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Gauge fields together with non-linear field equations to govern them are introduced by 

requiring that the Lagrangian should be invariant under ·an extended translation in space

time, i.e. a translation in which four parameters are replaced by four arbitrary coordinate

dependent functions. A prescription is given to convert a non-invariant canonical ("pseudo") 

energy-momentum tensor into an invariant one. 

The symmetric part of these field equations is examined for the two cases: (1) under 

linear and non-relativistic approximation, it reduces to the classical gravitational-field equation, 

(2) for static and spherically symmetric field, its solution is shown to correspond to Schwarz

schild's solution. The antisymmetric part has no classical analogues, for there are no sources 

of skew-symmetric energy-momentum tensors in the classical experiments. A reasonable 

method is proposed to eliminate this redundant field. 

§ 1. Introduction 

Since it was suggested that the electromagnetic interaction is best understood 

in terms of a principle of gauge invariance, under a gauge transformation with 

a coordinate-dependent function, there have been a number of attempts to deduce 

the existence of gauge fields coupled to conserved currents, starting with the idea 

of extended transformations. 1
> 

It was shown that the invariance under the n-parameter Lie group of trans

formation referred to space-time and/or fields leads to the conservation of n 

generators. Further, invariance requirement under an extended transformation, 

i.e. a transformation whose n parameters are replaced by n space-tirne dependent 

functions, necessitates the introduction of n (generally) non-commuting vector 

fields together with field equations which they must obey. 2
>,s) 

The purpose of this paper is to deduce the existence of a gravitational field 

from the translational invariance in an extended sense just mentioned above. In 

order to construct the gravitational interaction, U tiyama has proposed to introduce 

24 new field variables by postulating the invariance under an extended four

dimensional rotation which is specified by six skew-symmetric arbitrary functions 

(J)ij (x) .3) However, the self-inconsistency of his scheme was pointed out by Kibble 

who has claimed that it is necessary to consider the extension of full 10-parameter 

inhomogeneous Lorentz group in place of the restricted six-parameter group. 4
> 

Then, our method is different from both of them and will be shown to be one 

of the simplest ways of discussing the gravitational interaction within the Lagrangian 
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492 K. Ilayashi and T. Na!umo 

formalism of the unquantlzed fields in that we n~::cd the m)nirnal traJJ;-oforrnation 

group (translation group) and itt:l extension nccc::;snry and suHicicnl to dcduce jt_*) 

In the following section, a general formulation of the extended translation is 

given within the classical Lagrangian framework and a prescription is presented to 

convert a "pseudo" energy-momentum tensor into an invariant energy-momentum 

tensor. In § 3, we apply it to the system consisting of the spinor field and the 

new fields. 

We identify the symmetric part of these new fields with the classical gravi

tational field by means of the linear approximation to the non-linear field variables. 

In § 4, for the purposes of comparison we shall consider the static and spherically 

symmetric field in which the exact solution of Einstein's equation of gravitation 

has been well known and verified by the observations. In § 5, elim.ination of 

the antisymmetric part of the new fields will be attempted and the final section 

is devoted to a discussion of the results. 

§ 2. General formulation 

We start with the Lagrangian density**),***) 

where qA are a set of fields, (A= 1, 2, · · ·, N). The action integral referred to 

an arbitrary four-dimensional domain J:, 

I(J:) = ~ La (x) cf4x, · (2 · 1) 

z 

IS invariant under the following infinitesimal transformation : 

qA(x)->q'A(x') =qA(x) -1-oqA(x), 1f 

xk->Xlc
1 
=xk+ axle' 

(2· 2) 

if the following identity holds true at any world points (independent of the 

behavior of qA and its derivatives): 

(2·3) 

where O*Lo = oL0 - Lo·~cOXk is often called a substantial variation in the sense that 

a variation caused by the coordinate transformation is subtracted.****) Up to 

the variation of first order, it follows that 

*l Einstein's theor~ of general relativity has been based on the general covariance under the 

extended translation within the classical mechanics. 

