailable velocity of the target.
Next, an antidisturbance guidance law is designed based
on the RESO. Finally, the stability of closed-loop guidance
system is analyzed via cascade analysis.

3.1. Relative Dynamics. Two target tracking errors are de
ned
as follows:

 � = � − ��,
 � = � − � − !, (8)

where �� is a desired range and ! = atan2(�, �) is a sideslip
angle. Taking the time derivative of  � and  � in (8) and using
(5) and (6), we have

̇ � = �� cos (� − ��) + �� sin (� − ��) − � sin (� − �)
− � cos (� − �) − ̇��,

̇ � = �� sin (�� − �) + �� cos (�� − �)
�

− � cos (� − �) + � sin (� − �)
� − ̇! − 
.

(9)

�e control objective of target tracking of ASVs in the
presence of unknown target kinematics is to design a surge
velocity � and yaw rate 
 such that

lim
��→∞

""""" �""""" ≤ $1,
lim
��→∞

""""" �""""" ≤ $2,
(10)

for some small constants $1 and $2.

3.2. RESO Design. We 
rst use a RESO to estimate the un-
known relative dynamics due to the unavailable velocity of
the target. To facilitate controller design, the relative dynam-
ics in (9) is rewritten in the following form:

̇ � = % (⋅) − �,
̇ � = ' (⋅) − 
, (11)

where

% (⋅) = �� cos (� − ��) + �� sin (� − ��)
− � sin (� − �) + 2�sin2 (� − �

2 ) − ̇��,

' (⋅) = �� sin (�� − �) + �� cos (�� − �)
�

− � cos (� − �) + � sin (� − �)
� − ̇!.

(12)

Since ��, ��, and �� of the target are not available, %(⋅) and'(⋅) are unknown. To address it, a reduced-order extended
state observer is proposed as follows [43]:

*̇1 = −-1*1 − -12 � + -1�,
%̂ = *1 + -1 �,
*̇2 = −-2*2 − -22 � + -2
,
'̂ = *2 + -2 �,

(13)

where *1, *2 are the auxiliary states of the observer; -1, -2 are
the observer gains; %̂ and '̂ denote the estimation of % and '.
�e initial values of *1 and *2 are set to *1(10) = −-1 �(10)
and *2(10) = −-2 �(10).
Assumption 1. The time derivatives of % and ' are bounded

by | ̇%| ≤ %∗ and | ̇'| ≤ '∗, where %∗ and '∗ are positive
constants.

Since the velocities and accelerations of the target and
follower ASVs are naturally bounded, Assumption 1 is rea-
sonable.

�e estimation errors are de
ned as follows:

%̃ = %̂ − %,
'̃ = '̂ − '. (14)

Taking the derivative of (14) along (13), we have

̇̃% = −-1*1 − -21 � + -1� + -1 (% − �) − ̇%
= −-1%̃ − ̇%,
̇̃' = −-2*2 − -22 � + -2
 + -3 (' − 
) − ̇' = −-2'̃ − ̇'.

(15)

�e stability of subsystem (15) is stated as follows.
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Lemma 2. Subsystem (15), viewed as a system with the states

being %̃ and '̃ and the inputs being ̇% and ̇', is input-to-state
stability (ISS).

Proof. Construct the following Lyapunov function:

�1 = 1
2%̃2 +

1
2 '̃2. (16)

Taking the time derivative of �1 along (15) results in
�̇1 = −-1%̃2 − %̃ ̇% − -2'̃2 − '̃ ̇'

≤ −6min (71) 8888�188882 + ‖ℎ‖ 8888�18888 ,
(17)

where �1 = [%̃, '̃]�, 71 = diag{-1, -2}, and ℎ = [| ̇%|, | ̇'|]�.
Noting that

8888�18888 ≥
""""" ̇%""""" + """" ̇'""""

?16min (71) ≥ ‖ℎ‖
?16min (71) (18)

renders

�̇1 ≤ −6min (71) (1 − ?1) 8888�188882 , (19)

where 0 < ?1 < 1. As a consequence, subsystem (15) is ISS,
and 8888�1 (1)8888

≤ max {A� (8888�1 (0)8888 , 1) , B�1 (""""" ̇%""""") + B�2 ("""" ̇'"""")} ,
(20)

where A� is a class KL function, B�1, B�2 are the class K

function, and

B�1 (D) = B�2 (D) = D
?16min (71) . (21)

3.3. Guidance Law Design. Based on the estimated terms %̂
and '̂ from the RESO, an antidisturbance guidance law is
proposed as follows:

� = -3 �
√88888 �888882 + Δ21

+ %̂,


 = -4 �
√88888 �888882 + Δ22

+ '̂,
(22)

where -3 and -4 are positive constants; Δ 1 andΔ 2 are positive
constants, which are used to limit the maximum value of
control laws.

