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Extended topological valley-locked surface acoustic
waves
Ji-Qian Wang1,2, Zi-Dong Zhang1, Si-Yuan Yu 1,2,3✉, Hao Ge1, Kang-Fu Liu4, Tao Wu 4, Xiao-Chen Sun1,

Le Liu1,2, Hua-Yang Chen1, Cheng He 1,2,3, Ming-Hui Lu 1,2,3✉ & Yan-Feng Chen 1,2,3✉

Stable and efficient guided waves are essential for information transmission and processing.

Recently, topological valley-contrasting materials in condensed matter systems have been

revealed as promising infrastructures for guiding classical waves, for they can provide

broadband, non-dispersive and reflection-free electromagnetic/mechanical wave transport

with a high degree of freedom. In this work, by designing and manufacturing miniaturized

phononic crystals on a semi-infinite substrate, we experimentally realized a valley-locked

edge transport for surface acoustic waves (SAWs). Critically, original one-dimensional edge

transports could be extended to quasi-two-dimensional ones by doping SAW Dirac “semi-

metal” layers at the boundaries. We demonstrate that SAWs in the extended topological

valley-locked edges are robust against bending and wavelength-scaled defects. Also, this

mechanism is configurable and robust depending on the doping, offering various on-chip

acoustic manipulation, e.g., SAW routing, focusing, splitting, and converging, all flexible and

high-flow. This work may promote future hybrid phononic circuits for acoustic information

processing, sensing, and manipulation.
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Surface acoustic waves (SAWs) have gradually become an
essential part of modern civilization since interdigital trans-
ducers (IDTs) were invented in 19651. Using IDTs to gen-

erate, receive and control on-chip SAWs in wavelengths ranging
from 10−8 to 10−4 m, the unique advantages of SAWs can be well
applied to today’s microwave electronics in wireless commu-
nicating, sensing, navigating2–5. Compared with electromagnetic
waves, SAWs of the same frequency have a much shorter wave-
length (up to 10−5), which dramatically increases the possibility of
device miniaturization. Also, as quasi-two-dimensional waves on
solids, the transmission mode of SAWs is relatively simple, easy to
distinguish, and low loss. Today, SAW technology is rapidly
developing in the interdisciplinary fields of photonics, biomedical,
and quantum science, giving birth to a significant number of
interests in, e.g., acousto-optic modulations6–8, phonon-based
quantum information9–13, spin–phonon interactions14,15, and
acoustic microfluidics16,17.

All of the above studies are expected to obtain more precise
SAWs manipulation, making high-quality SAW waveguide a key
research front. Recently, several kinds of chip-scale SAW wave-
guides have been put forward, such as those based on guiding
modes of phononic crystals18,19, suspended beam structures20,21,
and ridges structures obeying impedance mismatch principle14,22.
These cases successfully demonstrated the effective operation of
SAWs accompanied by rich acoustoelectric and acousto-optic
coupling effects. However, there are two fundamental challenges
in this direction, i.e., (1) how to eliminate the backscattering that
readily occurs when the SAWs detour quickly or passes through
intersections, (2) how to match efficiently broadband SAW
waveguides with broadband IDTs without causing more insertion
loss and reducing the signal-to-noise ratio of the whole electro-
acoustic devices. With the rise of research on topological effects in
condensed matters, analogous quantum Hall families23–30 have
currently been adapted to bosonic systems, e.g., photonics31–47,
mechanics48–61, airborne sounds62–69, and even SAWs70. The
core of these explorations is the gapless edge states, holding one-
way transport with strong immunity to bendings and various
defects.

In this article, we further use the topological advantage to
propose and experimentally realize a monolithic SAW technology
to simultaneously solve the aforementioned essential challenges.
In principle, by designing the band structure of the SAWs in
artificial periodic microstructure on a semi-infinite substrate, we

have realized “Dirac semimetals” and “insulators” for the SAWs,
respectively. Then, inspired by a band engineering methodology
recently proposed in sonic65 and electromagnetic66 crystals, we
spliced our SAW “semimetals” and “insulators” and successfully
constructed a new kind of SAW guiding states with simulta-
neously topological protection and a wide equivalent width, called
SAW extended topological valley-locked states (ETVSs). Through
experiments, we have verified that these ETVSs have anti-
reflection ability, high-flow, considerable working bandwidth for
SAWs, and are configurable, demonstrating promising prospects
for future large-scale phononic integrated circuits with versatile
applications.

