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Abstract: We prove that non-extremal black holes in four-dimensional general relativity

exhibit an infinite-dimensional symmetry in their near horizon region. By prescribing

a physically sensible set of boundary conditions at the horizon, we derive the algebra

of asymptotic Killing vectors, which is shown to be infinite-dimensional and includes, in

particular, two sets of supertranslations and two mutually commuting copies of the Witt

algebra. We define the surface charges associated to the asymptotic diffeomorphisms that

preserve the boundary conditions and discuss the subtleties of this definition, such as the

integrability conditions and the correct definition of the Dirac brackets. When evaluated

on the stationary solutions, the only non-vanishing charges are the zero-modes. One of

them reproduces the Bekenstein-Hawking entropy of Kerr black holes. We also study the

extremal limit, recovering the NHEK geometry. In this singular case, where the algebra of

charges and the integrability conditions get modified, we find that the computation of the

zero-modes correctly reproduces the black hole entropy. Furthermore, we analyze the case

of three spacetime dimensions, in which the integrability conditions notably simplify and

the field equations can be solved analytically to produce a family of exact solutions that

realize the boundary conditions explicitly. We examine other features, such as the form of

the algebra in the extremal limit and the relation to other works in the literature.
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1 Introduction

There has been a renewed interest in the study of infinite-dimensional symmetries in the

near horizon region of non-extremal black holes. This is mainly motivated by the pro-

posal in [1, 2], where it was argued that the conserved charges associated to a particular

symmetry of this kind, known as supertranslation [3–5], could lead to an ingenious way

of circumventing no-hair theorems and eventually solve the information black hole para-

dox [6]. This idea has attracted remarkable attention recently [7–15] and also raised some

controversy [16].
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Infinite-dimensional symmetries in the near black horizon region have already been dis-

cussed in the literature [17–20] and they have been studied in relation to different contexts,

such as the membrane paradigm [21, 22]. In the recent paper [7], the supertranslation

symmetry appearing close to the black hole horizon was explicitly worked out by studying

the asymptotic behavior of the metric excitations close to the horizon. It has been shown

there that, for a suitable choice of boundary conditions, the infinite-dimensional local sym-

metries at the horizon get enhanced and, in addition to supertranslation, the algebra of

charges include the Virasoro algebra (more precisely, since the central charges are zero, this

corresponds to the Witt algebra). Here, aimed at further investigating this phenomenon,

we will extend the analysis of [7]. We will show that, by considering a more general set

of boundary conditions, which in particular admits dependence of time, the asymptotic

isometries in the near horizon region of non-extremal black holes are further enhanced in

such a way that a new set of supertranslations appears. We will explicitly work out the

asymptotic symmetry group together with the charge algebra of the extended symmetries

both in three and four spacetime dimensions. In four dimensions, we will discuss the sub-

tleties in the definition of those charges, such as the additional conditions coming from

demanding integrability. In three dimensions, we will present a family of exact solutions

that explicitly realize the proposed boundary conditions at the horizon. We will also dis-

cuss the limit in which the black hole becomes extremal and perform a canonical analysis

of the charges in this case.

The paper is organized as follows: in section 2, we discuss the case of black hole

horizons in four spacetime dimensions. First, we define the boundary conditions in the

near horizon limit, which in particular allow for time-dependent configurations. We derive

the asymptotic Killing vectors that preserve such conditions and show that they span an

infinite-dimensional algebra. Then, we study the conserved charges associated to such

asymptotic symmetries, together with the additional conditions coming from imposing the

field equations, and the further constraints coming from integrability. We derive the algebra

of charges, which is seen to be infinite-dimensional as well. We discuss the evaluation of

the charges on solutions whose physical interpretation is under control; we consider the

case of stationary black holes and Rindler horizons and we show that the zero modes of the

charges gather in particular the black hole entropy. We will also analyze the extremal limit,

where we obtain the NHEK geometry along with similar results as in the previous case.

In section 3, we discuss the three-dimensional scenario, where the Einstein field equations

can be solved exactly. This provides a family of solutions parameterized by three arbitrary

functions that realizes the boundary conditions explicitly. We conclude in section 4 with a

discussion of open questions.

2 Four-dimensional horizons

2.1 Boundary conditions

We will be concerned with the behavior of the gravitational field near the black hole horizon.

Therefore, we begin our analysis in this subsection by discussing the form of the metric

close to smooth null codimension-one surfaces in four dimensional spacetimes. This will

– 2 –
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allow us to define physically sensible boundary conditions on the black hole horizon. We

will do so by prescribing an asymptotic expansion around the null surface.

Following [23], let us consider Eddington-Filkenstein coordinates, which in particular

include the advanced time coordinate v such that a null surface is defined by

gµν∂µv∂νv = 0. (2.1)

We define a ray as the vector tangent to this surface, kα = gαβ∂βv. In a null frame,

we consider the temporal coordinate x0 = v, and x1 = ρ as the affine parameter of the

generator kµ such that kµ = dxµ

dρ = δµρ . Other two coordinates xA (A = 2, 3) are chosen

as parameters constant along each ray, kν∂νx
A = 0. In terms of the metric, the former

impositions are translated into the algebraic conditions

gvv = 0, gρv = 1, gvA = 0, (2.2)

that is

gρρ = 0, gvρ = 1, gρA = 0. (2.3)

Let us set a null surface at ρ = 0. Assuming this is a non-expanding surface, the remaining

components of the metric close to this region behave like [24]

gvv = −2ρκ+O(ρ2),

gvA = ρθA +O(ρ2),

gAB = ΩAB + ρλAB +O(ρ2),

(2.4)

where functions κ, θA, ΩAB, and λAB in principle depend on the coordinates xA and v,

with ΩAB being assumed to be non-degenerate. The boundary conditions on null surfaces

we consider include, in particular, black hole horizons. However, they also include time-

dependent metrics. We will discuss below additional restrictions on the configurations,

such as the ones required to describe isolated horizons.

