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Extended Target Tracking using

a Gaussian-Mixture PHD filter
Karl Granström, Member, IEEE, Christian Lundquist, and Umut Orguner, Member, IEEE

Abstract—This paper presents a Gaussian-mixture implemen-
tation of the PHD filter for tracking extended targets. The
exact filter requires processing of all possible measurement set
partitions, which is generally infeasible to implement. A method
is proposed for limiting the number of considered partitions and
possible alternatives are discussed. The implementation is used
on simulated data and in experiments with real laser data, and
the advantage of the filter is illustrated. Suitable remedies are
given to handle spatially close targets and target occlusion.

Index Terms—Target tracking, extended target, PHD filter,
random set, Gaussian-mixture, laser sensor.

I. INTRODUCTION

In most multi-target tracking applications it is assumed that

each target produces at most one measurement per time step.

This is true for the cases when the distance between the

target and the sensor is large in comparison to the target’s

size. In other cases however, the target size may be such

that multiple resolution cells of the sensor are occupied by

the target. Targets that potentially give rise to more than

one measurement per time step are categorized as extended.

Examples include the cases when vehicles use radar sensors

to track other road-users, when ground radar stations track

airplanes which are sufficiently close to the sensor, or in

mobile robotics when pedestrians are tracked using laser range

sensors.

Gilholm and Salmond [1] have presented an approach for

tracking extended targets under the assumption that the number

of received target measurements in each time step is Poisson

distributed. Their algorithm was illustrated with two examples

where point targets which may generate more than one mea-

surement and objects that have a 1-D extension (infinitely thin

stick of length l) are tracked. In [2] a measurement model was

suggested which is an inhomogeneous Poisson point process.

At each time step, a Poisson distributed random number of

measurements are generated, distributed around the target.

This measurement model can be understood to imply that the

extended target is sufficiently far away from the sensor for

its measurements to resemble a cluster of points, rather than

a geometrically structured ensemble. A similar approach is

taken in [3] where track-before-detect theory is used to track

a point target with a 1-D extent.

The authors gratefully acknowledge the fundings from the Swedish Founda-
tion for Strategic Research (SSF) under the project Collaborative Unmanned
Aircraft Systems (CUAS), and from the Swedish Research Council under the
Linnaeus Center CADICS and under the frame project grant Extended Target
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Baum et al have presented the random hypersurface model

[4], an extended target model which has been used to track

elliptic targets [5], as well as more general shapes [6]. A

different approach to elliptic target modeling is the random

matrix framework by Koch [7]. The target kinematical states

are modeled using a Gaussian distribution, while the ellip-

soidal target extension is modeled using an inverse Wishart

distribution. Using random matrices to track group targets

under kinematical constraints is discussed in [8]. Modifications

and improvements to the Gaussian-inverse Wishart model of

[7] have been suggested in [9], and the model [7] has been inte-

grated into a Probabilistic Multi-Hypothesis Tracking (PMHT)

framework in [10]. A comparison of random matrices and the

random hypersurface model under single target assumption

is given in [11]. Measurements of target down-range extent

are used to aid track retention in [12]. Other approaches to

estimating the target extensions are given in [13]–[15].

Using the rigorous finite set statistics (FISST), Mahler has

pioneered the recent advances in the field of multiple target

tracking with a set theoretic approach where the targets and

measurements are treated as random finite sets (RFS). This

type of approach allows the problem of estimating multiple

targets in clutter and uncertain associations to be cast in a

Bayesian filtering framework [16], which in turn results in an

optimal multi-target Bayesian filter. As is the case in many

nonlinear Bayesian estimation problems, the optimal multi-

target Bayesian filter is infeasible to implement except for

simple examples and an important contribution of FISST is to

provide structured tools in the form of the statistical moments

of a RFS. The first order moment of a RFS is called probability

hypothesis density (PHD), and it is an intensity function defined

over the state space of the targets. The so called PHD filter [16],

[17] propagates in time PHDs corresponding to the set of target

states as an approximation of the optimal multi-target Bayesian

filter. A practical implementation of the PHD filter is provided

by approximating the PHDs with Gaussian-mixtures (GM) [18]

which results in the Gaussian-mixture PHD (GM-PHD) filter.

In the recent work [19], Mahler presented an extension of the

PHD filter to also handle extended targets of the type presented

in [2].

In this paper, we present a Gaussian-mixture implementa-

tion of the PHD-filter for extended targets [19], which we call

the extended target GM-PHD-filter (ET-GM-PHD). In this way,

we, to some extent, give a practical extension of the series

of work in [2], [18], [19]. An earlier version of this work

was presented in [20] and the current, significantly improved,

version includes not only much more details and extensive

investigations of the methodology but also practical examples
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with real data. For space considerations, we do not repeat the

derivation of the PHD-filter equations for extended targets and

instead refer the reader to [19].

The document is outlined as follows. The multiple extended

target tracking problem is defined in Section II. The details of

the Gaussian-mixture implementation are given in Section III.

For the measurement update step of the ET-GM-PHD-filter, dif-

ferent partitions of the set of measurements have to be consid-

ered. A measurement clustering algorithm used to reduce the

combinatorially exploding number of possible measurement

partitions is described in Section IV. The proposed approaches

are evaluated using both simulations and experiments. The

target tracking setups for these evaluations are described in

Section V, the simulation results are presented in Section VI

and results using data from a laser sensor are presented in

Section VII. Finally, Sections VIII and IX contain conclusions

and thoughts on future work.

II. TARGET TRACKING PROBLEM FORMULATION

In previous work, extended targets have often been modeled

as targets having a spatial extension or shape that would

lead to multiple measurements, as opposed to at most a

single measurement. On the other hand, the extended target

tracking problem can be simplified by the assumption that

the measurements originating from a target are distributed

approximately around a target reference point [1] which can be

e.g. the centroid or any other point depending on the extent (or

the shape) of the target. Though all targets obviously have a

spatial extension and shape, in the latter type of modeling, only

the target reference point is important and the target extent

does not need to be estimated.

The relevant target characteristics that are to be estimated

form the target’s state vector x. Generally, beside the kine-

matic variables as position, velocity and orientation, the state

vector may also contain information about the target’s spatial

extension. As mentioned above, when the target’s state does

not contain any variables related to the target extent, though

the estimation is done as if the target was a point (i.e. the

target reference point), the algorithms should still take care of

the multiple measurements that originate from a target. Hence,

in this study, we use a generalized definition of an extended

target, given below, which does not depend on whether the

target extent is estimated or not.

Definition 1 (Extended Target). A target which potentially

gives rise to more than one measurement per time step. �

In this work, to simplify the presentation, no information

about the size and shape of the target is kept in the state

vector x, i.e. the target extent is not explicitly estimated.

Nevertheless, it must be emphasized that this causes no loss

of generality as shown by the recent work [13] where the

resulting ET-GM-PHD filter is used to handle the joint estima-

tion of size, shape and kinematic variables for rectangular and

elliptical extended targets. We model both the target states

to be estimated, and the measurements collected, as RFSs.

The motivation behind this selection is two-fold. First, in

many practical systems, although the sensor reports come

with a specific measurement order, the results of the target

tracking algorithms are invariant under permutations of this

order. Hence, modeling the measurements as elements of a set

in which the order of the elements is irrelevant makes sense.

Second, this work unavoidably depends on the previous line

of work [19], which is based on such a selection.

The initial GM-PHD work [18] does not provide tools

for ensuring track continuity, for which some remedies are

described in the literature, see e.g. [21]. However it has been

shown that labels for the Gaussian components can be included

into the filter in order to obtain individual target tracks, see

e.g. [22]. In this work, for the sake of simplicity, labels are not

used, however they can be incorporated as in [22] to provide

track continuity.

We denote the unknown number of targets Nx,k, and the set

of target states to be estimated at time k is Xk = {x(i)
k }Nx,k

i=1 .

The measurement set obtained at time k is Zk = {z(i)k }Nz,k

i=1

where Nz,k is the number of measurements.