Results
SAW valley vortices and valley-locked states on a piezoelectric
LiNbO3 half-space. The Quantum Valley Hall Effect (QVHE)
was first found in two-dimensional (2D) hexagonal crystals, e.g.,
graphene71, double-layer graphene72, and transition metal
dichalcogenides73. It originates as a result of the broken space
inversion-symmetry. In those quantum states of matters, Dirac-
fermions that correspond to different valleys move to opposite
transverse edges in the presence of an in-plane electric field. In
recent years, analogous to the Fermi electronic system, bosonic
QVHE for photons41–47 and phonons54–60,65–69 have also been
demonstrated. In this work, our first step is to realize the valley
vortices66,73 and the QVHE for SAWs. SAW phononic crystals
are artificial mechanical microstructures based on semi-infinite
substrates developed in this century, which can realize the dis-
persion modulation for SAWs, deriving, e.g., SAW bandgaps74–79,
guiding18,19,80,81, localization82. By utilizing a pillar-type SAW
phononic crystal19,75,79, we have successfully mimicked the
phenomenon of electrons in those 2D hexagonal crystals. Speci-
fically, honeycomb-patterned mechanical micro-resonator pillars,
coupled with each other through a half-infinite substrate, con-
stitute our phononic crystal. To ensure electrical pumping/
transducing for the SAWs, a piezoelectric crystal [in particular, a
y-cut lithium niobate (LiNbO3)] is chosen as our substrate. A
schematic diagram of our phononic crystals is shown in Fig. 1a–c,
there are two inequivalent phononic ‘atoms’ (micro-resonator
pillars) in each unit cell, marked as pillar A and pillar B,
respectively. These two sets of pillars have the same height
(h= 8 μm) and side angle (θ= 6°) but may differ in their radius.

Fig. 1 Our on-chip phononic crystals for SAWs. a Schematic of our phononic crystals containing two sets of micro-resonator pillars, marked as A and B, on
a y-cut LiNbO3 semi-infinite half-space. b Unit cell of our phononic crystal, its lattice constant a= 42=

ffiffiffi

3
p

μm. c schematic of two inequitable pillars. d–f
(upper) SEM images and (bottom) calculated band structures of three different phononic crystals with different topological phases. e A SAW Dirac
“semimetal” with the same A and B pillars (rA= rB= 5.8 μm). d and f Two SAW valley “insulators” with inequivalent A/B pillars in their radius, both having
omnidirectional bandgaps at their �K and �K’ points of the 1st Brillouin zones, i.e., the valleys. We call the “insulator” in d (rA= 5.9 μm rB= 3.9 μm) as valley
insulator A (VA) and the “insulator” in f (rA= 3.9 μm rB= 5.9 μm) as valley insulator B (VB). Insets show the SAW flux vortices observed at their valleys.
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We define a relative mass Δm for all these A and B pillars and
Δm¼ rA�rB

rAþrB
for their contrast. When Δm= 0 (e.g., rA= rB= 5.8

μm in Fig. 1e), a “semimetal” for SAWs could be formed80, the
symmetry of the honeycomb crystal preserves a pair of SAW
Dirac degeneracy around the �K and �K’ points of the 1st Brillouin
zone (considering the influence of the anisotropic LiNbO3 sub-
strate, �K/�K’ are used here to distinguish them from the high
symmetry points K/K’ of the traditional honeycomb lattice. See
details in SI Note 7). When Δm ≠ 0 (e.g., rA= 5.9 μm rB= 3.9 μm
in Fig. 1d; and rA= 3.9 μm rB= 5.9 μm in Fig. 1f), the spatial
inversion symmetry (along the y-axis) of the crystal is then
broken, thus leading to “insulators” for SAWs with omnidirec-
tional bandgaps.

In these SAW insulators, flux vortices of the SAWs could be
observed at their frequency extrema �K (�K’) points [insets of
Fig. 1, and Fig.S9 of Supplementary Information (SI)], which is
the characteristic of the classic wave analogous to the electronic
valley states73. By constructing zigzag boundary between
different SAW insulators in Fig. 1d and f, we realized the
analogous QVHE for SAWs, or say SAW topological valley-
locked states (TVSs). Simulation and experimental results are
shown in Fig. S10 of SI. Note that the symmetry of the y-cut
LiNbO3 substrate slightly affects our phononic crystal’s sym-
metry. However, this effect is faint and does not affect the
presence of TVSs (see SI Note 7).