Substituting (14) and (22) into (11) results in

̇ � = − -3 �
√88888 �888882 + Δ21

− %̃,

̇ � = − -4 �
√88888 �888882 + Δ22

− '̃.
(23)

�e ISS property of subsystem (23) is stated as follows.

Lemma 3. Subsystem (23), viewed as a system with the states

being  � and  � and the inputs being %̃ and '̃, is ISS.
Proof. Construct the following Lyapunov function:

�2 = 1
2 2� +

1
2 2�. (24)

Taking the time derivative of �2 along (23) results in
�̇2 = − -3 2�

√88888 �888882 + Δ21
− %̃ � − -4 2�

√88888 �888882 + Δ22
− '̃ �

≤ − 6min (72) 8888�288882
√8888�288882 + Δ2

max1

+ ‖G‖ 8888�28888 ,
(25)

where �2 = [ �,  �]�, 72 = diag{-3, -4}, G = [|%̃|, |'̃|]�, andΔmax1
= max{Δ 1, Δ 2}.

Noting that

8888�28888
√8888�28888 + Δ2

max

≥
"""""%̃""""" + """"'̃""""

?26min (72) ≥ ‖G‖
?26min (72) (26)

renders

�̇2 ≤ −6min (72) (1 − ?2) 8888�288882
√8888�288882 + Δ2

max1

, (27)

where 0 < ?2 < 1. As a consequence, subsystem (23) is ISS,
and 8888�2 (1)8888

≤ max {A (8888�2 (0)8888 , 1) , B1 ("""""%̃""""") + B2 (""""'̃"""")} ,
(28)

where A is a class KL function, B1 and B2 are the classK
functions, and

B1 (D) = B2 (D) = H−1 ( D
?26min (72)) , (29)

with H = |D|/√D2 + Δ2
max1

.

�e proposed guidance law can be augmented with
other methods such as PID control, adaptive control [44,
45], sliding mode control [46], and robust control at the
kinetic level for achieving the desired target tracking control
performance.

3.4. Stability Analysis. To analyze the stability of the entire
closed-loop guidance system, rewrite the disturbance estima-
tion subsystem (15) and target tracking error subsystem (23)
in a compact form as

Σ1 :
{{{{{{{{{{{{{{{{{

̇ � = − -3 �
√88888 �888882 + Δ21

− %̃,

̇ � = -4 �
√88888 �888882 + Δ22

− '̃,
(30)
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and

Σ2 : {{{
̇̃% = −-1%̃ − ̇%,
̇̃' = −-2'̃ − ̇'. (31)

�e stability of the cascade of subsystem Σ1 and subsys-
tem Σ2 is given by the following theorem.

�eorem 4. Under Assumption 1, the closed-loop system cas-
caded by subsystem (15) and subsystem (23) is ISS, and the
target tracking errors converge to a small neighborhood of the
origin.

Proof. SubsystemΣ1 with states ( � ,  �) and exogenous inputs(%̃, '̃) and subsystem Σ2 with states (%̃, '̃) and exogenous

inputs ̇% and ̇' are ISS. By Lemma C.4 in [47], it follows that

the cascade systems Σ1 and Σ2 with states ( �,  �, %̃, '̃) and
exogenous inputs ( ̇%, ̇') are ISS, i.e., there exist class KL

function A1 andK function B1, B�1, B2, and B�2, such that

8888��8888 ≤ max {A1 (8888�� (0)8888 , 1) , B1 ∘ Bo1 (""""" ̇%""""") + B2
∘ B�2 ("""" ̇'"""" } ,

(32)

where �� = [ �,  �, %̃, '̃]. As 1 M→ ∞, A1 M→ ∞, it follows
that

lim
��→∞

8888��8888 ≤ B1 ∘ B�1 (""""" ̇%""""") + B2 ∘ B�2 ("""" ̇'"""")
≤ H−1 ( %∗

?1?26min (71) 6min (72))

+ H−1( '∗
?1?26min (71) 6min (72)) ,

(33)

implying (10) with H = |D|/√D2 + Δ2
max1

. Note that | ̇'| and | ̇%|
are bounded by '∗ and%∗.�en, the errors  �,  �, %̃ and '̃ are
all bounded. Note that only uniform ultimate boundedness
of closed-loop system can be achieved due to the existence

of ̇' and ̇%. If ̇' = 0 and ̇% = 0, the closed-loop system is
asymptotical stable.