The dynamic evolution of each target state x
(i)
k in the RFS

Xk is modeled using a linear Gaussian dynamical model,

x
(i)
k+1 = Fkx

(i)
k +Gkw

(i)
k , (1)

for i = 1, . . . , Nx,k, where w
(i)
k is Gaussian white noise with

covariance Q
(i)
k . Note that each target state evolves according

to the same dynamic model independent of the other targets.

The number of measurements generated by the ith target

at each time step is a Poisson distributed random variable

with rate γ
(

x
(i)
k

)

measurements per scan, where γ( · ) is

a known non-negative function defined over the target state

space. The probability of the ith target generating at least one

measurement is then given as

1− e
−γ

(

x
(i)
k

)

. (2)

The ith target is detected with probability pD

(

x
(i)
k

)

where

pD( · ) is a known non-negative function defined over the target

state space. This gives the effective probability of detection
(

1− e
−γ

(

x
(i)
k

)
)

pD

(

x
(i)
k

)

. (3)

The measurements originating from the ith target are as-

sumed to be related to the target state according to a linear

Gaussian model

z
(j)
k = Hkx

(i)
k + e

(j)
k , (4)

where e
(j)
k is white Gaussian noise with covariance Rk. Each

target is assumed to give rise to measurements independently

of the other targets. We emphasize here, that in an RFS

framework both the set of measurements Zk and the set of

target states Xk are unlabeled, and hence no assumptions are

made regarding which target gives rise to which measurement.

The number of clutter measurements generated at each time

step is a Poisson distributed random variable with rate βFA,k

clutter measurements per surveillance volume per scan. Thus,

if the surveillance volume is Vs, the mean number of clutter

measurements is βFA,kVs clutter measurements per scan. The
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spatial distribution of the clutter measurements is assumed

uniform over the surveillance volume.

The aim is now to obtain an estimate of the sets of the

target states XK = {Xk}Kk=1 given the sets of measurements

ZK = {Zk}Kk=1. We achieve this by propagating the predicted

and updated PHDs of the set of target states Xk, denoted

Dk|k−1( · ) and Dk|k( · ), respectively, using the PHD filter

presented in [19].

III. GAUSSIAN-MIXTURE IMPLEMENTATION

In this section, following the derivation of the GM-PHD-

filter for standard single measurement targets in [18], a PHD

recursion for the extended target case is described. Since the

prediction update equations of the extended target PHD filter

are the same as those of the standard PHD filter [19], the

Gaussian mixture prediction update equations of the ET-GM-

PHD filter are the same as those of the standard GM-PHD

filter in [18]. For this reason, here we only consider the

measurement update formulas for the ET-GM-PHD filter.

The predicted PHD has the following Gaussian-mixture

representation

Dk|k−1 (x) =

Jk|k−1
∑

j=1

w
(j)
k|k−1N

(

x ; m
(j)
k|k−1, P

(j)
k|k−1

)

(5)

where

• Jk|k−1 is the predicted number of components;

• w
(j)
k|k−1 is the weight of the jth component;

• m
(j)
k|k−1 and P

(j)
k|k−1 are the predicted mean and covari-

ance of the jth component;

• N (x ; m,P ) denotes a Gaussian distribution defined

over the variable x with mean m and covariance P .

The PHD measurement update equation for the extended

target Poisson model of [2] was derived in [19]. The corrected

PHD-intensity is given by the multiplication of the predicted

PHD and a measurement pseudo-likelihood function [19] LZk
,

Dk|k (x|Z) = LZk
(x)Dk|k−1 (x|Z) . (6)

The measurement pseudo-likelihood function LZk
in (6) is

defined as

LZk
(x) ,1−

(

1− e−γ(x)
)

pD (x) + e−γ(x)pD (x)

×
∑

p∠Zk

ωp

∑

W∈p

γ (x)
|W |

dW
·

∏

zk∈W

φzk
(x)

λkck (zk)
. (7)

where

• λk , βFA,kVs is the mean number of clutter measure-

ments;

• ck (zk) = 1/Vs is the spatial distribution of the clutter

over the surveillance volume;

• the notation p∠Zk means that p partitions the measure-

ment set Zk into non-empty cells W ;

• the quantities ωp and dW are non-negative coefficients

defined for each partition p and cell W respectively.

• φzk
(x) = p(zk|x) is the likelihood function for a

single target generated measurement, which would be a

Gaussian density in this work.

The first summation on the right hand side of (7) is taken

over all partitions p of the measurement set Zk. The second

summation is taken over all cells W in the current partition

p.

In order to derive the measurement update of the GM-PHD-

filter, six assumptions were made in [18], which are repeated

here for the sake of completeness.

Assumption 1. All of the targets evolve and generate obser-

vations independently of one another. �

Assumption 2. Clutter is Poisson and independent of target-

originated measurements. �

Assumption 3. The predicted multi-target RFS is Poisson. �

Assumption 4. Each target follows a linear Gaussian dy-

namical model, cf. (1), and the sensor has a linear Gaussian

measurement model, cf. (4). �

Assumption 5. The survival and detection probabilities are

state independent, i.e. pS (x) = pS and pD (x) = pD. �

Assumption 6. The intensities of the birth and spawn RFS are

Gaussian-mixtures. �

In this paper we adopt all of the above assumptions except

that we relax the assumption on detection probability as

follows.

Assumption 7. The following approximation about the prob-

ability of detection function pD ( · ) holds,

pD (x)N
(

x ; m
(j)
k|k−1, P

(j)
k|k−1

)

≈ pD

(

m
(j)
k|k−1

)

N
(

x ; m
(j)
k|k−1, P

(j)
k|k−1

)

(8)

for all x and for j = 1, . . . , Jk|k−1. �

Assumption 7 is weaker than Assumption 5 in that (8)

is trivially satisfied when pD ( · ) = pD, i.e. when pD ( · ) is

constant. In general, Assumption 7 holds approximately when

the function pD ( · ) does not vary much in the uncertainty

zone of a target determined by the covariance P
(j)
k|k−1. This

is true either when pD ( · ) is a sufficiently smooth function

or when the signal to noise ratio (SNR) is high enough

such that P
(j)
k|k−1 is sufficiently small. We still note here that

Assumption 7 is only for the sake of simplification rather than

approximation, since pD (x) can always be approximated as a

mixture of exponentials of quadratic functions (or equivalently

as Gaussians) without losing the Gaussian-mixture structure

of the corrected PHD, see [18]. This, however, would cause

a multiplicative increase in the number of components in the

corrected PHD, which would in turn make the algorithm need

more aggressive pruning and merging operations. A similar

approach to variable probability of detection has been taken

in order to model the clutter notch in ground moving target

indicator target tracking [23].

For the expected number of measurements from the targets,

represented by γ( · ), similar remarks apply and we use the

following assumption.
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Assumption 8. The following approximation about γ( · )
holds,

e−γ(x)γn(x)N
(

x ; m
(j)
k|k−1, P

(j)
k|k−1

)

≈ e
−γ

(

m
(j)

k|k−1

)

γn
(

m
(j)
k|k−1

)

N
(

x ; m
(j)
k|k−1, P

(j)
k|k−1

)

(9)

for all x, n = 1, 2, . . . and j = 1, . . . , Jk|k−1. �

The trivial situation γ( · ) = γ, i.e. when γ( · ) is constant,

is again a special case where Assumption 8 is satisfied.

In general, satisfying Assumption 8 is more difficult than

Assumption 7 and a Gaussian mixture assumption for γ( · )
would not work due to the exponential function. Nevertheless

Assumption 8 is expected to hold approximately either when

γ ( · ) is a sufficiently smooth function or when the signal

to noise ratio (SNR) is high enough such that P
(j)
k|k−1 is

sufficiently small.

With the assumptions presented above, the posterior inten-

sity at time k is a Gaussian-mixture given by

Dk|k (x) = DND
k|k (x) +

∑

p∠Zk

∑

W∈p

DD
k|k (x,W ). (10)

The Gaussian-mixture DND
k|k ( · ), handling the no detection

cases, is given by

DND
k|k (x) =

Jk|k−1
∑

j=1

w
(j)
k|kN

(

x ; m
(j)
k|k, P

(j)
k|k

)

, (11a)

w
(j)
k|k =

(

1−
(

1− e−γ(j)
)

p
(j)
D

)

w
(j)
k|k−1, (11b)

m
(j)
k|k = m

(j)
k|k−1, P

(j)
k|k = P

(j)
k|k−1. (11c)

where we used the short hand notations γ(j) and p
(j)
D for

γ
(

m
(j)
k|k−1

)

and pD

(

m
(j)
k|k−1

)

respectively.