Extended topological valley-locked states for SAWs. Wave-
guides built from topological edge states may provide a disruptive
advantage over conventionally designed ones, e.g., backscattering
suppression, single-mode operation, and linear dispersion at their
working bandwidth. It is especially the case for SAWs. Due to the
relatively low impedance mismatch (generally <101) in different
solid-state materials, and the extensively high sensitivity of
acoustic waves in solid-state media, conventional designed solid-
state acoustic waveguiding are pretty susceptible to intersections,
sharp bends, and wavelength-scale defects.

Meanwhile, for (future) electro-acoustic SAW devices with
SAW waveguides functioned between dual- (or multiple-) port
IDTs, there is a crucial trade-off between the signal fidelity and
the working bandwidth17. Broadband operating frequency is one
of the core requirements of advanced signal processing.
Generally, a broadband IDT requires a relatively large “aper-
ture/wavelength” ratio, which is bound to reduce the proportion
of the SAWs injected into the waveguide to the total SAWs that
the IDT pumped. For the device as a whole, this requirement
would increase the insertion loss of the waveguide signal and
reduce its fidelity (see more in SI, Note 10). Consequently, to the
practical use of SAW waveguides in concreting, e.g., phononic
integrated circuits, a topological SAW waveguide with a wide
aperture that can match broadband IDTs, is highly promising.

In this work, our second step (and the main achievement) is to
realize such wide-aperture topological waveguides for SAWs by
bringing about the ETVSs. Specifically, as shown in the upper
panel of Fig. 2, based on the valley-type phononic crystal present
in Section I, we doped our SAW semimetal (Δm= 0, rA= rB=
5.8 μm) in the interface between two SAW insulators with
opposite valleys [i.e., one Δm= 0.2 (rA= 5.9 μm rB= 3.9 μm) and
one Δm=−0.2 (rA= 3.9 μm rB= 5.9 μm)], thus directly making
a heterostructured interface. This doping could extend the one-
dimensional (1D) TVSs to quasi-two-dimensional (quasi-2D)
ETVSs, with an additional degree of freedom (DOF) in the width
of the doping area. Topological characteristics carried by the bulk
on both sides of the heterostructured interface will tunnel
through the doping area with Dirac dispersion83,84, thus forming
the ETVSs.

We numerically modeled several of those heterostructured
interfaces with increasing doping areas. Projected band structures
of these heterostructured interfaces and their SAW field/phase
distributions are shown in the middle and bottom panels of Fig. 2.
All dispersions of these ETVSs share the same characteristics as
the conventional TVSs. Differently, for the TVSs, their energy is
highly localized around the 1D interfaces. For the ETVSs, their
energy fills the entire 2D doping area, thus offering a topological
waveguide with a much wider aperture. As the doping area
increases, the waveguide aperture may expand several times or
even dozens of times to the original (none doped) one, at the
price of a gradual decrease in working bandwidth. (see SI,
Note 8).

Experimentally, we fabricated three different heterostructured
samples with 3, 5, and 7 molecular doping layers. All the samples
are in the same configuration, i.e., phononic crystal containing
the heterostructured interface is prepared in the middle; two
broadband IDTs, acting as SAW emitter and SAW receiver, are
prepared on both sides, respectively. In the experiments, the
emitter IDTs pump planar SAWs into the heterostructured
interfaces (i.e., the waveguides), exciting the ETVSs. A laser
vibrometer imaged the out-of-plane displacement of the excited
ETVSs, confirming the SAWs do strongly localized in the whole
doping area, together with uniform phases. After the SAWs
passed through the heterostructured interfaces, they were
captured by the receiver IDTs and read out by a network
analyzer, demonstrating considerable transmittance (i.e., S21,
Fig. S18d, f, h of SI) at their operating frequencies. For the 3, 5,
and 7-layer doping ETVSs, their maximum working bandwidths
are expected to reach 7.8%, 6.7%, and 5.3%, respectively, without
additional challenge for sample processing (see SI, Note 9).

ETVS based splitter with high SAW throughput. A three-port
SAW splitter sample was fabricated to confirm that the ETVSs
hold the same topological properties as TVSs. As shown in Fig. 3,
this sample consists of five different parts, thus forming four ports
labeled in the figure. Ports #1 and #3 are located on the straight
SAW transmission route but are different in their valley pseu-
dospins. Ports #2 and #4 are located on two “zigzag” SAW
transmission routes with 120° sharp bends but hold the same
valley pseudospin as Port#1. Planer SAWs wave generated by
IDTs and are injected into the multi-port device through Port#1.

