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Extended XML Tree Pattern Matching: Theories
and Algorithms

Jiaheng Lu, Tok Wang Ling, Zhifeng Bao and Chen Wang

Abstract—As business and enterprises generate and exchange XML data more often, there is an increasing need for efficient

processing of queries on XML data. Searching for the occurrences of a tree pattern query in an XML database is a core operation in

XML query processing. Prior works demonstrate that holistic twig pattern matching algorithm is an efficient technique to answer an XML

tree pattern with parent-child (P-C) and ancestor-descendant (A-D) relationships, as it can effectively control the size of intermediate

results during query processing. However, XML query languages (e.g. XPath, XQuery) define more axes and functions such as negation

function, order-based axis and wildcards. In this article, we research a large set of XML tree pattern, called extended XML tree pattern,

which may include P-C, A-D relationships, negation functions, wildcards and order restriction. We establish a theoretical framework

about “matching cross” which demonstrates the intrinsic reason in the proof of optimality on holistic algorithms. Based on our theorems,

we propose a set of novel algorithms to efficiently process three categories of extended XML tree patterns. A set of experimental results

on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our proposed theories and algorithms.

Index Terms—Query processing, XML/XSL/RDF, algorithms, tree pattern

✦

1 INTRODUCTION

As business and enterprisers generate and exchange XML

data more often, there is an increasing need for efficient

processing of queries on XML data. An XML query pattern

commonly can be represented as a rooted, labeled tree (or

called twig). For example, Figure 1(a) shows an example

XPath query: A[B]/C and the corresponding XML tree pat-

tern. This query finds all node C that has the parent A which

has another child B. In Figure 1(b), the query answers are

nodes “C1” and “C2”.
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Fig. 1. Example XML tree query and document. “ ”

denotes the return node in query. The answers are C1

and C2. The digital labels will be explained later.

Efficient matching of XML tree patterns has been widely

considered as a core operation in XML query processing. In

recent years, many methods ([9], [13], [3], [11], [4], [25])

have been proposed to match XML tree queries efficiently. In
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Fig. 2. Example extended XML tree pattern queries. “ ”

denotes the return node in query

particular, Khalifa et al. [1] proposed a stack-based algorithm

to match binary structural relationship including parent-child

(P-C) and ancestor-descendant (A-D) relationships. The limi-

tation of their method is that the size of useless intermediate

results may become very large, even if the final results are

small. Bruno et al. [3] proposed a novel holistic twig join

algorithm named TwigStack, which processes the tree pattern

holistically without decomposing it into several small binary

relationships. TwigStack guarantees that there are no “useless”

intermediate results for queries with only ancestor-descendant

(A-D) relationships. In other words, TwigStack is optimal for

tree pattern queries with only A-D edges [8]. Many other

recent works then examine how to enlarge the optimal query

class of holistic algorithms [14], to speedup performance using

indexes [11], [5], to devise new data streaming strategies [6],

and to propose efficient and dynamic labeling schemes [16].

These algorithms have proven highly promising and make

their way into XML query processing applications, in both

academic and industrial settings [19]. But we still have the

following observations upon the above existing works.
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Extended XML tree pattern Previous algorithms focus on

XML tree pattern queries with only P-C and A-D relationships.

Little work has been done on XML tree queries which may

contain wildcards, negation function and order restriction, all

of which are frequently used in XML query languages such as

XPath and XQuery. In this article, we call an XML tree pattern

with negation function, wildcards and/or order restriction as

extended XML tree pattern. Figure 2, for example, shows four

extended XML tree patterns. Query (a) includes a wildcard

node “*”, which can match any single node in an XML

database. Query (b) includes a negative edge, denoted by

‘¬’. This query finds A that has a child B, but has no

child C. In XPath language [2], the semantic of negative

edge can be presented with “not” boolean function. Query

(c) has the order restriction, which is equivalent to an XPath

“//A/B[following-sibling::C]”. The ‘<’ in a box shows that

all children under A are ordered. The semantics of order-base

tree pattern is captured by a mapping from the pattern nodes

to nodes in an XML database such that the structural and

ordered relationships are satisfied. Finally, Query (d) is more

complicated, which contains wildcards, negation function and

order restriction.