The Gaussian-mixture DD
k|k (x,W ), handling the detected

target cases, is given by

DD
k|k (x,W ) =

Jk|k−1
∑

j=1

w
(j)
k|kN

(

x ; m
(j)
k|k, P

(j)
k|k

)

, (12a)

w
(j)
k|k = ωp

Γ(j)p
(j)
D

dW
Φ

(j)
W w

(j)
k|k−1, (12b)

Γ(j) = e−γ(j)
(

γ(j)
)|W |

, (12c)

Φ
(j)
W = φ

(j)
W

∏

zk∈W

1

λkck (zk)
, (12d)

where the product is over all measurements zk in the cell W

and |W | is the number of elements in W . The coefficient φ
(j)
W

is given by

φ
(j)
W = N

(

zW ; HWm
(j)
k|k−1,HWP

(j)
k|k−1H

T

W +RW

)

(12e)

and is calculated using

zW ,
⊕

zk∈W

zk, HW = [HT

k , H
T

k , · · · , HT

k
︸ ︷︷ ︸

|W | times

]T,

RW =blkdiag(Rk, Rk, · · · , Rk
︸ ︷︷ ︸

|W | times

).

The operation
⊕

denotes vertical vectorial concatenation. The

partition weights ωp can be interpreted as the probability of

the partition p being true and are calculated as

ωp =

∏

W∈p dW
∑

p′∠Zk

∏

W ′∈p′ dW ′

, (12f)

dW = δ|W |,1 +

Jk|k−1
∑

ℓ=1

Γ(ℓ)p
(ℓ)
D Φ

(ℓ)
W w

(ℓ)
k|k−1, (12g)

where δi,j is the Kronecker delta. The mean and covariance

of the Gaussian components are updated using the standard

Kalman measurement update,

m
(j)
k|k = m

(j)
k|k−1 +K

(j)
k

(

zW −HWm
(j)
k|k−1

)

, (13a)

P
(j)
k|k =

(

I −K
(j)
k HW

)

P
(j)
k|k−1, (13b)

K
(j)
k = P

(j)
k|k−1H

T

W

(

HWP
(j)
k|k−1H

T

W +RW

)−1

. (13c)

In order to keep the number of Gaussian components at

a computationally tractable level, pruning and merging is

performed as in [18].

IV. PARTITIONING THE MEASUREMENT SET

As observed in the previous section, an integral part of

extended target tracking with the PHD filter is the partitioning

of the set of measurements [19]. The partitioning is important,

since more than one measurement can stem from the same

target. Let us exemplify1 the process of partitioning with a

measurement set containing three individual measurements,

Zk =
{
z
(1)
k , z

(2)
k , z

(3)
k

}
. This set can be partitioned in the

following different ways;

p1 : W 1
1 =

{
z
(1)
k , z

(2)
k , z

(3)
k

}
,

p2 : W 2
1 =

{
z
(1)
k , z

(2)
k

}
, W 2

2 =
{
z
(3)
k

}
,

p3 : W 3
1 =

{
z
(1)
k , z

(3)
k

}
, W 3

2 =
{
z
(2)
k

}
,

p4 : W 4
1 =

{
z
(2)
k , z

(3)
k

}
, W 4

2 =
{
z
(1)
k

}
,

p5 : W 5
1 =

{
z
(1)
k

}
, W 5

2 =
{
z
(2)
k

}
, W 5

3 =
{
z
(3)
k

}
.

Here, pi is the ith partition, and W i
j is the jth cell of partition

i. Let |pi| denote the number of cells in the partition, and

let |W i
j | denote the number of measurements in the cell.

It is quickly realized that as the size of the measurement

set increases, the number of possible partitions grows very

large. In order to have a computationally tractable target

tracking method, only a subset of all possible partitions can be

considered. In order to achieve good extended target tracking

results, this subset of partitions must represent the most likely

ones of all possible partitions.

1This example was also utilized in [19].
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In Section IV-A, we propose a simple heuristic for finding

this subset of partitions, which is based on the distances

between the measurements. Note that our proposed method

is only one instance of a vast number of other clustering

algorithms found in the literature, and that other methods could

have been used. Some well-known alternatives are pointed

out, and compared to the proposed partitioning method, in

Section IV-B. An addition to the partitioning approach to

better handle targets which are spatially close is described in

Section IV-C.

A. Distance Partitioning

Consider a set of measurements Z = {z(i)}Nz

i=1. Our

partitioning algorithm relies on the following theorem.

Theorem 1. Let d( · , · ) be a distance measure and dℓ ≥ 0
be an arbitrary distance threshold. Then there is one and only

one partition in which any pair of measurements z(i), z(j) ∈ Z

that satisfy

d
(

z(i), z(j)
)

≤ dℓ (15)

are in the same cell. �

Proof: The proof is given in Appendix A for the sake of

clarity. �

Given a distance measure d( · , · ), the distances between

each pair of measurements can be calculated as

∆ij , d(z(i), z(j)), for 1 ≤ i 6= j ≤ Nz. (16)

Theorem 1 says that there is a unique partition that leaves all

pairs (i, j) of measurements satisfying ∆ij ≤ dℓ in the same

cell. An example algorithm that can be used to obtain this

unique partition is given in Table I. This algorithm is used to

generate Nd alternative partitions of the measurement set Z,

by selecting Nd different thresholds

{dℓ}Nd

ℓ=1 , dℓ < dℓ+1, for ℓ = 1, . . . , Nd − 1. (17)

The alternative partitions contain fewer cells as the dℓ’s are

increasing, and the cells typically contain more measurements.

The thresholds {dℓ}Nd

ℓ=1 are selected from the set

D , {0} ∪ {∆ij |1 ≤ i < j ≤ Nz} (18)

where the elements of D are sorted in ascending order. If one

uses all of the elements in D to form alternative partitions,

|D| = Nz(Nz − 1)/2 + 1 partitions are obtained. Some

partitions resulting from this selection might still turn out to be

identical, and must hence be discarded so that each partition

at the end is unique. Among these unique partitions, the first

(corresponding to the threshold d1 = 0) would contain Nz

cells with one measurement each. The last partition would

have just one cell containing all Nz measurements. Notice

that this partitioning methodology already reduces the number

of partitions tremendously.

In order to further reduce the computational load, partitions

in this work are computed only for a subset of thresholds in

the set D. This subset is determined based on the statistical

properties of the distances between the measurements belong-

ing to the same target.

TABLE I
DISTANCE PARTITIONING

Require: dℓ, ∆i,j , 1 ≤ i 6= j ≤ Nz .
1: CellNumber(i) = 0, 1 ≤ i ≤ Nz {Set cells of all measurements to null}
2: CellId = 1 {Set the current cell id to 1}

%Find all cell numbers
3: for i = 1 : Nz do

4: if CellNumbers(i) = 0 then

5: CellNumbers(i) = CellId
6: CellNumbers = FindNeighbors(i,CellNumbers,CellId)
7: CellId = CellId+1
8: end if

9: end for

The recursive function FindNeighbors( · , · , · ) is given as

1: function CellNumbers = FindNeighbors(i,CellNumbers,CellId)
2: for j = 1 : Nz do

3: if j 6= i & ∆ij ≤ dℓ & CellNumbers(j) = 0 then

4: CellNumbers(j) = CellId
5: CellNumbers = FindNeigbors(j,CellNumbers,CellId)
6: end if

7: end for

Suppose we select the distance measure d( · , · ) as the

Mahalanobis distance, given by

dM

(

z(i), z(j)
)

=

√
(
z(i) − z(j)

)T
R−1

(
z(i) − z(j)

)
. (19)

Then, for two target-originated measurements z(i) and z(j)

belonging to the same target, dM

(
z(i), z(j)

)
is χ2 distributed

with degrees of freedom equal to the measurement vector

dimension. Using the inverse cumulative χ2 distribution func-

tion, denoted invchi2( · ), a unitless distance threshold,

δPG
= invchi2(PG), (20)

can be computed for a given probability PG. Simulations have

shown that good target tracking results are achieved with

partitions computed using the subset of distance thresholds

in D satisfying the condition δPL
< dℓ < δPU

, for lower

probabilities PL ≤ 0.3 and upper probabilities PU ≥ 0.8.