In other words, we will consider metrics of the form

ds2 = −2κρ dv2 + 2dρdv + 2θAρ dvdx
A + (ΩAB + λABρ)dxAdxB + ∆gij dx

idxj , (2.5)

∆gij being functions of order O(ρ2) (i, j ∈ {v,A}). Actually, it is always possible to find a

coordinates system in which the metric close to a smooth null surface admits to be written

in the form (2.5) [25, 26].

Notice that here we are considering the possibility of function κ (which will be ul-

timately associated to the surface gravity of the horizon) to vary. This generalizes the

analysis of [7], where κ was assumed to be a fixed constant. Another difference with [7] is

that we consider here a more general dependence on the variables; for instance, we are not

assuming θA, ΩAB to depend only on xA, but they in principle can depend on the advanced

time as well.
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2.2 Field equations

The next step is solving Einstein’s field equations in a way consistent with the expan-

sion above.

It is often convenient to choose an off-diagonal gauge for the xA part of the metric in

such a way that the 2-dimensional induced metric on the horizon at fixed v is written in

the conformal form

ΩABdx
AdxB = 4Ω

dzdz̄

(1 + zz̄)2
, (2.6)

with the conformal factor Ω being a function of z, z̄, and v.

Solving Einstein’s field equations introduces additional restrictions, which come in the

form of relations among the metric functions and their first and second derivatives. For

instance, using the gauge (2.6), close to the horizon (i.e. in the limit ρ ' 0), one finds that

the (v, v) component of Einstein’s equations at order O(ρ0) can be algebraically solved for

κ, yielding

∂2
vΩ =

1

2
Ω−1(∂vΩ)2 + κ∂vΩ. (2.7)

On the other hand, components (v, xA) of the field equations gives relations for θA

∂v(θAΩ) = −∂v∂AΩ + Ω−1∂vΩ∂AΩ. (2.8)

Equations (2.7) and (2.8) will be important later for solving the integrability constraints

of the conserved charges. It is worthwhile pointing out that, while important for those

purposes, Einstein’s equations will not be used in the next subsection, where the asymptotic

symmetries are derived independent of the dynamics.

2.3 Asymptotic symmetries

Having defined the boundary conditions (2.3) and (2.4), the next step is analyzing the

residual symmetries respecting such conditions. For the set (2.3), this amounts to solve

the set of equations

Lχgρρ = 0, Lχgvρ = 1, LχgρA = 0, (2.9)

whose solution is given by

χv = f,

χρ = Z − ρ∂vf + ∂Af

∫ ρ

0
dρ′gABgvB,

χA = Y A − ∂Bf
∫ ρ

0
dρ′gAB,

(2.10)

where f , Z and Y A are functions that do not depend on ρ. Preserving conditions (2.4)

demands Lχgij = δgij . In other words,

Lχgvv = −2ρδκ+ δg(2)
vv ρ

2 + o(ρ2),

LχgvA = ρδθA + δg
(2)
vAρ

2 + o(ρ2),

LχgAB = δΩAB + ρδλAB + δg
(2)
ABρ

2 + o(ρ2).

(2.11)
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By expanding the asymptotic Killing vectors (2.10) in powers of ρ, one sees that the

first equation of (2.11) leads to

δκ = Y A∂Aκ+ ∂v(κf) + ∂2
vf − θA∂vY A − g(2)

vv Z, (2.12)

and

∂vZ − κ Z = 0. (2.13)

The second equation of (2.11) gives

θAZ + ∂vY
BΩBA + ∂AZ = 0, (2.14)

and

δθA = θB∂AY
B +Y B∂BθA + f∂vθA− 2κ∂Af − 2∂v∂Af + ΩBD∂vΩAB∂Df + 2g

(2)
vAZ. (2.15)

From the last equation of (2.11) one finds

δΩAB = ZλAB + f∂vΩAB + LY ΩAB, (2.16)

with LY denoting the Lie derivative along the vector field Y A. Moreover,

δλAB = 2Zg
(2)
AB − λAB∂vf + f∂vλAB + LY λAB + θA∂Bf + θB∂Af − 2∇A∇Bf, (2.17)

where ∇A stands for the covariant derivative with respect to ΩAB.

In what follows, we will assume that the leading terms of the asymptotic Killing

vector χ does not depend on the fields.1 From relation (2.14) this necessarily implies2

Z = 0, ∂vY
B = 0. (2.18)

Therefore, the form of the asymptotic Killing vectors preserving boundary conditions (2.3)

and (2.4) is given by

χv = f(v, xA),

χρ = −∂vfρ+
1

2
ΩABθA∂Bfρ

2 +O(ρ3),

χA = Y A(xB) + ΩAC∂Cfρ+
1

2
ΩADΩCBλDB∂Cfρ

2 +O(ρ3),

(2.19)

where ΩAB is the inverse of ΩAB.

The corresponding variation of the fields read

δχκ = Y A∂Aκ+ ∂v(κf) + ∂2
vf,

δχΩAB = f∂vΩAB + LY ΩAB,

δχθA = LY θA + f∂vθA − 2κ∂Af − 2∂v∂Af + ΩBD∂vΩAB∂Df,

δχλAB = f∂vλAB − λAB∂vf + LY λAB + θA∂Bf + θB∂Af − 2∇A∇Bf.