**l It is assumed that the Lagrangian to be considered hereinafter contains the first derivatives 

of the field variable at most. 

***l We use the imaginary fourth coordinate x 4 =ict. 

****l A summation convention for dummy indices is used throughout this paper. 
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Extended Translation Invariance and Associated Gauge Fields 493 

J(Z)---)I'(Z) =~ Lo'(x) (1-!-cl'x~c·~.)d 4 x, (2·1') 
,. 

which IS used in deriving the above identity. Consider a translation 

OqA = 0, {Jxk = Ek,. ( Ek: infinitesimal parameter), (2· 4) 

then the following identity must obtain in order to preserve the 1nvanance 

under this transformation: 

aLo _ dLo 

axle dxk 

aL aqA 

aqA axle 
(2·5) 

which obviously implies that the invariant Lagrangian under the translation has 

no explicit x-dependence, hence we shall consider exclusively the Lagrangian 

Equation (2 · 3) Is rewritten as 

[Lo] qAO*qA +S~c·~c=O , 

and the equation of motion is abbreviated: 

where 

[Lo] qA = --~!~~ - (-~~i-) = 0 ,*) 
uq uq•~c, 'k 

S1c = Lo·q,10qA- TucOXl, 

T z1c = Lo,q,'Jc q~ - (J l~cLo . 

(2· 6) 

(2·7) 

(2·8) 

(2·9) 

If the action integral is invariant under the translation (2 · 4), the conservation 

law of the energy-momentum tensor defined above follows 

T~cl'l = 0 

on account of the field equation (2 · 8). 

Next we consider the extended translation**) 

(c:" (x); infinitesimal arbitrary function). 

. (2·10) 

(2 ·11) 

The in variance property of Lo under the translation (2 · 4) breaks down in this 

case; the variation of the derivative does not vanish, 

(2 ·12) 

We shall further require the in variance of the action integral under the extended 

*> This is called the Euler equation and derived by postulating o-»l=O under the condition that 

o'~:qA should vanish on the boundary surface of the integration domain. 

**> In this case the Greek indices are used for conveniences. 
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494 K. Hayashi and T. Nakano 

translation, by defining the covurianl derivative tl1nJugh which the new field 

a~up,Cc) is introduced so as to satisfy our postulate: 

oDr.;qA=O. 

In order to satisfy Eq. (2 ·14), it follows immediately, 

(2·13) 

(2·14) 

(2·15) 

Therefore we recover the invariance of the action integral even under the extended 

translation (i) by simply replacing q~ in the original Lagrangian by the covariant 

derivative Dr.;qA defined above; 

La (qA, q~) ~L' (qA, q~, b7/) =L" (qA, Dr.;qA) 

La(qA, q~~DkqA), 

hence its variation associated with (2 ·11) vanishes identically 

oL' =O, 

(2 ·16) 

(2 ·16') 

and further (ii) by multiplying L' by a certain function b (x) so as to satisfy 

the required identity (2 · 3): 

oL+Lc:~=O, 

L=bL'. 

Accordingly, the transformation property of b has to be 

oh= -8~.b. 

(2 ·17) 

(2·18) 

Next tasks are then to construct such a function b (x) and the invariant field 

strength from br.;JL and its first derivatives. For these purposes, it is necessary 

to define the field bkp, inverse to bkf.L from the following orthogonal relations: 

(2·19) 

Consequently, it follows 

hence we choose 

b = det (bkp,), 

because it has the desired property (2 ·18). In other words, the invariant volume 

element becomes bd4x instead of d 4x. Suppose that we obtain a free Lagrangian 

L 0 for the new field, the action integral turns out 

I(J:) =) d
4
xL , 

,. 
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Extended Translation In·variance and Associated Gauge Fields 495 

where 

L=L' +La=b(L' +La),*) (2·20) 

and La consists of the invariant field strength. We shall write for short 

(2. 21) 

The invariance of the action integral follows from the following identity analogous 

to (2 · 3): 

o*L+ (Lc"}P-=0, 

which is just shown above to hold by means of our prescription. The above 

identity is rewritten as before, 

where 

SP-=L·QrtoOa T/c", 1 
# **) 