Optimality of holistic algorithms Previous XML tree pat-

tern matching algorithms do not fully exploit the “optimality”

of holistic algorithms. TwigStack [3] guarantees that there

is no useless intermediate result for queries with only A-

D relationships. Therefore, TwigStack is optimal for queries

with only A-D edges. Another algorithm TwigStackList [14]

enlarges the optimal query class of TwigStack by including

P-C relationships in non-branching edges. A natural question

is whether the optimal query class of TwigStackList can be

further improved. Hence, the current open problems include

(1) how to identify a larger query class which can be processed

optimally and (2) how to efficiently answer a query which

cannot be guaranteed to process optimally. Note that earlier

works in [8], [21] already showed that no algorithm is optimal

for queries with any arbitrary combinations of A-D and P-C

relationships. This article explores the challenges and shows

the promise of a novel theoretical framework called “matching

cross” to identify a large optimal query class for posing

extended XML tree queries.

Return nodes in twig pattern queries In a practical

application, only part of query nodes belong to return nodes

(or called output nodes interchangeably). Take the XPath

“//A[B]//C” as an example, only C element and its subtree are

answers. The current “modus operandi” (e.g. [12], [3], [16])

is that they first find the query answer with the combinations

of all query nodes, and then do an appropriate projection on

those return nodes. Such a post-processing approach has an

obvious disadvantage: it outputs many matching elements of

non-return nodes that are unnecessary for the final results. In

this article, we develop a new encoding method to record the

mapping relationships and avoid outputting non-return nodes.

1.1 Main results

In general, given an extended XML tree pattern query which

may include P-C, A-D relationships, order restriction, negation

function and wildcards, we consider the problem efficiently

matching the extended XML tree query. Our algorithm aims

at identifying a large queries class which can be optimally

processed. Like previous papers on XML tree pattern matching

(e.g. [3], [12], [16]), in this article, we call a holistic algorithm

“optimal” for a kind of query class, if it guarantees that any

output intermediate results contribute to final answers. For

example, previous algorithm TwigStack [3] is optimal for

query class with only A-D edges, and TwigStackList [14] is

optimal for queries with only A-D relationships in branching

edges.
We investigate three categories of extended XML tree pat-

terns (See Figure 3): (1) queries with P-C, A-D relationships

and wildcards, denoted as Q/,//,∗; and (2) queries with P-

C, A-D relationships, wildcards and order restriction, denoted

as Q/,//,∗,<; and (3) queries with P-C, A-D relationships,

wildcards, order restriction and negation function, denoted

as Q/,//,∗,<,¬. For each category, we identify the respective

optimal query class.

/,//,*

*

A B Q

*
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C

D

Q
/,//,*,<
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C

Q
/,//,*,<,

Fig. 3. Three categories of extended XML tree patterns

and example optimal queries
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Fig. 4. Illustration to the relationship between BMC

and UMC. The shaded portions demonstrate the optimal

query classes.

The technical contribution of this article are summarized as

follows.

• We build a theoretical framework on optimal processing

of XML tree pattern queries. We show that “matching

cross” is the key reason to result in the sub-optimality of

holistic algorithms. Intuitively, matching cross describes a

dilemma where holistic algorithms have to decide whether

to output useless intermediate result or to miss useful

results. The fact that TwigStack[3] is optimal for queries

with only A-D relationships can be explained that no

matching cross can be found for any XML document

with respect to queries with A-D edges. We classify

matching cross to bound and unbounded matching cross

(BMC and UMC. See Figure 4). We develop theorems to

show that only part of UMC (i.e. UMC with mediator)

can force holistic algorithms to potentially output useless

intermediate results.