(2.20)

1This is usually referred to as the assumption of the boundary conditions to be “state independent”,

what means that the form of the asymptotic Killing vectors are not considered to depend explicitly of

the charges.
2The imposition Z = 0 can also be reached by consistency of the equation of motion (2.7) with the

asymptotic Killing equation (2.9) and (2.11).
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By introducing a modified version of Lie brackets [27]

[χ1, χ2] = Lχ1χ2 − δχ1χ2 + δχ2χ1, (2.21)

which suffices to take into account the dependence of the asymptotic Killing vectors upon

the functions in the metric, one finds that the algebra of these vectors closes; namely

[χ(f1, Y
A

1 ), χ(f2, Y
A

2 )] = χ(f12, Y
A

12), (2.22)

where

f12 = f1∂vf2 − f2∂vf1 + Y A
1 ∂Af2 − Y A

2 ∂Af1, Y A
12 = Y B

1 ∂BY
A

2 − Y B
2 ∂BY

A
1 . (2.23)

2.4 Surface charges

Having obtained the asymptotic Killing vectors (2.19), the next step is computing the

associated charges. The covariant approach [28, 29] permits to define the variation of

surface charges as

/δQξ[g;h] =
1

16πG

∫
(d2x)µν

√
−g

[
ξν∇µh− ξν∇σhµσ + ξσ∇νhµσ (2.24)

+
1

2
h∇νξµ +

1

2
hνσ (∇µξσ −∇σξµ)− (µ↔ ν)

]
,

where ξ is an asymptotic Killing vector and hµν = δgµν corresponds to a variation of

the metric gµν within the family of solutions; the symbol /δ stands to emphasize that this

expression is not necessarily integrable; while (d2x)µν = (1/4)εµναβdx
α ∧ dxβ .

Using the asymptotic Killing vectors (2.19) and our boundary conditions (2.3)

and (2.4), expression (2.24) evaluated at the horizon is given by

/δQ(f,Y A) =
1

16πG

∫
d2x [2fκδ(

√
detΩ) + 2∂vfδ(

√
detΩ)− 2f∂vδ(

√
detΩ)

+
1

2
f
√

detΩ (ΩABΩCD − ΩACΩBD)∂vΩCDδΩAB − Y Aδ(θA
√

detΩ)].

(2.25)

We will see below that integrability requires further conditions.

It is worth noticing that in three spacetime dimensions, where the metric on the hori-

zon is characterized by a single function, the term that contains the factor (ΩABΩCD −
ΩACΩBD) vanishes identically. This remark will be of importance later, when we will dis-

cuss the restrictions coming from the integrability conditions of the charges. This results

in a notable difference between four and three-dimensional cases.

Focusing on the four-dimensional case for the moment, let us choose on the two-

dimensional manifold defined by ρ = 0 at fixed v a coordinates system in which the metric

ΩAB results to be locally, conformally equivalent to the two-sphere. Namely, such as we

did in (2.6)

ΩAB = ΩγAB, γABdx
AdxB =

4

(1 + zz̄)2
dzdz̄. (2.26)

– 6 –
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This implies that the vectors Y A are conformal Killing vectors on the two-sphere, and this

eventually yields two Witt algebras [7]. With no major modification we could have con-

sidered the case where ΩAB is generic, and therefore Y A generates the group of diffeomor-

phisms on the sphere [21]. In the conformal gauge (2.26), the charge variation (2.25) renders

/δQ(f,Y A) =
1

16πG

∫
dzdz̄

√
γ

(
2fκδΩ + 2∂vfδΩ− 2fδ∂vΩ + f

∂vΩ

Ω
δΩ− Y Aδ(θAΩ)

)
.

(2.27)

As mentioned, this expression is not integrable in general. This is because of two rea-

sons: first, κ is in general allowed to vary on the phase space (δκ 6= 0). Secondly, the fourth

term contains a factor fΩ−1∂vΩδΩ, which spoils integrability because it involves both Ω

and its derivative. The latter term, as we anticipated above, will not be present in the case

of three spacetime dimensions. In four dimensions, on the contrary, it demands further

restrictions on the configuration space, which we will discuss later in subsection 2.5.2. In

what follows, we will be mainly concerned with the case of fixed, constant κ.

2.5 Isolated horizons

2.5.1 Fixed temperature configurations

Let us restrict ourselves to the case of isolated horizons, where we deal with fixed temper-

ature configurations. From the physical point of view, this case is of particular importance

as it is the relevant one to describe horizons in (quasi) equilibrium. From the computa-

tional point of view, on the other hand, if one assumes that κ is constant, then the solutions

of the system (2.12)–(2.17) above simplifies notably. In particular, from the first relation

of (2.20), one obtains the linear equation

0 = κ∂vf + ∂2
vf, (2.28)

which has solution of the form

f(z, z̄, v) = T (z, z̄) + e−κv X(z, z̄) . (2.29)

This generalizes the result of ref. [7]; see also [22]. We will see below that, at the level

of the asymptotic Killing vectors, (2.29) yields two (not mutually commuting) supertrans-

lation currents associated to T (z, z̄) and X(z, z̄). The algebra (2.22) now closes with

T12 = Y A
1 ∂AT2 − Y A

2 ∂AT1,

X12 = Y A
1 ∂AX2 − Y A

2 ∂AX1 − κ(T1X2 − T2X1),

Y A
12 = Y B

1 ∂BY
A

2 − Y B
2 ∂BY

A
1 .

(2.30)

Let us represent the asymptotic Killing vector as χ = χ(T,X, Y z, Y z̄). By defining the

Fourier modes, T(m,n) = χ(zmz̄n, 0, 0, 0), X(m,n) = χ(0, zmz̄n, 0, 0), Yn = χ(0, 0,−zn+1, 0)

– 7 –
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and Ȳn = χ(0, 0, 0,−z̄n+1), we find

[Ym, Yn] = (m− n)Ym+n,

[Ȳm, Ȳn] = (m− n)Ȳm+n,

[Yk, T(m,n)] = −mT(m+k,n),

[Ȳk, T(m,n)] = −nT(m,n+k),

[Yk, X(m,n)] = −mX(m+k,n),

[Ȳk, X(m,n)] = −nX(m,n+k),

[X(k,l), T(m,n)] = κX(m+k,n+l),

(2.31)

the remaining commutators being zero. As anticipated above, this algebra contains two

sets of supertranslations currents, given by T(m,n) and X(m,n). Besides, it contains two sets

of Witt currents which are in semi-direct sum with the supertranslations.