T"P- = L'Qr<PQ~- o"P-L =mT"P- +t"P-' f 
(2· 23) 

(2· 24) 

From (2 · 22), we obtain 

(- cP-) { [L'J qAq~ + [LJ ok" b~cv'p.- ( [LJ ok"bkp.).J 

- { [LJ b "'" + Lf! b "'" -'- (mT P- + t P-) c"}, ~0 bkp. kv" bk>.! p kv",).. I v v f' • 

(2· 25) 

As c", c~# and c~ 1 ,A. are chosen arbitrarily inside the integration domain .S, the 

second term of Eq. (2 · 25) resolves itself into the three identities 

([L]okpbkv}p+ (mT/+tvP-), 11.=0, 

[L]a bkv+ (mT1/+t/) + (L~ , bkv)'>..==-0, 
~ ~A. 

(2· 26) 

(2· 27) 

(2 ·28) 

among which there are only two independent identities, for the last identity 

implies 

L~ +L~ =0 
kA.'p kp.'A. 

(2. 28') 

and the differentiation of the second identity yields the first one, by making use 

of (2 · 28'). Furthermore it suggests that the invariant field strength must contain 

an ant:isymmctric cornhination of b/i:A.·,. with respect to the Greek subscripts and 

*> In the standard terminology of tensor algebra, L is named the "tensor density". 

**l mT"'"' t~P- are the "canonical" energy-momentum tensors. 
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496 I<:. 1-Iayashi and T. Nakano 

then the contraction of these indices has to be performed; finally we have*) 

with 

It should be noticed that there exist infinitely many conservation laws for gene

ralized energy-momentum tensors in addition to the one implied directly by (2 · 26), 

(fC"): an arbitrary function), 

TCf)p.. = JCv) cn~r "'+ l "') -f(v) (LG' b.) l v v ,A. ,bkp..'A. kv , 

TV)''=O **) 
. "' . 

(2· 29) 

Under the extended translation only the Greek indices are associated with the 

transformation properties : ]'hen there arises a question, " What role does the 

Latin index play?" To see it, we consider the four-dimensional rotation of the 

field variables only, 

(2· 30) 

under the assumption that L' is kept invariant under (2 · 30) and L 0 under the 

Lorentz transformation specified by 

((J)(kl) = 0)' 

OqA=TqA. 

]'he assumed invariance properties respectively yield the following identities : 

L~~ATqA + L~'vkqATDkqA + L~bk"'obk"' = o, 

La'q.1.TqA + La·qifcTq1- Lo·q1_q~{J)zk·= 0, 

and (2 · 31) passes into 

(obk"'- {J)kzbl) L~~'kqAq;~ = o, 

(2. 31) 

by making use of the relation (2 · 16). Hence the transformation property IS 

established, 

that is, the Latin index is related to the four-dimensional rotation and bk"' trans

forms as a four vector under it (the same is true for bk"' too) . 

The quantity h~;;"' is the contravariant vector as it transforms contragradiently 

o") A(p..v) ='= (l/2) (A p..v + Jlvp..), J1lp..v j= (l /2) (.,1 p..v -· il v;J. 

* 1
') The conserved quantities will be explicitly given later in an invariant manner. 
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}~tended Tran:dation In·variance and Associated Gauge Fields 497 

to oq~"' and bkp, the covariant vector as it transforms cogradiently to (2 ·12). bk/1-

is to be referred to as a "vierbein" system because of its dual character under 

the extended translation and the four-dimensional rotation specified by (2 ·11) 

and (2 · 30), respectively. These situations are made clear and are summed up 

by the following statement. Under the combination of these two independent 

transformations, 

ox'"=c.~'(x)' 

{)qA= TqA, 

L' stays invariant if b,/ (or equivalently br.;p,) transforms as follows: 

(2. 30') 

(2. 30") 

(2· 30'") 