As a simple example, if there are four targets present,

each with expected number of measurements 20, and clutter

measurements are generated with βFAVs = 50, then the mean

number of measurements collected each time step would be

130. For 130 measurements, the number of all possible parti-

tions is given by the Bell number B130 ∝ 10161 [24]. Using all

of the thresholds in the set D, 130 different partitions would be

computed on average. Using the upper and lower probabilities

PL = 0.3 and PU = 0.8, Monte Carlo simulations show

that on average only 27 partitions are computed, representing

a reduction of computational complexity several orders of

magnitude.

B. Alternative Partitioning Methods

An alternative to using the proposed algorithm is to use a

method which takes as input the final desired number of cells,

denoted K, and then divides the set of measurements into

K cells. The most well-known example of such a method is

perhaps K-means clustering, see e.g. the textbooks [25], [26].

In the ET-GM-PHD-filter, one needs to generate alternative

partitions, corresponding to different values of K between a

lower and an upper threshold, denoted KL and KU. While the
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Fig. 1. Set of Nz,k = 13 measurements. Left: The measurements partitioned
using the suggested distance partitioning method with a distance threshold of
25 m. Right: The measurements partitioned using K-means clustering with
K = 4.

values for the partitioning parameters δPL
and δPU

in Distance

Partitioning can be chosen using some intuitive arguments as

above, it is less clear how KL and KU should be selected. One

idea is to set KL = 1 and KU = |Zk|, which corresponds

to δPU = ∞ and δPL = 0 in Distance Partitioning. Doing

so would significantly increase the computational complexity

compared to Distance Partitioning, since a considerably higher

number of partitions must be considered.

Another major difference between the suggested distance

partitioning and K-means clustering is highlighted in Fig. 1,

which shows a measurement set that consists of Nz,k = 13
measurements, 10 of which are clustered in the northeast of

the surveillance region and the other three are scattered indi-

vidually. The intuitive way to cluster this set of measurements

is into 4 clusters, which is achieved by Distance Partitioning

using a distance threshold of about 25 m, as shown in the left

plot of Fig. 1. When there is a large number of measurements

concentrated in one part of the surveillance area, as is the

case in this example, K-means clustering tends to split those

measurements into smaller cells, and merge remaining but far

away measurements into large cells. This is illustrated in the

right plot of Fig. 1.

One reason behind this shortcoming of K-means is the

initialization of the algorithm, where the initial cluster centers

are chosen by uniform sampling. In order to overcome this

problem, modifications to the standard K-means algorithm

have been suggested, where initial clusters are chosen as

separated as possible, see [27], [28]. This improved version

of K-means is called K-means++.

In simulations, Distance Partitioning was compared to K-

means++ (using an implementation available online [29]).

The results, see Section VI-B, show that K-means++ fails

to compute informative partitions much too often, except in

scenarios with very low βFA,k. This can be attributed to the

existence of counter-intuitive local optima for the implicit cost

function involved with K-means++ (or K-means). Distance

Partitioning on the other hand can handle both high and low

βFA,k, and always gives an intuitive and unique partitioning

for a given dℓ.

Therefore, we argue that a hierarchical method, such as

the suggested Distance Partitioning, should be preferred over

methods such as K-means. However, it is important to note

here again, that regarding partitioning of the measurement set,

the contribution of the current work lies mainly not in the

specific method that is suggested, but rather in showing that

all possible partitions can efficiently be approximated using a

subset of partitions.

C. Sub-Partitioning

Initial results using ET-GM-PHD showed problems with

underestimation of target set cardinality in situations where

two or more extended targets are spatially close [20]. The

reason for this is that when targets are spatially close, so are

their resulting measurements. Thus, using Distance Partition-

ing, measurements from more than one measurement source

will be included in the same cell W in all partitions p, and

subsequently the ET-GM-PHD filter will interpret measure-

ments from multiple targets as having originated from just

one target. In an ideal situation, where one could consider

all possible partitions of the measurement set, there would

be alternative partitions which would contain the subsets of

a wrongly merged cell. Such alternative partitions would

dominate the output of the ET-GM-PHD filter towards the

correct estimated number of targets. Since we eliminate such

partitions completely using Distance Partitioning, the ET-GM-

PHD filter lacks the means to correct its estimated number of

targets.

One remedy for this problem is to form additional partitions

after performing Distance Partitioning, and to add them to

the list of partitions that ET-GM-PHD filter considers at the

current time step. Obviously, this should be done only when

there is a risk of having merged the measurements belonging

to more than one target, which can be decided based on the

expected number of measurements originating from a target.

We propose the following procedure for the addition of more

partitions.

Suppose that we have computed a set of partitions using

Distance Partitioning, e.g. with the algorithm in Table I. Then,

for each generated partition pi, we calculate the maximum

likelihood (ML) estimates N̂ j
x of the number of targets for

each cell W i
j . If this estimate is larger than one, we split the

cell W i
j into N̂ j

x smaller cells, denoted

{
W+

s

}N̂j
x

s=1
. (21)

We then add a new partition, consisting of the new cells along

with the other cells in pi, to the list of partitions obtained by

Distance Partitioning.

We illustrate the Sub-Partition algorithm in Table II, where

the splitting operation on a cell is shown by a function

split
(

N̂ j
x,W

i
j

)

. (22)

We give the details for obtaining the ML estimate N̂ j
x and

choosing the function split ( · , · ) in the subsections below.

1) Computing N̂ j
x: For this operation, we assume that the

function γ( · ) determining the expected number measurements

generated by a target is constant, i.e. γ( · ) = γ. Each target

generates measurements independently of the other targets,

and the number of generated measurements by each target

is distributed with the Poisson distribution, Pois ( · , γ). The
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TABLE II
SUB-PARTITION

Require: Partitioned set of measurements Zp =
{

p1, . . . , pNp

}

, where Np

is the number of partitions.
1: Initialise: Counter for new partitions ℓ = Np.
2: for i = 1, . . . , Np do

3: for j = 1, . . . , |pi| do

4: N̂
j
x = argmax

n
p
( ∣

∣

∣
W i

j

∣

∣

∣

∣

∣

∣
N

j
x = n

)

5: if N̂
j
x > 1 then

6: ℓ = ℓ+ 1 {Increase the partition counter}
7: pℓ = pi\W

i
j {Current partition except the current cell}

8:
{

W+
k

}N̂j
x

k=1
= split

(

N̂
j
x,W

i
j

)

{Split the current cell}

9: pℓ = pℓ ∪
{

W+
k

}N̂j
x

k=1
{Augment the current partition}

10: end if

11: end for

12: end for

likelihood function for the number of targets corresponding to

a cell W i
j is

p
( ∣
∣W i

j

∣
∣
∣
∣N j

x = n
)
= Pois

(∣
∣W i

j

∣
∣ , γn

)
. (23)

Here, we assume that the volume covered by a cell is suffi-

ciently small such that the number of false alarms in the cell

is negligible, i.e. there are no false alarms in W i
j . The ML

estimate N̂ j
x can now be calculated as

N̂ j
x = argmax

n
p
( ∣
∣W i

j

∣
∣
∣
∣N j

x = n
)
. (24)

Note that other alternatives can be found for calculating

the estimates of N j
x , e.g. utilizing specific knowledge about

the target tracking setup, however both simulations and ex-

periments have shown that the above suggested method works

well.

2) The split ( · , · ) function: An important part of the Sub-

Partition function in Table II is the function split ( · , · ), which

is used to divide the measurements in a cell into smaller cells.

In both simulations and experiments, we have used K-means

clustering to split the measurements in the cell, results shows

that this works well. However note that other methods to split

the measurements are possible.