Being the zero-mode T(0,0) the Killing vector generating rigid translations in the ad-

vanced time direction v, and consequently suitable to be associated with the energy, it is

worthwhile noticing that there is a large set of generators that commute with it. These

are Ym, Ȳm, and T(m,n). We may refer to these as the generators of the soft hairs. The

generators X(m,n), in contrast, behave under the action of T(0,0) as an expansion; namely

[X(m,n), T(0,0)] = κX(m,n).

Notice that if we exclude from (2.31) the ideal generated by X(m,n), the remaining al-

gebra is reminiscent of the four-dimensional extended Bondi-Metzner-Sachs algebra (bms4)

studied in refs. [27, 30, 31], which also includes two copies of Virasoro algebra and super-

translations. However, it is worthwhile pointing out that both algebras are different, as

it is suggested by the fact that the structure constants in the products [Yk, T(m,n)] and

[Ȳk, T(m,n)] in (2.31) differ from those of bms4. In order to distinguish them, we will denote

the subalgebra of (2.31) that does not include X(m,n) as bmsH4 .

We will discuss in section 2.6.2 the case of extremal black holes, for which κ vanishes.

This limit is singular in the sense that, remarkably enough, the algebra obtained in the case

of extremal configurations does not coincide with the limit κ → 0 in (2.31) but rather an

algebra that corresponds to interchanging in (2.31) the roles played by T(m,n) and X(m,n),

where the last line becomes [X(k,l), T(m,n)] = T(m+k,n+l).

2.5.2 Integrability

The algebra of the asymptotic Killings vectors is (2.31). The question thus arises as to

whether the charges associated to these Killing vectors, whose form was given in (2.27),

satisfy an isomorphic algebra. In order to answer this, we first need to study the additional

restrictions demanded by integrability. Apart from the isolated horizon condition κ =

const, in four dimensions we must also require the fourth term in (2.27) to be integrable.

If κ is constant and in addition we assume ∂vΩ = 0, then (2.27) can be integrated and

it yields

Q(f,Y A) =
1

16πG

∫
dzdz̄

√
γ(2TκΩ− Y AθAΩ) +Q0, (2.32)

– 8 –
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where, despite f in general depends on v, such dependence does not appear in the charge;

that is, there is no contribution of X(z, z̄). Q0 stands in (2.32) as an arbitrary integration

constant that corresponds to the charge of the geometry that is considered as a reference

background.3 That is, (2.32) is the expression of the charge associated to T (z, z̄) found in

ref. [7]; however, here we are reobtaining this result from a much general analysis, which in

particular takes into account the possibility of ∂vf 6= 0. Only the modes of the soft hairs

Ym, Ȳm, and T(m,n) contribute to the charges. As a consequence, when ∂vΩ = 0 the algebra

generated by the latter asymptotic Killing vectors coincides with the bmsH4 algebra [7].

A rather different scenario is that in which ∂vΩ 6= 0. Because of the fourth term

in (2.27), this case requires the additional integrability condition

Ω−1∂vΩ = 2A(Ω), (2.33)

with A(Ω) being a function of Ω.

Field equations are of help in the issue of solving this condition, as they yield relations

between the metric functions and their derivatives. In fact, equation (2.7) can be written as

∂2
vΩ1/2 = κ∂vΩ

1/2, (2.34)

which, once combined with (2.33), has a solution

A(Ω) = αΩ−1/2 + κ, (2.35)

where α is an arbitrary constant.

The next step is to check whether these conditions are preserved by the functional vari-

ations (2.20); that is, whether the integrability condition is compatible with the asymptotic

isometries. Let us consider the case Y A = 0 for simplicity. In this case, δΩ = f∂vΩ, and

the variation of the functions Ω and ∂vΩ, together with (2.35) yield

∂vf = 0. (2.36)

Evaluating the expression of the charges, one eventually finds

Q(T,Y A) =
1

16πG

∫
dzdz̄

√
γ(2TκΩ− Y AθAΩ) +Q0. (2.37)

That is, the functional form coincides with that of (2.32). Nevertheless, it is worth em-

phasizing that while in (2.37) Ω depends on time and f does not, in (2.32) function Ω

was assumed not to depend on time and f was in principle time dependent. Therefore,

although the modes X(m,n) appear in the algebra of asymptotic Killing vectors, they do

not contribute to the charges (2.32), (2.37) and, in this sense, seem to be pure gauge. The

question arises as to how define charges in such a way that X does contribute. We will

discuss this issue below.

2.5.3 Improved Dirac brackets

There is a systematic way of constructing Dirac brackets in order to deal with cases in

which, like in (2.27), the variation of the charges cannot be integrated without imposing

ad hoc integrability conditions. This method has been developed in [31] for surface charges

and generalized for current algebras in [32].

3In ref. [7], the value of Q0 was chosen such that the reference geometry corresponds to that of zero

horizon area.

– 9 –
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Going back to expression (2.27), we follow [31] and split the expression of the variation

of the charge associated to a given Killing vector ξ between its integrable part, denoted by

δQIξ [Φ], and its non-integrable part, denoted by Θξ[Φ, δΦ], where Φ denotes the collection

of all fields ∂vΩ, Ω and θA. That is

/δQξ[Φ] = δQIξ [Φ] + Θξ[Φ, δΦ], (2.38)

where

QIξ [Φ] =
1

16πG

∫
dzdz̄

√
γ
(
2fκΩ + 2∂vfΩ− 2f∂vΩ− Y AθAΩ

)
+Q0 (2.39)

and

Θξ[Φ, δΦ] =
1

16πG

∫
dzdz̄

√
γ f

∂vΩ

Ω
δΩ. (2.40)

The method presented in [31] is the following: while in the integrable case one has

{Qξ1 [Φ], Qξ2 [Φ]} = δξ2Qξ1 [Φ] = −δξ1Qξ2 [Φ], (2.41)

in the case of non-integrable charges one can generalize this definition by considering the

improved bracket

{QIξ1 [Φ], QIξ2 [Φ]}∗ ≡ δξ2QIξ1 [Φ] + Θξ2 [Φ, δξ1Φ], (2.42)

which only involves the integrable part of the charges on the left hand side and includes

the non-integrable piece on the right hand side. After a lengthy computation,4 one verifies

that the right hand side of (2.42) can actually be gathered in the form (2.39). That is, the

improved Dirac bracket (2.42) closes

{QIξ1 [Φ], QIξ2 [Φ]}∗ = QIξ12 [Φ], (2.43)

with the Killing vectors ξ12 given by (2.21)–(2.23). Therefore, (2.42) yields a representation

of the algebra (2.30) including now the dependence on X.