The field strength cr.;~m is reducible under the four-dimensional rotation; the 

irreducible parts of it are calculated by means of the standard method: 

i) an irreducible tensor of rank 3, 

ii) a vector, 

iii) an axial vector, 

The tensor c1c~m IS represented in terms of these irreducible tensors, 

C1c~m =--= ( 4/3) c[[l.m]-\- (2/3) (J k[~C;;:]-\- ie!clmnCnA• 

vVe shall require that L 0 should be of the quadratic form in the first derivative 

of bk"'· Thus, we choose 

(2· 32) 

with the arbitrary constants a, {1, r, o. Inserting the above Lagrangian into 

(2 · 27), we obtain after some algebra 

JJTcl = mrlcl , (2' 33) 

F1c~m = 4b {ad~lmJ + f3orc[lC:;J- (1/6) iyelczmnCnA}, 

mTTcz=bk"blJ!-mTu#=1/n1~1cl 1 
-l" AD qA- ,\' L" **) J - -... I!z'l - k · u Tel , 

(2· 34) 

(2· 35) 

(2· 36) 

'
1·J 'vVc slwll assume invariancc under space rdlection. ff we do not assumc it, we can add a 

linear sum of the following two terms: bc,cv ck'\ i,<kl.mn hc'rjlcl c'l'jmn. 

**J It is also rewritten as -L',IJTcf,h,_/1-. 
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498 K. 1-Iayashi and T. Nakano 

where all the tensors are converted into the local tensors In order to preserve 

the invariance under the extended translation. 

We shall manage to write down the equation of motion (2 · 33) in a simpler 

form analogous to the divergent form (2 · 27), 

- (b/'bmv Fklm) 'v = b/' (mTkl + tkl), (2 • 37) 

where 

=cmnkf~ml-oklL
0

, 
(2· 38) 

(2· 39) 

It should be emphasized that tkl remains invariant under the extended translation 

while lkl is not invariant, as is easily shown (hence a tilde has been attached 

to the canonical energy-momentum tensor density l/). From (2·37), we obtain 

the conservation law 

(2· 40) 

which is essentially the same as (2 · 26), although t/ Is preferred to t/". In a 

manner similar to that stated above, (2 · 29) turns out 

(btT/ 1 l}~" = 0, ~ 

TluJ = }(~,;) CnTkl + tkl) - f(k)'vbmv Ji~lm, f 

(j(kl (x) is an arbitrary function). 

Hence there exist indenumerable conserved quantities 

pUl = j d 3xbl0Tl<fJ, 

where of course the conserved vector corresponding to (2 · 40) IS 

a particular choice in j(kl (x) : 

Cfc/.;)) = Cfci)) = Co /.;l), 

Pk = ~ d
3
xbl

0 
(mTkl + tkl). 

(2. 41) 

(2· 42) 

included by 

(2· 43) 

A function j(kl needs not to be a vector under the four-dimensional rotation. 

Before closing this section, we shall resolve (2 · 33) into the symmetric and 

skew-symmetric parts**l 

*) lkl corresponds 1o 1lte fDnwcl "pseudo'' energy-momC'nhlm tensor of tlw gravi1;11ional riC'Id 

which does not transform as a tensor under the general coordinate transformation. 

* n Just recall that the symmetrized (not the canonical) energy-momentum tensor of the matter 

source is of physical significance. 
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Extended Translation Invariance and .. Associated Gauge Fields 499 

B<kl) == mTuco, (2 · 44) 

BckzJ == rnT[klJ, (2 · 45) 

and further attempt to convert them into the divergent forrns similar to (2 · 37), 

with 

- {bb/bm" (3a (c,,.- (3/2) iek1,,,c,.A) - 2 (a- 2/3) &",c;,.J)} ., ) 

= bt c~r(kl) + t.~l) + 2 (a+ {3) bbtb[kc~·v' 

) 

= b (3/ 4) i {a- ( 4/9) f} ekmnjClmnc/\ 
) 

(2. 46) 

(2. 47) 

(2·48) 

where t~z does not contain an arbitrary constant {3; it can be rewritten in terms 

of the irreducible tensor con1ponents, 

t~l = (1/2) ib {a- ( 4/9) f} {2ekmnjcl;nnC/ + ek:ln~jCmVC/ + 3i (0 klCm"lCu/- CkAc/)}. 