4. Collision-Free Target Tracking

4.1. Guidance Law Design. In previous section, a target
tracking controller is developed for ASVs without using the
velocity of the target. In this section, a collision-free target
tracking controller is developed based on a RESO and an
arti
cial potential function. To achieve a collision-free target
tracking, a desired orientation is de
ned as follows:

?� = atan2 (�� − � − ����� , �� − � − ����� ) , (34)

and the angle tracking error is rede
ned as

 � = ?� − � − !. (35)

�e guidance law for collision-free target tracking based
on RESO is designed as follows:

� = -5 ( � + ���/� �)
√( � + ���/� �)2 + Δ23

+ %̂,


 = -6 �
√ 2� + Δ24

+ '̂,
(36)

where -5 and -6 are positive constants; Δ 3 andΔ 4 are positive
constants, which are employed to limit the maximum value of
control laws.

Substituting (14) and (36) into (11) results in

̇ � = − -5 ( � + ���/� �)
√( � + ���/� �)2 + Δ23

− %̃,

̇ � = − -6 �
√ 2� + Δ24

− '̃.
(37)

�e ISS property of subsystem (37) is stated as follows.

Lemma 5. Subsystem (37), viewed as a system with the states

being  � +���/� � and  � and the inputs being %̃ and '̃, is ISS.
Proof. Construct a Lyapunov function for system (37) as

�3 = 1
2 2� +

1
2 2� + ��. (38)

Taking the time derivative of �3 along (37), (3), and (4),
we have

�̇3 = − -5 ( � + ���/� �)2
√( � + ���/� �)2 + Δ23

+ %̃( � + ���� � )

− -6 2�
√ 2� + Δ24

+ '̃ �

≤ − 6min (73) 8888�388882
√8888�388882 + Δ2

max2

+ ‖G‖ 8888�38888 ,

(39)

where �3 = [ � + ���/� �,  �]�, 73 = diag{-5, -6}, andΔmax2
= max{Δ 3, Δ 4}.

Noting that

8888�38888
√8888�388882 + Δ2

max2

≥
"""""%̃""""" + """"'̃""""

?36min (73) ≥ ‖G‖
?36min (73) (40)

renders

�̇3 ≤ −6min (73) (1 − ?3) 8888�388882
√8888�388882 + Δ2

max2

, (41)
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where 0 < ?3 < 1. As a consequence, subsystem (37) is ISS.
Since �̇3 is negative de
nite, then �3 is not increasing inside
the detection region. Since

lim
‖�−��‖�→�+

�� = ∞, (42)

where P = [�, �]� and P� = [��, ��]�, then collision avoidance
is guaranteed.

4.2. Stability Analysis. Finally, we analyze the cascade stabil-
ity of subsystem (15) and subsystem (37) in a compact form:

Σ3 :
{{{{{{{{{{{{{{{

̇ � = − -5 ( � + ���/� �)
√( � + ���/� �)2 + Δ23

− %̃,

̇ � = − -8 �
√ 2� + Δ24

− '̃,
(43)

and

Σ4 : {{{
̇̃% = −-1%̃ − ̇%,
̇̃' = −-2'̃ − ̇'. (44)

�e following theorem presents the stability of the cas-
cade system consisting of subsystem (15) and subsystem (37).

�eorem6. Consider the closed-loop guidance system consist-
ing of follower ASV with kinematics (6), the target ASV with
kinematics (5), and the guidance law (36) (13). If Assumption 1
is satisfied, the proposed guidance law can achieve the control
objective described in Section 3.1. 
e closed-loop system cas-
caded by subsystem (15) and subsystem (37) is ISS. Besides,

(1) outside the detection range, the tracking errors ( �,  �)
converge to a small neighborhood of the origin,

(2) inside the detection range, collision avoidance is guar-

anteed, i.e., for all 1 ≥ 0, ‖[�, �]� − [�t, ��]�‖ − 
 ≥ $4 for some
constant $4.
Proof. Part A.�e cascade system consisting of subsystem Σ3
and subsystem Σ4 with the relative distance � (� > 	) is ISS.
�e proof is the same as the proof of �eorem 4.

Part B.�ecascade system consisting of subsystemΣ3 and
subsystem Σ4 with the relative distance � (� < 
) is ISS. It has
been proved that subsystem Σ3 with states ( � + ���/� �,  �)
and exogenous inputs (%̃, '̃) and subsystem Σ4 with states (%̃,'̃) and exogenous inputs ̇% and ̇' are ISS. By LemmaC.4 [47],
it follows that the cascade systems Σ3 and Σ4 with states ( � +����/� �,  �, %̃, '̃) and exogenous inputs ( ̇%, ̇') are ISS. Note
that the errors  � + ����/� �,  �, %̃, and '̃ are all bounded.