The charges QI defined above satisfy the equation

d

dv
QIξ [Φ] = −Θf=1,Y A=0[Φ, δξΦ], (2.44)

which takes the form of an integrated continuity equation, the source being given by the

non-integrable piece. This equation controls the non-conservation of the integrable part of

the charges, which in general depends on time. This is analogous to what happens in the

bms4 case [31].

An interesting question in whether equation (2.44) admits a physical interpretation

as the non-integrable part of the charges representing the passage of gravitational waves

through the horizon. Such interpretation appears to be consistent with (2.44) and with the

fact that, as we will see, the non-integrable part is missing in the three-dimensional case.5

It would be certainly interesting to make this idea more precise.

4Where it is assumed that there are no obstructions to integrate by parts.
5We thank the referee of JHEP for suggesting this interpretation.
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2.6 The zero-modes

Now, having derived the charges and having discussed the integrability and conservation

conditions, let us analyze their physical meaning by evaluating the integrated version of

expression (2.27) on solutions whose interpretation is under control. Let us begin by

considering the case of stationary black holes.

2.6.1 Stationary black holes

The Kerr metric written in the Eddington-Finkelstein coordinates is given by

ds2 =

(
∆− Ξ

Σ
− 1

)
dv2 + 2 dv dr − 2a(Ξ−∆) sin2 θ

Σ
dv dϕ−

− 2a sin2 θ dr dφ+ Σdθ2 +
(Ξ2 − a2∆ sin2 θ) sin2 θ

Σ
dϕ2,

(2.45)

where the functions ∆, Ξ, and Σ are given by

∆(r) = r2 − 2GMr + a2 , Ξ(r) = r2 + a2 , Σ(r) = r2 + a2 cos2 θ, (2.46)

where M is the mass and a is the angular momentum per unit of mass. The outer horizon

of the Kerr black hole is located at r+ = GM +
√
G2M2 − a2.

Kerr metric can be written in the form (2.3) and (2.4). The explicit change of coordi-

nates can be found, for instance, in [24]. In these coordinates, the metric reads

gρv = 1, gρϕ = 0, gρθ = 0, gρρ = 0, (2.47)

together with

κ = −∆′(r+)

2Ξ(r+)
, (2.48)

where ∆′(r+) = 2(r+ −GM) = (r2
+ − a2)/r+,

θθ =
2a2 sin θ cos θ

Σ(r+)
, θϕ = −

(
a∆′(r+) sin2 θ

Σ(r+)
+

2ar+Ξ(r+) sin2 θ

Σ2(r+)

)
, (2.49)

and

Ωθθ = Σ(r+), Ωθϕ = 0, Ωϕϕ =
Ξ2(r+) sin2 θ

Σ(r+)
. (2.50)

Notice that, since the Hawking temperature of the Kerr black hole is given by

T =
1

4π

∆′(r+)

Ξ(r+)
, (2.51)

then one finds g
(1)
vv = −∆′(r+)/Ξ(r+) = −2κ, in accordance with the near horizon expan-

sion (2.4) and with the identification of the function κ with the surface gravity. Introducing

a field-dependent change of coordinates

z = eiϕµ(θ), µ(θ) = cot(θ/2)e
− a2

r2++a2
cos(θ)

, (2.52)
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one manages to write the metric of the horizon in the conformal form

ds2
H = ΩγABdx

AdxB, (2.53)

with

Ω =
(r2

+ + a2)2

r2
+ + a2 cos(θ)2

(
cos(θ/2)2e

− a2

r2++a2
cos(θ)

+ sin(θ/2)2e
a2

r2++a2
cos(θ)

)2

. (2.54)

Then, evaluating the charges T(m,n) for the Kerr metric, integrating between two black

hole configurations (A) and (B) at fixed temperature κ/(2π), one finds

T (A)
(0,0) − T

(B)
(0,0) = T

∆A
4G

, T =
κ

2π
, (2.55)

where ∆A is the difference between the area corresponding to the configurations (A) and

(B). This is independent of Q0. That is, the charge T(0,0) gives actually the Bekenstein-

Hawking entropy.

On the other hand, the charges associated to superrotations read6

Yn =
1

16πG

∫
dzdz̄

√
γΩzn+1θz, (2.56)

which, using the coordinates definition above, can be written as

Yn = i
Ma

2
δn,0, (2.57)

and, analogously,

Ȳn = −iMa

2
δn,0. (2.58)

Here, we have used that θAdx
A = θθdθ + θϕdϕ = θzdz + θz̄dz̄ and (2.50), which yields

zθz =
1

2

(
µ

µ′
θθ − iθϕ

)
, z̄θz̄ =

1

2

(
µ

µ′
θθ + iθϕ

)
. (2.59)

Expressions (2.55), (2.57), and (2.58) provide us with a clear physical interpretation of

the charges. In the case of stationary black holes the only non-vanishing charges are the

zero-modes, corresponding to the Wald entropy and the angular momentum [7]. Let us see

now whether such an interpretation also holds in other examples.

2.6.2 Extremal limit and NHEK geometry

Let us here consider the extremal limit a2 → (GM)2. In this case, κ vanishes and this is

why this limit requires a separated analysis.