(2. 48') 

In deriving (2 · 46) and (2 · 47) a special care is taken in order to eliminate the 

second derivate of the field variables from the definitions of t~r and t~z, by dint 

of the useful identity 

(2· 49) 

If we put 

a+(1==0, (2·50) 

the above two equations (2 · 46) and (2 · 47) yield after the differentiation 

{b/' (mT(kl) + tkl)} •
1
• = 0, 

{bt cnr[kl] + t~l)} '# = 0 . 

§ 3. Linear approximation in spinor-vierhein interaction 

(2. 51) 

(2. 52) 

The field equations proposed in § 2 are non-linear with respect to the field 

variables b1/. We know that a linear theory (Newton's theory) accounts, with 

a considerable degree of accuracy, for the motion of bodies under the gravitational 

forces. We shall discuss the interaction between the spinor field and the vier

bein field b,/ by assuming both the difference 

and its first derivatives are so small as compared to unity that the quadratic 

terms in a 1/ and/or its derivatives lead only to secondary effects and are 

hereafter neglected. In this linear approximation, all the Greek indices are 
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500 K. Hayashi and T. Nakano 

replaced by the Latin indices as there remain no differences between them. From 

the orthogonal relations (2 ·19), it follows that 

a 
L_ 
k- -a~k, 

and the vanous non-linear quantities pass into the linearized ones, 

The field equations (2 · 44) and (2 · 45) become 

with 

- 3aoa(kL) + (2a- /3) (a(km)'m~ + a(lm)'mk) 

+ (a-2/3) {okl(Oa-aunn)'·nw) -a'kL} + (a+/3) (a[krnJ'm~+ac~?nJ'u~k) 

+ o · OkL =mT(kll , 

(3 ·1) 

(3·2) 

(3· 3) 

Provided that the relation (2 ·50) holds, these two equations are completely 

decomposed into the symmetric and anti-symmetric parts, 

(3· 4) 

(3· 5) 

With the help of the convenient notations 

a- (4/9)r=J.- 2
, 

l (3· 6) 

we shall be able to simplify the form of these equations to some extent, 

-1 <,.Y - ') \.' , _L "' (S ' - ~-~) -- - ~mJY *l 
L_I'Jki '-'U(km mi; r 0 ki uw mn ft,u - /~,., (kl) , 

Further by imposing the generalized Lorentz conditions on Skl and Akl 

(3·7) 

(3·8). 

*) Ko corresponds to the cosmological constant, hence it will be neglected hereinafter. 
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E-xtended Translation Invariance and llssociated Gauge Fields 501 

we obtain 

(3 ·10) 

(3 ·11) 

On the other hand, we choose the Lagrangian of a s pmor field, say an 

electron, as a matter field, 

(3 ·12) 

hence we obtain the invariant substitute of it by the prescription stated in § 2, 

L' = (1/2) h~c"' (Cfr~c1!· 1 ,- Cf·""h</J) + m(/J</J. (3 ·13) 

The equation of motion derived from L' = bL' is 

h~c"'r~c</J·'"+ (1/2)c~cvh¢+m¢:=0, (3 ·14) 

which is reduced by the linear approximation (3 ·1) and the condition of diver

gence-free (3 · 9) to 

rda~c-tc(S~cl- (1/2)o~clS)od--J,fi~clal- (1/4)tcS\}¢-+:m</J=O, (3·14') 

(Smm:=,S). 

On multiplying the dual operator, we obtain the differential equation of second 

order, 

(3 ·15) 

where 

r~crl = okl + iokl. 