In conventional SAW waveguide devices, the input SAWs will
mainly directly exit the device via Port #4 but partially go through
the “zigzag” routes to reach Ports #2 and #3. However, in this
topological valley-locked waveguide, the input SAWs from Port
#1 could only exit the system via the ports that hold the same
valley-pseudospin. Hence, these SAWs should pass through those
“zigzag” routes and eventually be captured at Ports #2 and #3.
Experimental imaged SAW distributions around the input and
output ports confirm that the SAWs experience this “Port#1 →
Ports# 2/3” transport. These results agree well with theoretical
expectations, proving that in our SAW system, the ETVSs do hold
the same function as conventional TVSs. Our SAW splitter is a
demo for the valley-pseudospin locking and a promising primary
component for future SAW integrated circuits with high
throughput and energy capacity.

Defects immunity and phase reconstruction for SAWs. In the
QHEs and QSHEs35,85, the nonzero (spin) Chern number origi-
nates from integrating the Berry curvature over the whole Bril-
louin zone. For the QVHEs58,66,69, although the integration is
zero, the Berry curvature is highly localized around the K and K’
points (i.e., the valleys), giving birth to nonzero valley Chern
number with opposite signs at paired valleys.
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When a wavelength-scale defect is introduced into a conven-
tional QVHE system, the Berry curvature will become less
localized, and the intervalley mixing will become stronger, thus
destroying the TVSs61. Such destruction can be observed in our
SAW system, as shown in the left panel of Fig. 4. We
experimentally prepared a conventional (non-doping) valley-
locked edge with two wavelength-scale vacuum defects deliber-
ately embedded. When time-harmonic SAWs are pumped into
this edge, relatively few SAWs can be detected from the exit.
Meanwhile, the phase of the transmitted SAWs is wholly
disturbed, confirming the destruction of the edge states.

Unlike non-doped TVSs in conventional QVHE systems,
ETVSs have an excellent tolerance for the same wavelength scale
defects. The additional width (DOF) of ETVSs endows them with
stronger robustness in their transmission routes since the same
defect should impose much less disturbance on quasi-2D ETVSs
than 1D TVSs. This robustness was observed in a comparative
experiment, as shown in the right panel of Fig. 4. When time-
harmonic SAWs are pumped into a doped edge, much more
SAWs can now be detected from the exit. Along the transmission
route, the phase of the SAWs is disturbed around the defect.
However, the phase uniformity would quickly emerge as the
SAWs propagate away from the defect for several wavelengths.
This intriguing phenomenon would bring us some novel SAW
applications with precise wavefront control, e.g., SAW cloaking,
focusing, collimating, and beam expanding.

ETVS’s stability and configurability. The existence of the
topological edge states is originated and preserved by the non-
trivial topology of the bulk bands. Although the characteristics
and functionalities of those edge states, e.g., defects immunity and
insensitivity of the external field perturbation, have been widely
demonstrated in electronics, photonics, and phononics, doping
(and manipulating) on these topological edges are currently
underdeveloped and reveals a promising research area to explore
complex nontrivial physics and applications86 in, e.g., signal
processing and information communications.

For our present SAW ETVSs, we will demonstrate their
stability and configurability to the different doping. Our
experiments are shown in Fig. 5. The doping width is adjustable
by adopting different doping layers, i.e., layers of the SAW
semimetal embedded in the doping area. As the doping width
increase, the frequency range in which the ETVSs exist would
continue to narrow and eventually disappear. Except that, in a
fixed doping width, the doping “height” is also adjustable.
This “height” can be defined as the Dirac frequency of the
SAW semimetal. By changing the radius of the micropillars,
the doping “height” changes from 77.90 MHz, 75.99 MHz,
74.94 MHz (Fig. 5a, b, and c, respectively). Calculated projected
band structures of these different heterostructured interfaces
(see Fig. S20 of SI) show that the ETVSs crossing the whole
bulk band stably exist in all these cases, except for slight
frequency shift.

Fig. 2 Extended topological valley-locked states for SAWs. a–c (bottom) Schematics of three heterostructured valley interfaces (see SEM images in Fig. S2),
with increasing molecular layers (from 3, 5, to 7, respectively) of SAW “semimetal” (SM) doped inside a VA and a VB. (upper) Experimentally measured SAW
out-of-plane amplitude distributions crossing the doping areas. d–f Calculated and experimentally measured band structures of the heterostructured interfaces.
The color bar represents the density of energy. g–i Simulated and experimentally imaged SAW out-of-plane displacement and phase distributions of the
heterostructured interfaces (at 76MHz shown in the figures), demonstrating a pseudo-diffusion-like phase uniformity of these edge states.
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Experimentally, these configurable ETVSs are imaged (see
Fig. 5e–g), all exhibit phase uniformity with slightly changed
patterns. When the doping “height” is relatively high, the
interaction between adjacent micropillars seems to be relatively
weak; SAWs in the doping area (i.e., the ETVSs) are more similar
to plane waves. As the doping “height” decreases, the inter-pillar
coupling becomes stronger; SAWs in the doping area are more
localized around the micropillars, exhibiting a “fish scales” style.
Notably, the transmittances of the three ETVS waveguides are
unity since they are all valley pseudospin locked and robust to
wavelength-scale defects and interactions. Practically, it provides
a new strategy to manipulate SAWs in the ETVS waveguide, e.g.,
operation frequencies and distributions84.