In the coordinates we used above to describe the Kerr geometry, the extremal case cor-

responds to the Near-Horizon-Extremal-Kerr (NHEK) geometry [33], which is relevant for

Kerr/CFT [34]. Explicitly, when a = GM , then r+ = a and one finds κ = 0 together with

θθ =
2 sin θ cos θ

1 + cos2 θ
, θϕ = − 4 sin2 θ

(1 + cos2 θ)2
, (2.60)

6Here we set Q0 = 0.
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and

Ωθθ = a2(1 + cos2 θ), Ωθϕ = 0, Ωϕϕ =
4a2 sin2 θ

1 + cos2 θ
. (2.61)

To analyze this special case, one has to be careful because the expression of the charges

change: while the derivation of the variation /δQ did not assume κ 6= 0, it turns out that

the integrability condition and the solution to the differential equation (2.28) get modified

when κ vanishes. In particular, one finds

f = T (z, z̄) + v X(z, z̄), (2.62)

with z now being z = eiϕ−cos(θ)/2 cot(θ/2), while the integrability condition demands

∂vΩ = 0. In addition, the absence of the first term in (2.27) when κ = 0 produces a

contribution of function X in the charge Q. This yields the following form for the charge

in the extremal case

Q(f,Y A) =
1

16πG

∫
dzdz̄

√
γ

(
2XΩ− Y AθAΩ

)
+Q0. (2.63)

Again, if evaluating this charge in the stationary solution, where only the zero-modes

of the charges contribute, one finds that the charge associated to X(0,0) yields

X (A)
(0,0) −X

(B)
(0,0) = TL

∆A
4G

, TL =
1

2π
, (2.64)

where, as in (2.55), ∆A is the difference between the area corresponding to the configura-

tions (A) and (B). However, the temperature is now the one that appears in the Kerr/CFT

analysis of the extremal Frolov-Thorne vacuum [34, 35], TL.

This shows that, even when the extremal limit is somehow singular and the algebra of

charges and integrability conditions are modified,7 our computation of the charges in the

near horizon region yields the correct answer for the black hole entropy.

2.6.3 Rindler horizons

Other horizons in four-dimensions we can analyze are those experienced by an uniformly

accelerating observer in flat space, namely the Rindler horizon. In fact, Rindler spacetime

in the region close to the wedge can also be gathered in the form (2.2) and (2.4). More

precisely, it reads

ds2 = −2κ ρ dv2 + 2 dv dρ+ 2 dzdz̄, (2.65)

where T = κ/(2π) = a/(2π) is now the Unruh temperature, with a being the acceleration

of the observer. This corresponds to (2.6) with Ω = (1 + zz̄)2/2 = 1/
√
γ. Computing the

zero-mode of the charge, one finds

T(0,0)/A = T
1

4G
, T =

a

2π
, (2.66)

where we now choose to write the charge per unit of area because, strictly speaking, the

entropy of Rindler spacetime is infinite and only the entropy per unit of area makes sense.

7See in particular the difference between (2.63) and (2.37).
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Here, we define the charge T(0,0) with respect to the solution with a = 0, which is part of

the solution space, setting Q0 = 0.

We notice that (2.66) exactly reproduces the Laflamme result for the Rindler density

entropy [36]. This is again consistent with the interpretation of the zero-mode of the charge

to be the Wald entropy.

3 Three-dimensional horizons

As mentioned in subsection 2.4, the problem of the charge integrability notably simplifies

in three spacetime dimensions. This results in an enhancement of the charge algebra. More

precisely, unlike what happens in four dimensions, in three dimensions considering time

dependence in the function f that defines the component χv of the asymptotic Killing

vector makes the function X to appear in the expression for the charge without resorting

to the improvement of the Dirac bracket discussed in section 2.5.3. As a consequence, the

charge algebra occurs to contain two sets of supertranslations, making the parallel with

what happens at the level of the asymptotic Killing vector algebra. This generalizes the

result of ref. [7], where only one set of supertranslations was found. Another advantage

of performing the analysis in three dimensions is that the field equations can be solved in

a closed way, allowing us to present a family of exact solutions that realizes the proposed

near boundary conditions explicitly. We will begin the study of three-dimensional horizons

by defining the boundary conditions in the next subsection.

3.1 Boundary conditions and charges

In the near horizon region, the metric takes the form

ds2 = −2κρ dv2 + 2dρ dv + 2θρ dv dφ+ (γ2 + λρ)dφ2 + ∆gijdx
idxj , (3.1)

where κ, θ, γ, λ are functions that depend explicitly on v and φ and the components of

∆gij are O(ρ2) for i, j ∈ {v, φ}. This is the analogous of the boundary conditions (2.5)

considered in the four-dimensional case.

This set of asymptotic conditions is preserved by the following transformations

χv = f(v, φ),

χρ = −∂vfρ+ ∂φf
θ

2γ2
ρ2 +O(ρ3),

χφ = Y (φ)− ∂φf
ρ

γ2
+ ∂φf

λ

2γ4
ρ2 +O(ρ3).

(3.2)

Note that the component χρ may contain a O(1) term Z(v, φ). However, as we have shown

in section 2.3, such term is set to zero provided function Y is field independent. Under

these transformations, the fields appearing in the metric transform as

δχκ = Y ∂φκ+ ∂v(κf) + ∂2
vf,

δχγ = ∂φ(Y γ) + f∂vγ,

δχθ = ∂φ(Y θ) + f∂vθ − 2κ∂φf − 2∂v∂φf + 2∂φf
∂vγ

γ
,

δχλ = Y ∂φλ+ 2λ∂φY + 2θ∂φf − 2∂2
φf + 2∂φf

∂φγ

γ
+ f∂vλ− λ∂vf.

(3.3)
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By introducing the modified Lie brackets [27]

[χ1, χ2] = Lχ1χ2 − δχ1χ2 + δχ2χ1, (3.4)

one finds that, as it happens in four dimensions, the algebra of these vectors closes,

[χ(f1, Y1), χ(f2, Y2)] = χ(f12, Y12), (3.5)

where now

f12 = f1∂vf2 − f2∂vf1 + Y1∂φf2 − Y2∂φf1, Y12 = Y1∂φY2 − Y2∂φY1. (3.6)

These symmetries yield the following expression for the variation of the charges

/δQ(f,Y ) =
1

16πG

∫ 2π

0
dφ (2fκδγ + 2∂vfδγ − 2fδ∂vγ − Y δ(θγ)) , (3.7)

where now, as mentioned in section 2, there is no analog to the fourth term in (2.27).