Now let us proceed to the non-relativistic limit of (3 ·10), (3 ·11) and 

(3 ·15); 

OSoo = -IC?nToo = - ICP , \ 

OSao = 0 = OSab , (a: b = 1, 2, 3), ~ 
OA~cl=O, J 

E¢ = {p2
/ (2m) - (tcm/2) Soo + (tc 2/8m)mToo} ¢, 

where the well-known relations 

(a= 1, 2, ~3) 

(3 ·16) 

(3 ·17) 

*l One is permitted to set Skl=O=A~cl except for S00 only, as there are no components of 

sources for them. 
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502 K. Hayashi and T. Nakano 

are used and p denotes the density of matter sources. 

Equation (3 ·17) turns out, 

E¢= {p2
/(2m)- (!Cnz/2)Soo}¢, (3 ·18) 

where we neglected the last term containing /C
2

• 

Upon comparing the potential term in this Schroedinger equation with the 

Newtonian potential of gravitation cp, we find that 

cp = - (!C/2) Soo = a44. (3 ·19) 

If the field does not change quickly with time, i.e. S 00 is almost static, it follows 

from (3 · 16) and (3 · 19) 

with which the Newtonian equation 

Jcp = 4nkp 

is to be compared. In this manner we are able to determine the coupling constant 

of the symmetric field, 

tC=J~~' l 

(k = 1.06 x l0- 9g- 2 = 5.2 x 10-67 cm2 In the natural units). J 
(3. 20) 

We close this section by remarking that the coupling constant of the anti

symmetric field Ak~ cannot be determined as there seems no source of skew

symmetric energy-morr1entum tensors in the classical experiments. 

§ 4. Comparison with Einstein's theory 

In this section we shall compare the symmetric part of our equation (2 · 44) 

with Einstein's equation of gravitation, by defining the symmetric metric tensor by 

(4·1) 

The Christoffel three-index symbol of the second kind IS given by 

T/;" = b/" {bk(f'bm")Ck~m + bl(f''")}. (4·2) 

The Einstein equation takes the form 

where 

R -- 2 {I~\, r" 1· , \, } f'" - fl["'\,]- p[\, "]P ' 

R=g~'"Rf'". 

Transition from the Greek indices into the Latin ones (as already shown 1n 

(2 · 36) , for example) yields 
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Extended Translation Invariance and Associated Gauge Fields 503 

G -b "'b "G. _,.2mT (4·3) 
kl - k l "'" ·- tv (kl) , 

with which our symmetric equation (:Z · 44) (devided by b) 

(4·4) 

should be compared. By the use of the previous notation (3 · 7) provided that 

the relation (2 ·50) holds, the difference of these two equations is represented by 

(4·5) 

It should be noticed that each term of the difference contains an axial vector c~cA. 

Now we have to check whether it vanishes or not. 

Apart from the linear approximation where the above difference vanishes 

exactly, there has been the well-known solution of Schwarzschild in the spherically 

symmetric field. In particular, we consider its static case: the field variables do 

not depend on time and a mass point is situated at the origin under the influence 

of the spherically symmetric forces. In this situation, the components of b~cfo 

transform according to the laws 

(4·6) 

under the three-dimensional rotation 

((J)(a(f) = 0), 
(4·7) 

It is easy to construct the general form of b~c,. such that it has the required 

transformation properties mentioned above. 

where 

::=:~~~~A) + BX.Xa , Jl 

b4a=iDXa, 

b44=1 +E, 

and A, B, .. ·, E are functions of r only. 

A simple calculation yields by making use of these general forms, 

c,/=0. 

(4·8) 

(4·9) 

Consequently, the equivalence between the solution of Schwarzschild and ours 
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is established. 

§ 5. Elimination of the antisymmetric field 

We shall discuss various choices in the arbitray constants introduced in the 

free Lagrangian La for the bk'"' field (2 · 32), except for a trivial case, a= (3 = r = 0 . 

In particular we lay emphasis on the possible vanishing of the skew-symmetric 

energy-momentum tensor generated by a matter field about which no definite 

statements have been given in the previous sections. The well-known procedure 

of symmetrizing energy-momentum tensors by means of adding the canonical spin 

angular-momentum to it cannot be applied to the present case. 