Remark 1 (Limitations of Sub-Partition). Notice that the Sub-

Partition algorithm given in this section can be interpreted

to be only a first-order remedy to the problem, and hence

have limited correction capabilities. This is because we do not

consider the combinations of the cells when we are adding new

partitions. In the case, for example, where there are two pairs

of close targets whose cells are merged wrongly by Distance

Partitioning, the sub-partitioning algorithm presented above

would add an additional partition for each of the target

pairs (i.e. for each of the wrongly merged cells), but not

an additional partition that contains the split versions of

both cells. Consideration of all combinations of (the wrongly

merged) cells seems to be prohibitive, due to the combinatorial

growth in the number of additional partitions. An idea for the

cases where there can be more than one wrongly merged cells

is to add a single additional partition, which contains split

versions of all such cells. �
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Fig. 2. Birth intensity used in experiments.

V. TARGET TRACKING SETUP

The presented tracking approach is exemplified with a laser

sensor tracking humans at short distance. In this section the

tracking setup is defined for both a pure simulation envi-

ronment and an experimental realisation with laser data. The

targets are modeled as points with state variables

xk =
[
xk yk v

x

k v
y

k

]T
, (25)

where xk and yk are the planar position coordinates of the

target, and v
x

k and v
y

k are the corresponding velocities. The

sensor measurements are given in batches of Cartesian x and

y coordinates as follows;

z
(j)
k ,

[

x
(j)
k y

(j)
k

]T

. (26)

A constant velocity model [30], with sampling time T is

used. In all simulations the probability of detection and

probability of survival are set to pD = 0.99 and pS = 0.99,

respectively. The algorithm parameters for the simulation and

experiment are given in Table III. The surveillance area is

[−1000, 1000](m) × [−1000, 1000](m) for the simulations,

and for the real data experiments the surveillance area is a

semi circle located at the origin with range 13 m. Unless

otherwise stated, in the simulations clutter was generated with

a Poisson rate of 10 clutter measurements per scan, and each

target generated measurements with a Poisson rate of 10
measurements per scan. The birth intensity in the simulations

is

Db (x) = 0.1N (x ; mb, Pb) + 0.1N (x ; −mb, Pb), (27a)

mb = [250, 250, 0, 0]T, Pb = diag ([100, 100, 25, 25]) .
(27b)

For the experiments, the birth intensity Gaussian components

are illustrated with their corresponding one standard deviation

ellipsoids in Fig. 2. Each birth intensity component has a

weight w
(j)
b = 0.1

Jb
, where the number of components is

Jb = 7. The spawn intensity is

Dβ (x|y) = wβN (x ; ξ,Qβ), (28)

where ξ is the target from which the new target is spawned

and the values for wβ and Qβ are given in Table III.



8

TABLE III
PARAMETER VALUES USED FOR SIMULATIONS (S) AND EXPERIMENTS (E).

T Qk Rk γ(i) wβ Qβ

S 1 22I2 202I2 10 0.05 blkdiag(100I2, 400I2)
E 0.2 22I2 0.12I2 12 0.01 0.01I4

VI. SIMULATION RESULTS

This section presents results from simulations using the pre-

sented extended target tracking method. Section VI-A presents

three simulation scenarios that are used several times, and

Section VI-B presents a comparison of Distance Partitioning

and K-means++. In Section VI-C a comparison of Distance

Partitioning and Distance Partitioning with Sub-Partition is

presented, the results show the increased performance when

using Sub-Partition. A comparison between ET-GM-PHD and

GM-PHD is presented in Section VI-D, where it is shown that

ET-GM-PHD as expected outperforms GM-PHD for extended

targets. Section VI-E presents a comparison of ET-GM-PHD

and GM-PHD for targets that give rise to at most one measure-

ment per time step. Finally, detailed investigations are carried

out about the effects of the possibly unknown parameter γ in

Section VI-F.

A. True target tracks

Three different scenarios are used in several simulations.

The first two both have two targets. The true x, y positions

and the distance between the targets are shown in Fig. 3a

and Fig. 3b. At the closest points the targets are 60m and

50m apart, respectively. In the third scenario there are four

targets in total, the true x, y positions are shown in black

in Fig. 3c. Around time 50–52 two target tracks cross at a

distance of just over 50m, at time 67 a new target is spawned

20m from a previous one. Together the three scenarios present

challenges that are typical in multiple target applications. In

the simulations, the targets are modeled as points that generate

measurements with standard deviation 20m in both x and y

direction. Thus, a measure of target extent can be taken as

the two standard deviation measurement covariance ellipses,

in this case circles of radius 40m. In all three scenarios these

circles partly overlap when the targets are closest to each other.

B. Comparison of Distance Partitioning and K-means++

The scenario in Fig. 3b was used to compare Distance

Partitioning to K-means++. In order to make the comparison

as fair as possible, the upper and lower thresholds were set to

KL = 1, KU = |Zk|, δPU
= ∞ and δPL

= 0, respectively.

The scenario was simulated with a Poisson rate of 1 and

10 clutter measurements per scan. For each clutter rate, the

scenario was simulated 100 times, Fig. 4 shows the resulting

sum of weights. At the lower clutter rate, K-means++ yields

a small positive bias in estimated target number, but the perfor-

mance is otherwise good. However, at the higher clutter rate

the performance using K-means++ is far from acceptable.

Distance Partitioning, on the other hand, handles both clutter

rates equally well, except for when the targets are close around

time 50. Note also that using Distance Partitioning, the sum

(a) βFA,kVs = 1

(b) βFA,kVs = 10

Fig. 4. Results from the comparison of Distance Partitioning (black dash-
dotted line) and K-means++ (gray solid line), the shaded areas correspond
to ± one standard deviation. At the lower clutter rate, K-means++ performs
adequately, however at the higher clutter rate the performance is unacceptable.
Distance Partitioning on the other hand handles both the lower and higher
clutter rate, and has a much smaller uncertainty area.

of weights uncertainty area is considerably smaller. The case

of close targets is investigated further in the next subsection,

using the countermeasure introduced in Section IV-C.

C. Benefits of Sub-Partition

As was noted in Section IV-C, as well as in previous work

[20], using only Distance Partitioning to obtain a subset of all

possible partitions is insufficient when the extended targets are

spatially close. For this reason, Sub-Partition was introduced

to obtain more partitions. In this section, we present results

from simulations that compare the performance of ET-GM-

PHD tracking with partitions computed using only Distance

Partitioning and with partitions computed using Distance Parti-

tioning and Sub-Partition. The scenarios in Fig. 3a and Fig. 3b

are considered.

Each scenario was simulated 100 times with a constant

expected number of measurements per target (γ( · ) = γ) of

5, 10 and 20, respectively. Fig. 5 shows the resulting sum

of weights of the ET-GM-PHD algorithm. As can be seen,

using Sub-Partition the average sum of weights is closer to

the true number of targets. This is especially clear for targets

that generate more measurements per time step, i.e. when γ
is higher.

D. Comparison with GM-PHD

This section presents results from a simulation comparison

of ET-GM-PHD and GM-PHD. Note here that the GM-PHD filter

is applied naively to the simulated measurements, i.e. it is

applied under the (false) assumption that each target produces

at most one measurement per time step. The scenario in Fig. 3c

is considered.
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Fig. 3. (a) Two targets move closer to each other and then stand still at a distance of 60m apart. Note that the true y position was 300m for both targets
for the entire simulation. (b) Two targets cross paths, at the closest point they are 50m apart. (c) Four targets, with a target spawning event at time 67. The
x and y positions are shown as lines, the light gray shaded areas show the target extent, taken as two measurement noise standard deviations (40m). In (a)
and (b), the bottom row shows the distance between the two targets over time.
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Fig. 5. Simulation results for two of the scenarios in Fig. 3, comparing different partitioning methods for different values of the expected number of
measurements γ. The top row, (a), (b) and (c), is for the true tracks in Fig. 3a. The bottom row, (d), (e) and (f), is for the true tracks in Fig. 3b. Black shows
Distance Partitioning with Sub-Partition, gray is only Distance Partitioning. It is clear from the plots that using Sub-Partition gives significantly better results,
especially when γ is higher.