�en, collision avoidance is guaranteed ‖[�, �]�−[��, ��]�‖ ≥
� for all 1 ≥ 0, where 
� = 
+$4 with $4 being a constant.
A parameter selection guideline is provided as follows.

�e parameters -1 and -2 determine the speed of observer.
�e parameters -3, -4, -5, and -6 can be chosen according
to the desired response of the closed-loop system. �e
parameters Δ 1, Δ 2, Δ 3, and Δ 4 can be used to regulate the
transient performance.

Target
Follower

0 5 10 15 20 25 30 35−5
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y 
(m

)

Figure 2: Trajectory of target and follower ASV.

5. Simulation Results

In this section, simulation results are given to show the
performance of the proposed guidance law for collision-free
target tracking. Two cases are presented: (1) the velocity of
target is constant; (2) the velocity of target is time-varying.
�e vehicle tracks the target with relative distance �� (�� >
 > 	 1 < 40D, �� < 
 < 	 1 > 40D). �e initial con
gurations
of the follower and target vehicle are (�, �, �)(0) = (0, 0, 0)
and (��, ��, ��)(0) = (5, 5, R/4), respectively. �e control
parameters are chosen as follows: -1 = 5, -2 = 5, -3 = 0.1,-4 = 0.2, -5 = 0.1, -6 = 0.2, Δ 1 = 0.5, Δ 2 = 0.5, Δ 3 = 0.5,Δ 4 = 0.5, 
 = 3T, 	 = 5T, �� = 6T(1 < 40D), and�� = 2T(1 > 40D).
5.1. Target Tracking and Collision Avoidance with a Target of
Constant Velocity. Consider the ASVmodel (6) controlled by
the guidance law (22) with constant velocity �� = 0.5T/D
and 
� = 0
VW/D. Simulation results are shown in Figures
2–5, and Figure 2 shows the trajectories of target and follower
ASV. It reveals that the follower vehicle heads for the target
in a short time while holding a desired distance although the
target dynamics is uncertain. Figure 3 shows that the follower
vehicle tracks the target with distance �� = 6T when the
distance satis
es �� > 
 > 	. A�er 40D, the distance �� is
changed from 6T to 2T, and the tracking distance becomes	 > �� > 
. It reveals that the proposed guidance law can
achieve collision avoidance well. �e output of RESO and
the relative dynamics of target are compared in Figure 4. It
shows that the RESO can compensate the uncertain target
kinematics e�ciently. Figure 5 shows the guidance signals of
the proposed guidance law. It reveals that the guidance signals
are all bounded.

5.2. Target Tracking and Collision Avoidance with a Target of
Time-Varying Velocity. �e guidance law (36) is employed
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Figure 7: Target tracking errors.

to track a target with time-varying velocity �� = (2 +0.1sin(21))T/D and 
� = 0.5sin(21)
VW/D. Figures 6–9 show
the simulation results. Figure 6 shows that the follower
vehicle can track the target with given relative distance. �e
relative distance is shown in Figure 7. It implies that the
follower vehicle tracks the target with given distance �� when
the distance is designed as �� > 
 > 	. A�er 40D, the distance�� is changed from 6T to 2T.�e tracking distance becomes	 > �� > 
 rather than the given distance 2T. It indicates that
the proposed guidance law for target tracking extended to
collision avoidance is e	ective with the time-varying velocity
of target. �e output of the RESO and relative dynamics
of target are compared in Figure 8. It shows that the RESO
can compensate the uncertain target dynamics e�ciently.
Figure 9 shows the guidance signals of the proposed guidance
law. It observed that the guidance signals are all bounded.
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Figure 9: Guidance law.

6. Conclusions

�is paper considers the target tracking problem of an
ASV in the presence of a maneuvering target where the
velocity information of the target is totally unknown to
the follower ASV. A reduced-order extended state observer
is used to estimate the unknown relative dynamics. �en,
an antidisturbance guidance law is developed based on the
reduced-order extended state observer for target tracking.
�e stability of closed-loop target tracking guidance system
is analyzed via cascade analysis. Finally, the result is extended
to the case that collisions between the target and leader are
avoided during tracking, and a collision-free target tracking
guidance law is developed. Simulation results verify the
e	ectiveness of the proposed guidance law for tracking a
maneuvering target with arbitrary velocity and having the
ability to avoid collision in the presence of a maneuvering
target.
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