To be specific, we shall base our arguments on the spinor Lagrangian (3 · 12) . 

As it is invariant under the translation in the usual sense (see (2 · 4)), there are 

the conservation laws of the symmetric and antisymmetric energy-momentum 

tensors separately, 

where 

T<kO'l = 0, 

TcklJ'l = 0 , 

Tlk= (1/2) CfrdJ·l-¢·lh</J). 

(5 ·1) 

(5· 2) 

As stated at the end of § 2, we could obtain the separate conservation laws (2 ·51) 

and (2 ·52) closely similar to the above ones, provided that a and {3 satisfy the 

relation given by (2 ·50). Now we shall assume it, although we cannot find any 

a priori reason to require such separate conservation laws in an extended sense; 

however, the result obtained in § 4 seems to support our assumption. Various 

cases are investigated in order. 

Case 1 : a + {3 = 0 . 

The field equations for the bk'"' field become 

- {b/bm" b3a [ckl1n- (3/2) icklmnc?/- 2o\clC~JJ} ·v = b/ (mT(kl) + t~l), (5· 3) 

(5·4) 

As is easily shown, it is impossible to make both sides of Eq. (5 · 4) vanish 

identically without further conditions. 

Case 2: a+/3=0 and a- (4/9)r=O. 

We find 

(5· 5) 

and 

BcklJ=O. (5· 6) 

However, the skew-symmetric part of the energy-momentum tensor mTUclJ cannot 
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Extended Translation Invariance and Associated Gauge Fields 505 

vanish identically so long as the matter field exists. It is interesting to check 

whether its derivatives should vanish or not. By making use of the equation of 

motion (3 ·14) and the generalized Klein-Gordon equation which is derived from 

(3 ·14) by multiplying a proper dual operator, 

(0° -m
2

) ¢ = {irJmnDml)n +cmvDm + (1/2) bm"C~·,. 

+ (i/2)r5mnbn/C;:.p+ (1/4)cmvCmv}¢,*) 

(5·7) 

we observe the connection between the energy-momentum tensor and its derivative 

as follows 

(blmTzk)."= -b(1/4)cklmnCJnmC(/Jr5rz¢·J-(/J'Jr5rz¢) + 

+ (1/2) (bbm"Cmkl(/Jrz¢).1', 

(5·8) 

(5. 8') 

(5·9) 

(5·10) 

In fact, the sum of (5 · 8) and (5 ·10) vanishes if the field equation for the bk" 

field is employed. Thus, the derivative of the skew-symmetric energy-momentum 

tensor cannot be made zero with any choices in the free parameters. 

Case 8: a+p=O, a- (4/9)r=O and we add an axial-vector interaction to the 

matter field. 

First, we consider the local homogeneous Lorentz transformation (compare 

with (2·30)), 

ox"=O, 

l (5 ·11) **) o¢ = (i/ 4) ())kl (x) (J kl¢ ' (())(kl) (x) = 0)' 

o(/J = - (i/ 4) ())Tel (x) (j)o·kl . 

Under this transformation, the modified Lagrangian L' (3 ·13) is no longer 

invariant. According to our recipe we should introduce new fields in order to 

make the theory invariant. ***l Instead of introducing new fields, however, we 

shall here add some interaction terms consisting of the gravitational field strength. 

There are the vector, the axial-vector and the tensor couplings constructed in 

terms of ck v, ck A and Ckzm in the form of tri-linear interactions. On examining 

the respective transformation properties, we find a promising one, that is, an 

*) Its linearized form is given by (3 ·15). It should be noticed that the covariant derivative 

does not commute each other, yielding the invariant field strength, [Dk, Dz] = cmklDm. 

**) wkl (x) and its first derivative are assumed to vanish on the boundary surface of the integra

tion domain. 