Discussions
We proposed and experimentally verified a SAW analog of
quantum valley Hall system, accompanied by the ETVEs for
SAWs, i.e., an ideal candidate for SAW integrated circuits. The
SAWs ETVEs are anti-reflection (making the waveguide have a
high degree of freedom and low loss), high-flow and configurable.
Based on them, a series of application-driven SAW prototype

devices, e.g., waveguides and beam splitters with flexible path and
defects immunity, are fabricated and experimentally demon-
strated. Although the operating frequency of the SAW prototypes
in this article is in the tens of megahertz, future devices based on
the same principle can exceed several gigahertz or even higher
through advanced acoustic MEMS manufacturing technology.
Similarly, the material systems used to build this type of ETVSs
can also be varied, such as traditional piezoelectric materials for
SAWs (e.g., LiTaO3, AlN, GaN), mainstream silicon-based
materials (e.g., Si, SiO2, SiN, SiC), and mechanical or even pie-
zoelectric 2D materials (e.g., monolayer transition metal dichal-
cogenides, group III–V binary compounds and group IV
monochalcogenides). Future designs can comprehensively con-
sider using these materials based on their piezoelectric char-
acteristics, electromechanical coupling characteristics, velocity,
temperature drift, loss, and convenience of micro-nano proces-
sing. This universal design principle may flourish and promote
future topological-related applications, such as (topological)
photonic/phononic integrated circuits for classical and quantum
photonics/phononics. One challenge is how to increase the
working bandwidth of these ETVSs further. If the bandwidth can
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exceed 15% or even 25% (i.e., the largest bandwidth in current 5G
mobile networks), it will significantly facilitate their demon-
strating functionalities in practical scenarios. Some valuable
results have recently appeared in broadband topology materials,
e.g., those using topology optimization87 and inverse design88.
From the perspective of condensed matter physics, due to the
easy-to-process characteristics of artificial structures and SAWs’
intuitive and high-fidelity characteristics, this research on doped
topological edge states may provide an ideal platform for
exploring topological properties and transport behavior. It may
inspire other related studies on bosons and fermions.

Methods
Sample fabrications. We used the LIGA-like technique to fabricate our phononic
crystals on the LiNbO3 semi-half-space. It contains four following steps: a 10 nm Cr
followed by a 50 nm Cu layer, working as a seed layer, is deposited on a 500 μm
thickness y-cut LiNbO3 substrate; (2) patterning of phononic crystal structures using
UV lithography with 10 μm positive resist AZ9600; (3) Electrochemical plating of nickel
(Ni) micro-resonator pillars on the exposed Cu-Cr seed layer; (4) removal of the resist.

Numerical calculations. Commercial finite element software COMSOL Multi-
physics performs all full-wave simulations. Three-dimensional unit cells used in
our band structure calculation are in triangular lattice, and contain two Ni pillars
on y-cut LiNbO3 semi-half-space. Floquet periodic boundary conditions are
applied to the unit cells. For all samples in Figs. 2–5, low reflection boundaries are
set along the z-direction, and the model’s bottom and continuous boundaries are
placed along the x-direction. The elastic parameters of the Ni pillars are density
ρNi= 8906 kg m−3, Young’s modulus ENi= 175 × 109 Pa, and Poisson’s ratio 0.30.
Note that these values are specific to our growth technique.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All simulation data in the current study are performed using commercial finite element
software COMSOL Multiphysics. All experimental measured SAW displacement/energy
data are characterized by a commercial scanning vibrometer (Polytec UHF-120) with
software PSV Acquisition. They are under private user license which cannot be made
public. All data are available from the corresponding authors upon reasonable request.

Code availability
Numerical simulations in this work are all performed using the commercial finite
element software COMSOL Multiphysics. All related codes can be built with the
instructions in the “Methods” section and available from the corresponding authors upon
reasonable request.
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