This means that demanding κ to be constant would be sufficient to guarantee integrability

of Q[f,Y ].

3.2 Field equations

The Einstein’s field equations (with or without cosmological constant) can be solved per-

turbatively order by order in the O(ρn) expansion. By considering spacetimes (3.1), we

find that order O(ρ0) of Einstein’s equation components (v, v) and (v, φ) impose

∂v(γθ) = 0, ∂2
vγ = κ∂vγ. (3.8)

These relations are sufficient to show conservation and closure of the algebra. However, as

we will see in section (3.4), we can completely solve Einstein equations, finding an exact

solution depending on three arbitrary functions of φ.

3.3 Fixed temperature configurations

Again, we will impose that κ is fixed. Replacing this in equation (3.3), we find

f(v, φ) = T (φ) + e−κvX(φ). (3.9)

The algebra turns out to be

[χ(T1, X1, Y1), χ(T2, X2, Y2)] = χ(T12, X12, Y12), (3.10)

where

T12 = Y1∂φT2 − Y2∂φT1,

X12 = Y1∂φX2 − Y2∂φX1 − κ(T1X2 − T2X1),

Y12 = Y1∂φY2 − Y2∂φY1.

(3.11)
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By defining the Fourier modes, Tn = χ(einφ, 0, 0), Xn = χ(0, einφ, 0) and Yn =

χ(0, 0, einφ), we find

i[Ym, Yn] = (m− n)Ym+n,

i[Ym, Tn] = −nTm+n,

i[Ym, Xn] = −nXm+n,

i[Tm, Xn] = −iκXm+n.

(3.12)

In this case, the surface charges (3.7) can be integrated as

Q(T,X,Y ) =
1

16πG

∫ 2π

0
dφ
(
2T (κγ − ∂vγ)− 2Xe−κv∂vγ − Y θγ

)
+Q0, (3.13)

where Q0 is a constant without variation (that has been considered to be zero in [7]).

The charge (3.13) is conserved, ∂vQ = 0, by virtue of the relations imposed by the field

equations (3.8). Furthermore, since the charges are integrable we can prove that

{Q(T1,X1,Y1), Q(T2,X2,Y2)} = Q(T12,X12,Y12), (3.14)

by virtue of (2.41).

In conclusion, the charges are integrable, conserved and form a representation of (3.12).

This result generalizes the one found in [7]: we see from (3.12) that a new set of super-

translations associated to the function X(φ) appears. The subalgebra generated by Xn

is an ideal of the charge algebra that, unlike the other infinite charges, do not commute

with T0.

3.4 Exact solution

In three-dimensional general relativity there is a relevant solution to which all this discus-

sion concerns: the Bañados-Teitelboim-Zanelli (BTZ) black hole [37], which is a solution

of the theory in presence of a negative cosmological constant Λ < 0. The purpose of

this subsection is to present a family of exact solutions of Einstein’s field equations that,

while gathering the BTZ black hole as a particular case, happens to realize the boundary

conditions (3.1) explicitly. Assuming κ 6= 0, the explicit form of the metric reads

gvv = −2κρ+

(
θ2

4γ2
− 1

`2

)
ρ2,

gvφ = θρ+
θλ

4γ2
ρ2,

gφφ =

(
γ +

λ

2γ
ρ

)2

,

gρv = 1,

gρρ = gρφ = 0,

(3.15)

where γ and θ satisfy equations (3.8) and λ is obtained from

∂vλ+

(
κ− ∂vγ

γ

)
λ = ∂φθ −

1

2
θ2 +

2

`2
γ2 − θ

∂φγ

γ
. (3.16)
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In the particular case ∂vλ = ∂vγ = 0 this yields the solution found in ref. [7]. In the

general case, the solution reads

γ = γ0 + eκvη, θ =
J
γ
,

κλ =
1

`2
(
γ2 + γγ0

)
+ e−κv

(
Cγ +

J 2

4ηγ
+
J
γ
∂φ

(
γ0

η

)
− η∂φ

(
J
η2

)) (3.17)

while γ0, J , η and C are arbitrary functions of φ (η 6= 0); C does not ultimately appear in

the charges. Function C can be fixed by initial conditions at v = 0 from equations (3.17)

as a function of θ(v=0), γ0 and η. This family of solutions generalizes the one presented

in [7]. Evaluated on these geometries, the charges (3.13) take the form

Q(T,X,Y ) =
1

16πG

∫ 2π

0
dφ(2Tκγ0 − 2Xκη − Y θγ) +Q0, (3.18)

with the first term on the right hand side being the one that gives the entropy in the case

of stationary solutions.

3.5 Extremal black holes

Let us now study the limit in which κ tends to zero. This is what happens in the case of

extremal black holes. In such case, the boundary conditions will be similar to (3.1), but

with gvv given by

gvv = L(v, φ)ρ2 +O(ρ3). (3.19)

Since the function L(v, φ) is allowed to vary arbitrarily, the asymptotic Killing vector

analysis results to be the same and one ends up with the general form (3.2), the only

difference being that now the equation for f coming from (3.3) yields

f(v, φ) = T (φ) + v X(φ). (3.20)

Again, the algebra closes under the modified Lie bracket

[χ(T1, X1, Y1), χ(T2, X2, Y2)] = χ(T12, X12, Y12), (3.21)

where

T12 = T1X2 − T2X1 + Y1∂φT2 − Y2∂φT1,

X12 = Y1∂φX2 − Y2∂φX1,

Y12 = Y1∂φY2 − Y2∂φY1.