***) Detailed discussion of it will be made in a forthcoming paper. 
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506 K. Hayashi and T. Nakano 

axial-vector coupling, 

LA=- (3i/4)c1cA<iJr5h</J, 

and the modified Lagrangian 

L' +LA 

(5 ·12) 

(5 ·13) 

remains invariant under the extended four-dimensional rotation (and of course 

under the extended translation). From (5 ·13), the equation of motion is replaced 

by 

b/"t1c</J·p+ (1/2)c,/'tJ.;</J- (3i/4)c~cAr5r1c</J+m<jJ=O. (5 ·14) 

It should be noticed, on the other hand, that the action integral 

I (1:) =} d
4
xL

0 

z 

is kept invariant even under (5 ·11), because of the particular choice 1n the 

arbitrary coefficient (see (5 · 6)), 

r)l= ~ B1cz.U)1cz.d
4
x= ~ Bc~cnU)1cz.d 4 x=O. 

. . 
\' " - ~ 

Now the total Lagrangian density becomes 

L' +LA+L0
. 

Let us calculate the contribution from LA to the energy-momentum tensor mykr 

(5 · 8); it is denoted by Tki, 

T,j = (1/ 4) [ (1/2) 8kijmCuj- 8ujmCij1c- C!cl.jmc/] ¢r5r m<P 

- (1/ 4) 2kljmb/ [~vtot rn</J + <iJT5TmW•v]. 

The sum of the anti-symmetric parts 

my[ld] + T[ 1

~1] = (1/2) b[\ ((/jr I.JW'p,- (jj. P-r z.j</J) - (3i/ 4) ctk<iJr 5r ZJW 

- (1/ 4) {cmv<iJr1crzr m</J + bn/ ((/jr 1crzr mW'p, + <iJ·p,T!crrrm</J) 

(5 ·15) 

- okl [cmV<iJrm</J + bmP C<iJrm</J·p, + <iJ·p,rm</J) J} + (1/2) c~<iJrzi/J 

+ (1/2) b['k(<iJrzJW'p, + ¢·/1-rd/J) 

is shown to vanish after some algebra with the aid of the equation of motion 

(5 ·14) and the similar one for (f. Consequently, we have managed to symmetrize 

the energy-momentum tensor of the matter field; in this case the additional 

interaction Lagrangian of an axial-vector type plays the similar role to that of 

the canonical spin angular momentum played in a conventional manner for a 

flat-space. The additional interaction gives rise to a spin interaction with a spinor 

field, which is explicitly observed in the non-relativistic limit. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

8
/2

/4
9
1
/1

8
8
3
0
3
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Extended Translation llZ'variance and Associated Gauge Fields 507 

§ 6. Discussion 

We have discussed the extension of the translation group and introduced 

the new field including the gravitational field in a manner quite analogous to 

the electromagnetic case. It should be stressed that the geometrical interpretation 

in terms of a Riemannian space may be given if desired and if necessary. 

\iVhat differs from the electromagnetic field lies in the fact that our field 

strength is decomposed into the three irreducible parts. The free Lagrangian 

for the new fields is constructed with the four arbitrary constants.*> 

In performing the linear approximation to the complicated non-linear field 

equations and making comparison between the Einstein's equation of gravitation 

and ours, we have assumed one relation among the arbitrary constants. This 

assumption is equivalent to the requirement that there should exist the conserva-

tion laws of the energy-momentum tensors quite similar to those implied by the 

translational invariance in a narrow sense for a free matter field. The relation 

assumed above has enabled us 1) to decompose the linearized field equations 

into one for the symmetric field variable and the other for the antisymmetric 

field variable, respectively, and 2) to identify the symmetric solution of the non

linear field equations with Schwarzschild's solution in the spherical symmetry. 

\Ve have been incapable of making any definite and conclusive statement 

concerning the antisymmetric part of the field equations, except for the proposed 

prescription to eliminate it as a redundant field by adding the tri-linear inter

action Lagrangian of the axial-vector type besides the particular choice in the 

free parameters. In this case the total L,agrangian keeps invariant even under 

. the extended four-dimensional rotation. 

In a forthcoming paper,. the extension of the homogeneous Lorentz group 

and its detailed consequences will be reported, where it is emphatically aimed 

to introduce a massive gauge field in an invariant-theoretic way. 
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