In total 100 Monte Carlo simulations were performed, each

with new measurement noise and clutter measurements. The

results are shown in Fig. 6a and Fig. 6b, which show the corre-

sponding multi-target measure optimal subpattern assignment

metric (OSPA) [31], and the cardinality, respectively. In the

OSPA metric the parameters are set to p = 2, corresponding

to using the 2-norm which is a standard choice, and c = 60,

corresponding to a maximum error equal to three measurement

noise standard deviations. Here, the cardinality is computed

as
∑Jk|k

j=1 w
(j)
k|k. This sum can be rounded to obtain an integer

estimate of target number [18].

It is evident from the two figures that the presented ET-GM-

PHD significantly outperforms the standard GM-PHD, which

does not take into account the possibility of the multiple

measurements from single targets. The main difference be-

tween the two filters is the estimation of cardinality, i.e. the

number of targets. The ET-GM-PHD-filter correctly estimates

the cardinality with the exception of when the new target is

spawned – after time 67 there is a small dip in the mean

estimated cardinality, even though Sub-Partition is used. The

reason for this is that the targets are only 20m apart. With the

target extension being a circle of 40m radius, at 20m distance

the measurements overlap significantly and the probability that

the new target’s measurements were also generated by the old

target, as computed in (12e), is large. As the targets separate,

this probability decreases and the ET-GM-PHD filter recovers

the correct cardinality. It should still be noted that, in reality,

where the targets would probably be rigid bodies, this type of

very close situation is highly unlikely and the results of the

ET-GM-PHD filter with Sub-Partition would be close to those

presented in Section VI-C.

E. Standard single measurement targets

This section investigates how ET-GM-PHD handles standard

targets that produce at most one measurement per time step, in

comparison to standard GM-PHD which is designed under the

standard target measurement generation assumption. Note that

the measurement set cardinality distribution (i.e. the probabil-

ity mass function for the number of measurements generated

by a target) for a standard target contains only a single nonzero
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Fig. 6. Results from multiple target tracking using the true tracks in Fig. 3c. (a) Mean OSPA (solid lines) ±1 standard deviation (dashed lines). (b) Mean
cardinality compared to the true cardinality.

element2 at cardinality 1, which is impossible to model with a

Poisson distribution underlying the ET-GM-PHD filter. Hence,

the case where each target generates measurements whose

number is Poisson distributed with rate γ = 1 is very different

from the standard target measurement generation.

Four targets were simulated in 100 Monte Carlo simulations,

and all the targets were separated, i.e. there were no track

crossings or new target spawn. Initially, in the ET-GM-PHD fil-

ter, γ(j) are all set as γ(j) = 1 in the comparison. The average

sum of weights and the average number of extracted targets

(obtained by rounding the weights to the nearest integer) for

the algorithms are shown in Fig. 7a and Fig. 7b respectively.

As is shown, the sum of weights and number of extracted

targets are too large for the ET-GM-PHD filter. The reason for

this is that when the expected number of measurements per

target (i.e. γ(j)) is small, the effective probability of detection3

p
(j)
D,eff =

(

1− e−γ(j)
)

p
(j)
D (29)

becomes significantly smaller than one. For example, the case

γ(j) = 1 and p
(j)
D = 0.99 gives p

(j)
D,eff = 0.6258. This low

effective probability of detection is what causes the weights

in the ET-GM-PHD filter to become too large.

Actually, this problem has been seen to be inherited by

the ET-GM-PHD filter from the standard PHD filter. We here

give a simple explanation to the problem with low (effective)

probability of detection in the PHD filter. Assuming no false

alarms, and a single target with existence probability pE,

ideally a single detection should cause the expected number

of targets to be unity. However, applying the standard PHD

formulae to this simple example, one can calculate the updated

expected number of targets to be 1+pE(1−pD) whose positive

bias increases as pD decreases. We have seen that when the

(effective) probability of detection is low, the increase in

2Note that a standard target always generates a single measurement.
Whether no measurements or a single measurement is obtained from the
standard target is determined by the detection process.

3More correctly, p
(j)
D,eff

in (29) is the probability of the event that at least

one measurement from the (jth) target is obtained by the sensor.

∑Jk|k

j=1 w
(j)
k|k is a manifestation of this type of sensitivity of

the PHD type filters.4 A similar sensitivity issue is mentioned

in [33] for the case of no detection.

This problem can be overcome by increasing γ(j) slightly

in the ET-GM-PHD filter, e.g. γ(j) = 2 gives pjD,eff = 0.8560
which gives sum of weights and number of extracted targets

that better match the results from GM-PHD, see Fig. 7c and

Fig. 7d. Using γ(j) = 3 gives results that are more or less

identical to GM-PHD, thus a conclusion that can be drawn is

that when tracking standard targets with an ET-GM-PHD filter,

the parameter γ(j) should not be set too small. The following

subsection investigates the issue of selecting the parameter γ
in more detail.

F. Unknown expected number of measurements γ

In the simulations above, the parameters γ = γ(j) were

assumed to be known a priori. Further, in Section IV-C where

Sub-Partition is presented, the knowledge of the Poisson rate γ
was used to determine whether a cell should be split or not to

create an additional partition. In this section, some scenarios

where γ is not known a priori are investigated. For the sake

of clarity, γ is used to denote the true Poisson rate with which

measurements were generated, and γ̂ is used to denote the

corresponding parameter in the ET-GM-PHD-filter.

In many real world scenarios, the number of measurements

generated by a target is dependent on the distance between the

target and the sensor. Typically, the longer the distance, the

lower the number of measurements generated by the targets.

This is true for sensors such as laser range sensors, radars

and even cameras. Thus, it is of interest to evaluate the ET-

GM-PHD-filter in a scenario where the number of generated

measurements varies with the target to sensor distance. This

is simulated in Section VI-F1, where the ET-GM-PHD filter

is compared for the cases when the parameter γ̂ is constant,

and when the parameter is modeled as distance varying.

Section VI-F2 presents results from simulations where the

4Some extreme versions of this phenomenon for lower PD values are
illustrated and investigated in detail in the recent work [32].
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(a) γ(j) = 1
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(b) γ(j) = 1
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(c) γ(j) = 2
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(d) γ(j) = 2

Fig. 7. Simulation results, comparison of ET-GM-PHD and GM-PHD for standard targets that produce at most one measurement per time step. The top row
shows results when the parameter γ(j) is set to one, the bottom row shows results when it is set to two. Due to the low effective probability of detection,
the ET-GM-PHD weights become too large, resulting in sum of weights larger than the true number of targets. When each weight is rounded to the nearest
integer to extract targets, results for γ(j) = 2 gives the correct number of extracted targets.

parameter γ̂ is set incorrectly, and Section VI-F3 presents

results with targets of different sizes. Finally, Section VI-F4

presents a discussion about the results from the simulations,

and supplies some guidelines into the selection of γ̂.

1) Distance varying γ: A scenario was constructed where

a target moved such that the target to sensor distance first

decreased, and then increased. The sensor was simulated such

that the true parameter γ depended on the target to sensor

distance ρ as follows.

γ(ρ) =







1, if ρ > 400m

⌊−0.08ρ+ 33.5⌋ , if 100m ≤ ρ ≤ 400m

25, ρ < 100m

(30)

where ⌊ · ⌋ is the floor function. Thus, at distances larger than

400m, with p
(j)
D = 0.99, the effective probability of detection

is only 0.6258 (as in the previous subsection). Note that the

scenario is different from a target that always generates one

measurement, which is detected with probability p
(j)
D = 0.99.

Monte Carlo simulations were made with two ET-GM-PHD-

filters: one with constant value γ̂ = 10 and another where γ̂
was selected to be dependent on the state of the targets via the

function (30). The results are shown in Fig. 8. For constant γ̂,

the number of targets is underestimated when the true γ is low.

This is due to the fact that the filter expects a target to generate

more measurements, and thus the likelihood that some small

number of measurements are all clutter is higher. However, at

distances ρ such that γ (ρ) > 5, γ̂ = 10 works quite well.

When the model (30) for distance dependent γ is assumed

known, the results are much more reasonable and acceptable.