(3.22)

By defining the Fourier modes, Tn = χ(einφ, 0, 0), Xn = χ(0, einφ, 0) and Yn =

χ(0, 0, einφ), we find

i[Ym, Yn] = (m− n)Ym+n,

i[Ym, Tn] = −nTm+n,

i[Ym, Xn] = −nXm+n,

[Tm, Xn] = Tm+n.

(3.23)
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Remarkably, this algebra is not the κ → 0 limit of algebra (3.12). On the one hand, the

bracket between supertranslation charges Tn and Xn is not found to vanish; on the other

hand, there is an interchange between these two sets of charges. Nevertheless, a single Witt

algebra in semi-direct sum with two affine currents is still the algebra that appears in the

near horizon region of the extremal solutions.

The solution in the case κ = 0 is similar to (3.15)–(3.17) but replacing functions γ and

λ by
γ = γ0 + v F,

λ =
1

`2
v
(
γ2 + γγ0

)
+ Cγ +

J 2

4ηγ
+
J
γ
∂φ

(
γ0

η

)
− η∂φ

(
J
η2

)
,

(3.24)

eventually yielding the charge

Q(T,X,Y ) =
1

16πG

∫ 2π

0
dφ(2Xγ0 − 2Tη − Y θγ) +Q0, (3.25)

where we see again the interchange between the role played by X and by T with respect

to the non-extremal case. In the extremal case, it is the charge associated to zero mode of

X the one that gives the entropy in the case of stationary configurations.

3.6 Other boundary conditions

3.6.1 Early works

Before concluding, we would like to discuss the relation between our analysis of the near

horizon symmetries and other results in the literature. In fact, the analysis of asymptotic

isometries in the near horizon region has been studied long time ago; see for instance [17–

20] and references therein and thereof. In [19], a different set of boundary conditions is

considered in the three-dimensional case,8 yielding the same algebra for the charges. The

analysis of the charges in [19], however, differs from the one considered here. In our case, it

is not necessary to introduce any constant to be ulteriorly set to the Planck scale, but our

expressions for the charges smoothly follows from the covariant approach [28, 29]. From

our definition of the charges, on the other hand, it turns out to be clear which are the

assumptions required for integrability, and why the condition of κ being fixed is important

to that end.

In ref. [20] the asymptotic isometry of non-rotating black hole in four dimensions were

studied within a formalism similar to that of [19]. In that case, the algebra of charges

obtained is different from the one obtained in section 2.4 herein, and the reason is that the

boundary conditions are different. In particular, our charges also reproduce the angular

momentum of spinning Kerr black holes.

3.6.2 Recent works

More recently, after ref. [1] appeared, there has been a renewed interest in the problem of

asymptotic symmetries close to the horizon of non-extremal black holes. This led to con-

sider different sets of boundary conditions. For instance, in ref. [10] an infinite-dimensional

8See, for instance, the components gρv in eq. (40) therein; see also the differences in dependences allowed

in the asymptotic Killing vectors (42)–(44).
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algebra different from ours has been derived. This follows from considering a different set

asymptotic expansion at the horizon. Unlike the algebra derived here (and in ref. [7]),

the algebra found in [10] (and in ref. [14]) consists of two copies of the affine extension

of Heisenberg algebra; that is, two mutually commuting copies of the affine Kac-Moody

extension of u(1). These are centrally extended supertranslations.

The boundary conditions considered in [10] are defined by considering metrics of

the form

ds2 = −2aρ`fdv2 + 2`dv dρ− 2ωa−1dϕ dρ+ 2ωρfdv dϕ+ (γ2 + 2ρa−1f(γ2 − ω2)/`)dϕ2,

(3.26)

where f = 1 + (2a`)−1ρ. By performing the supertranslation change of coordinates de-

fined by

v → v + T (ϕ) , with T (ϕ) =
1

a`

∫ ϕ

ω(φ)dφ (3.27)

one can bring metric (3.26) into the form (3.1), in the case θ = 0. However, the trans-

formations considered in [10] are not of that class, and this is the reason why the algebra

of asymptotic isometries and that of the associated charges are different from ours. It is

worthwhile mentioning that an inspection to the origin of the two centrally extended su-

pertranslations found in [10] is different from the origin of the two set of supertranslations

appearing in (3.12).

4 Conclusions

In this paper we have shown that the near horizon geometry of non-extremal black holes ex-

hibits an infinite-dimensional symmetry that extends supertranslations. In four spacetime

dimensions, the full symmetry algebra has been shown to include two sets of supertrans-

lations in semi-direct sum with two mutually commuting copies of Witt algebras. This is

given in (2.31). This extends the analysis of ref. [7], in particular by taking into account

time-dependent configurations. This resulted in the enhancement of the symmetry algebra.

We have discussed the proper definition of the surface charges associated to these symme-

tries and studied their integrability properties. With the adequate definition of the Dirac

brackets, the charges were shown to close the same algebra as the one of the asymptotic

Killing vectors that preserve the boundary conditions at the horizon. In the case of station-

ary black holes, the only charges that do not vanish turn out to be the zero-modes, one of

which provides the entropy of the black hole. We also studied the extremal limit, in which

the zero-mode of the charges also reproduces the entropy. It is worth mentioning that, if

an initially stationary black hole is perturbed and then settles down into a new stationary

configuration, the final black hole may no longer have vanishing higher-mode charges as

defined with respect to the initial black hole, realizing a gravitational memory effect.

Some questions still remain open: first, it would be interesting to understand the

physical meaning of the additional charges Ym, Ȳm, and T(m,n) with m,n 6= 0 and the

interplay with the supertranslation (and superrotation) hairs. Also in the case of the

zero-modes m = n = 0, the geometric interpretation of the charges for time-dependent
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configurations requires further study. It would be worthwhile investigating the relation

between the analysis of the extremal limit carried out here and the standard setup of the

Kerr/CFT correspondence. Last, it would be desirable to explore different sets of boundary

conditions at the horizon and see how different choices lead to different infinite-dimensional

symmetry algebras.
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