The only, and possibly negligible, drawback seems to be the

number of targets being slightly overestimated. There are two

main reasons for this. The first reason is the low effective

probability of detection when γ̂ is low. When γ̂ becomes

smaller than 5, this behavior is more evident. The second

reason is that the clutter falling into the region ρ > 400m (i.e.

when the true parameter is γ = 1) is interpreted as targets to

some extent, which causes a positive, though small, bias in

the estimation of number of targets. In that region, the target

behavior is fairly similar to the clutter behavior which results

in some Gaussian components with small weights surviving

until the situation is resolved.

2) Incorrect γ parameter: In this simulation study, the

target tracks in Fig. 3b were used. Each target generated

measurements with a Poisson rate of γ = 20 and eleven

different ET-GM-PHD-filters, each using a different γ̂ value,

were run. The set of γ̂ values used is given as

γ̂ = 10, 12, . . . , 28, 30. (31)

The results, in terms of the sum of weights averaged over

the Monte Carlo runs, are shown in Fig. 9. The figure shows

that for sufficiently separated targets, the ET-GM-PHD-filter

correctly estimates the number of targets for all values of

γ̂. However, for spatially close targets, the ET-GM-PHD-filter

overestimates the number of targets when γ̂ is set too low, and

underestimates the number of targets when γ̂ is set too high.

This result is actually expected, and is a direct consequence

of the simple Sub-Partition algorithm which is used. When

γ̂ is too low, Sub-Partition creates an additional partition

with too many cells, causing the overestimation of number

of targets. Conversely, when γ̂ is too high, Sub-Partition does

not create partitions with sufficient number of cells, causing

the underestimation of number of targets. It is very important

to note here that Sub-Partition runs even when the targets are

well separated and does not cause any overestimation. Our
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Fig. 8. Results from the simulation scenario where γ is dependent on the
target to sensor distance. In (a), the true γ is plotted against time, and in (b)
the mean sum of weights is plotted against time. The ET-GM-PHD-filter is
compared for the cases when the parameter γ̂ is held constant (gray) or is
set to the true distance dependent value (black). The correct target number
is one, thus the sum of weights should be around one. In both cases, at the
beginning and the end of the scenario when the distance is largest and γ = 1,
tracking performance gets worse.

observations show that this is a result of the fact that additional

partitions created (when γ̂ is selected too low) cannot win

over single target partitions when the targets measurements

are distributed in a blob shape. It is only when the two targets

approach each other, resulting in an eight-shaped cluster of

measurements, that the additional partition can gain dominance

over the single target partition. This property, though not

proved mathematically, is considered to be a manifestation

of the Poisson property and the Gaussianity assumptions

underlying the measurements.

If the cardinality estimates of the algorithms are rounded

to the nearest integer, an interesting property observed with

Fig. 9 is that no cardinality error appears for the cases that

satisfy

γ̂ −
√

γ̂ ≤ γ ≤ γ̂ +
√

γ̂. (32)

Thus, when the true parameter γ lies in the interval determined

by the mean (γ̂) ± one standard deviation (
√
γ̂), cardinality

is expected to be estimated correctly even for close targets.

3) Targets of different size: In many scenarios, it is possible

to encounter multiple targets of different sizes, thus producing

a different number of measurements. This means that two

targets would not have the same Poisson rate γ. In this

section, results are presented for a scenario with two targets

with measurement generating Poisson rates of 10 and 20,

respectively. In Monte Carlo simulations, three ET-GM-PHD-

filters were run with the parameter γ̂ set to 10, 15 and 20,

respectively. This corresponds to using either the true value

of the smaller target, the mean of both, or the true value

of the larger target. The results, in terms of average sum of

weights over time are shown in Fig. 10. When the targets
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Fig. 9. Simulation results for various values of the ET-GM-PHD-filter
parameter γ̂. There are two targets, the true Poisson rate used to generate
measurements for both targets was γ = 20.
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Fig. 10. Simulation results from a scenario with two targets of different sizes.
The two targets have the true Poisson rates γ = 10 and γ = 20, respectively.
The legend refers to the filter parameter γ̂.

are spatially separated, all three filters perform equally well.

However, when the targets are spatially close, the target with γ̂
set to the mean of the true γs performs better than the others.

4) Discussion: The simulation results above show that the

ET-GM-PHD-filter works well even when γ̂ 6= γ, except when

γ < 5 or targets are spatially close. For γ < 5, the filter is more

sensitive, and a correct value for γ̂ is increasingly important.

For targets that are spatially close, it is important for γ̂ to

be a good estimate of γ, since the Sub-Partition algorithm

relies on γ̂. When such a good estimate is unavailable, a more

advanced sub-partitioning algorithm seems to be necessary

for robustness. With the proposed Sub-Partition procedure,

our findings support the intuitive conclusion that the true

parameter γ should be in one standard deviation uncertainty

region around the mean γ̂ of the Poisson distribution for a

reasonable performance for close targets.

The simulation with different target sizes shows that the

close target case in this example is harder to tackle than

the others. A possible solution is to adaptively estimate the

parameters γ̂ for each Gaussian mixture component, based

on the previous measurements. Another solution, which is

possibly more straightforward, is to use a state dependent

γ̂ parameter, where the state contains information about the

target extent, which can readily be estimated, see e.g. [5], [6],
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[13]–[15]. Using the estimated shape and size, and a model of

the sensor that is used, γ̂ can then be estimated with reasonable

accuracy. This has indeed recently been performed using an

ET-GM-PHD-filter [13].

VII. EXPERIMENT RESULTS

This section presents results from experiments with data

from two data sets acquired with a laser range sensor. The

experiments are included more as a proof of concept and as a

potential application, rather than as an exhaustive evaluation

of the presented target tracking filter. The measurements were

collected using a SICK LMS laser range sensor. The sensor

measures range every 0.5◦ over a 180◦ surveillance area.

Ranges shorter than 13 m were converted to (x, y) measure-

ments using a polar to Cartesian transformation.

The two data sets contain 411 and 400 laser range sweeps in

total, respectively. During the data collection humans moved

through the surveillance area, entering the surveillance area at

different times. The laser sensor was at the waist level of the

humans.

Because there is no ground truth available it is difficult to

obtain a definite measure of target tracking quality, however

by examining the raw data we were able to observe the true

cardinality, which can thus be compared to the estimated

cardinality.

Section VII-A presents results from an experiment with

spatially close targets, and Section VII-B presents results from

an experiment with both spatially close targets and occlusion.

A. Experiment with close targets

In this experiment, a data set containing 411 laser range

scans was used. The data set contains two human targets that

repeatedly move towards and away from each other, moving

right next to each other at several times. The two targets passed

each other at close distance moving in the opposite direction,

representing instances in time when the targets were close for

short periods of time. The targets also moved close to each

other moving in the same direction, representing instances in

time when the targets were close for longer periods of time.

The locations of the extracted Gaussian components are

shown in Fig. 11a, the number of extracted targets is shown in

Fig. 11b and the sum of weights are shown in Fig. 11c. Around

time 320 there is a decrease in the number of extracted targets

for three time steps, in all other situations the filter handles the

two targets without problem. Thus, using Sub-Partition with

K-means as split ( · , · ) function, the ET-GM-PHD filter can

be said to handle most of the spatially close target cases.

B. Experiment with occlusion

In this experiment, a dataset containing 400 laser range

scans was used. The data set contains four human targets that

move through the surveillance area, however there are at most

three targets present at any one time. The first target enters the

surveillance area at time k = 22 and proceeds to the center of

the surveillance area where he remains still for the remainder

of the experiment. The second target enters the surveillance
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Fig. 11. Experiment results, two human targets moving close to each other.
Note that in (a) the gray scale indicates the time line, lighter gray is earlier
time steps, darker is later time steps. In (b), the number of extracted targets
(black) is compared to the ground truth (gray). In (c) the sum of weights
is shown. Around time 320 the cardinality is underestimated for three time
steps.

area at time k = 38 and repeatedly moves in front of and

behind the first target. The third target enters and exits at time

k = 283 and k = 310, respectively. The last target enters and

exits at time k = 345 and k = 362, respectively.

This case requires a state dependent (i.e. variable) proba-

bility of detection pD( · ) selection for the targets. Otherwise,

i.e. with a constant probability of detection assumption, when

a target is occluded, this would be interpreted as the exit of

the target from the area of surveillance while it is only the

disappearance of the target behind another. The variable pD
is modeled as a function of the mean, covariance and the

weights of the Gaussian components. The intuition behind this

idea is that the knowledge of the targets that are present, i.e.

the knowledge of the estimated Gaussian components of the

PHD, can be used to determine what parts of the surveillance

area are likely to be in view of the sensor, and which parts

are not. Leaving the details of the variable pD calculation to

Appendix B, we present the results below.

The locations of the extracted Gaussian components are

shown in Fig. 12a, the number of extracted targets is shown in
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Fig. 12. Experiment results, targets moving in and out of occluded regions
of the surveillance area. Note that in (a) the gray scale indicates the time line,
lighter gray is earlier time steps, darker is later time steps. In (b), the number
of extracted targets (black) is compared to the ground truth (gray). In (c) the
sum of weights is shown.

Fig. 12b and the sum of weights are shown in Fig. 12c. In total,

there are six situations where one target is occluded by another.

The extracted number of targets is incorrect in two of these

situations, where the occluded target is spatially very close to

(right next to) the target which is causing the occlusion. The

ET-GM-PHD filter correctly estimates the cardinality in four

out of six occlusions.

Thus, using the suggested variable pD, the filter can cor-

rectly predict the target while it is occluded, provided that

it is not very close to another target while the occlusion is

happening. If
∑Jk|k

j=1 w
(j)
k|k is rounded to the nearest integer

there is no cardinality error for the first four occlusions.

However, as the target exits the occluded area there is a

“jump” in
∑Jk|k

j=1 w
(j)
k|k around times k = 75, k = 125,

k = 175 and k = 210, see Fig. 12c. We have seen that

this “jumping” behavior is caused by the sensitivity of the

cardinality estimates of the PHD filter to detections when p
(j)
D

is set to a low value, which is the case when the target is half

occluded while it gets out of the occluded region. This is the

same phenomenon observed with low effective probability of

detection in Section VI-E.

VIII. CONCLUSIONS

In this paper a Gaussian mixture implementation of the

probability hypothesis density filter for tracking extended

targets was presented. It was shown that all possible partitions

of the measurement set does not need to be considered, instead

it is sufficient to consider a subset of partitions, as long as this

subset contains the most probable partitions. A simple method

for finding this subset of all measurement set partitions was

described. This partitioning method is complemented with a

sub-partitioning strategy to handle the cases that involve close

targets better. Simulations and experiments have shown that

the proposed filter is capable of tracking extended targets in

cluttered measurements. The number of targets is estimated

correctly even for most of the cases when tracks are close.

The detailed investigations carried out gave some guidelines

about the selection of the Poisson rate parameter for the

cases when it is unknown. Using inhomogeneous detection

probabilities in the surveillance region, it was shown that

targets can be tracked as they move through occluded parts

of the surveillance area.

IX. FUTURE WORK

In recent work, a cardinalized PHD filter [34] for extended

targets has been presented [32]. This filter has less sensitive

estimates of the number of targets. Initial steps have also been

taken towards including estimation of target extent in the ET-

GM-PHD-filter [13]. More work is needed in both of these

research directions.

A further interesting research can be to see the potential

use of the partitioning algorithms presented in this work

with more conventional multiple target tracking algorithms.

A comparison of such algorithms with the ET-GM-PHD filter

can illustrate the advantage coming from the use of the random

set framework.

APPENDIX A

PROOF OF THEOREM 1

The proof is composed of two parts.

• We first prove that there is a partition satisfying the

conditions of the theorem. The proof is constructive.

Consider the algorithm in Table IV. In the algorithm,

one first forms a partition formed of singleton sets of the

individual measurements and then combine the cells of

this cluster until conditions of the theorem are satisfied.

�

• We need to prove that the partition satisfying the con-

ditions of the theorem is unique. The proof is by con-

tradiction. Suppose that there are two different partitions

pi and pj satisfying the conditions of the theorem. Then,

there must exist (at least) one measurement z(m) ∈ Z

such that the cells W i
mi

∋ z(m) and W j
mj

∋ z(m) are

different, i.e., W i
mi

6= W j
mj

. This requires (at least) a

single measurement z(n) ∈ Z that is in one of W i
mi

,W j
mj

but not in the other. Without loss of generality, suppose



15

TABLE IV
FIND PARTITION p THAT SATISFIES THE CONDITIONS OF THEOREM 1

Require: Set of measurements Z =
{

z
(1), z(2), . . . , z(Nz)

}

, where Nz is
the number of measurements.

1: Set p0 =
{

{z(1)}, {z(2)}, . . . , {z(Nz)}
}

i.e., set W 0
j = {z(j)} for

j = 1, . . . , Nz .
2: Set i = 1.
3: Calculate all the pairwise distances between the cells of pi−1 as

ηi−1
st = min

z
(m)∈W i−1

s

z
(n)∈W

i−1
t

d

(

z
(m), z(n)

)

(33)

4: If min1≤s 6=t≤|pi−1| η
i−1
st > dℓ, then stop the algorithm, since pi−1 is

a partition satisfying the conditions of the theorem.

5: Otherwise, combine all cells that satisfy ηi−1
st ≤ dℓ to form a single cell.

6: Set pi to be the set of cells obtained in Step 5.
7: Set i = i+ 1 and go to Step 3.

z(n) ∈ W i
mi

and z(n) 6∈ W j
mj

. Since both z(m) and z(n)

are in W i
mi

, there must exist a (possibly empty) subset

{z(r1), z(r2), . . . , z(rR)} ⊂ W i
mi

\{z(m), z(n)} such that

the following conditions hold.

d
(

z(m), z(r1)
)

≤dℓ (34a)

d
(

z(rs), z(rs+1)
)

≤dℓ s = 1, 2, . . . , R− 1 (34b)

d
(

z(rR), z(n)
)

≤dℓ (34c)

However, (34) implies that the measurements

{z(m), z(r1), z(r2), . . . , z(rR), z(n)} should all be in

the same cell. For pj , this is the cell W j
mj

∋ z(m),

which contradicts the fact that z(n) 6∈ W j
mj

. Thus, the

initial assumption that there are two different partitions

satisfying the conditions of the theorem must be wrong.

The proof is complete. �

APPENDIX B

VARIABLE PROBABILITY OF DETECTION

FOR THE LASER SENSOR

The variable probability of detection function reduces pD
behind (i.e. at larger range from the sensor) each component

of the PHD.

For a given point x in the surveillance area, the probability

of detection pD(x) is computed as

pD(x) = max (pD,min , pv
D)

pv
D = pD,0 −

∑

i:r>r(i)

w(i)
√

σs

σ̄ϕ(i)

exp

(−(ϕ− ϕ(i))2

2σ̄ϕ(i)

)

(35)

where

• pD,min is the minimum probability of detection value a

target can have;

• pD,0 is the nominal probability of detection of the targets

when they are not occluded;

• r and ϕ are the range and bearing, respectively, from the

sensor to the point x;

• r(i) and ϕ(i) are the range and bearing, respectively, from

the sensor to the ith Gaussian component;

• w(i) is the weight of the ith component;

• σ̄ϕ(i) is defined as

σ̄ϕ(i) ,







σmax, if σϕ(i) > σmax

σmin, if σϕ(i) < σmin

σϕ(i) , otherwise

(36)

where σϕ(i) is the bearing standard deviation of the ith
component given as

σϕ(i) ,

√

uT

ϕ(i)P
(i)
p uϕ(i) . (37)

Here, P
(i)
p is the position covariance of the ith component

and uϕ(i) is the unit vector orthogonal to the range

direction from the ith component to the sensor.

• The constant term σs is used to scale the bearing standard

deviation.

Intuitively, the operation of (35) is to reduce the nominal

probability of detection at a point. The reduction depends on

the weights, means and standard deviations of the components

of the last estimated PHD. Reductions are only performed

for the components that have smaller range values than the

range of the point, and the angular proximity of the point and

the components is taken into account through the exponential

function in (35).
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