• Based on the theoretical analysis, we develop a series

of holistic algorithms TreeMatch to achieve a large

optimal query class for three categories of queries (i.e.
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Q/,//,∗,Q/,//,∗,< and Q/,//,∗,<,¬). Our main technique

is to use a concise encoding to present matching results,

which leads to the reduction of useless intermediate

results.

• We conducted an extensive set of experiment on synthetic

and real data set for performance comparison. We com-

pared TreeMatch with previous four holistic XML tree

pattern matching algorithms. The experimental results

show that our algorithm can correctly process extended

XML tree patterns, achieving performance speedup for

tested queries and data sets, even in their restricted focus.

The improvement mainly owes to the reduction of the size

of intermediate results.

1.2 Outline

The rest of the article is organized as follows. Section

2 gives the preliminaries about research problem and the

processing model. Section 3 shows a set of theories about

matching cross and Section 4 presents an extended XML

tree pattern matching algorithm called TreeMatch. Section 5

presents thorough experimental studies between the novel

algorithms and the prior methods. Finally, Section 6 presents

previous work related to the XML tree pattern matching and

Section 7 concludes this article.

2 PRELIMINARIES

2.1 Modeling of XML data and extended tree pattern
query

An XML database D is usually modeled as a rooted, node-

labeled tree (in this article, we use D to represent the database

and the related tree model exchangeably without specific

declaration), element tags and attributes are mapped to nodes

in the trees and the edges are used to represent the direct

nesting relationships. Our primary focus is on element nodes;

and it is not difficult to extend our methods to process the

other types of nodes, including attribute and character data. For

convenience, we distinguish between query nodes and database

nodes by using the term “node” to refer to a query node and

the term “element” to refer to a data element in D.

An extended tree query Q describes a complex traversal

of the XML document and retrieves relevant tree-structured

portions of it. The nodes in Q include element tags, attributes

and character data. We use “*” to denote the wildcard, which

can match any single tree element. There are four kinds

of query edges, which are the four combinations between

(positive, negative) and (parent-child, ancestor-descendant).

For example, in Figure 2 (b), (A,B) is a positive parent-child

edge and (A,C) is a negative parent-child edge. We use a

symbol “¬” to denote a negative edge. There are two kinds

of query node: ordered and unordered node. We use “<” in a

box to denote the ordered node, otherwise it is an unordered

node. For example, the node A in Figure 2 (c) and (d) are

ordered nodes. In each extended tree query pattern, there is

one or multiple nodes which are assigned as the selected return

nodes, denoted with an underline. For example, in Figure 2

(a), C is the selected return node.

Given an extended tree query Q with n selected return

nodes and an XML database D, a match of Q in D is

identified by a mapping from nodes in Q to the elements

in D, such that: (i) query node types (i.e. tag name) are

satisfied by the corresponding database elements and wild-

cards “*” can match any single database element; (ii) the

positive edge relationships (including positive parent-child and

positives ancestor-descendant edges) between query nodes are

satisfied by the corresponding database elements; (iii) the

negative edge relationships (including negative parent-child

and negative ancestor-descendant edges) are satisfied, that is,

no corresponding database element pairs exist; and (iv) the

order relationship of children of each ordered node is satisfied

by the corresponding database elements. The answers of a

query can be represented as a set of database elements, where

each element identifies a distinct match of the selected return

nodes on D. For example, Fig 5 shows an example mapping

relationship between an extended XML tree pattern and a

document tree.

A
B 1

C2

E 1

D1

C1 B 2

A 2

A 1

*

D E

B

Fig. 5. Mapping relationship between an extended tree

pattern and a document tree

2.2 Labeling Schemes

Most XML query processing algorithms on XML doc-

uments rely on certain labeling schemes, such as region

encoding scheme [27], prefix scheme [13], ORDPATH [19],

extended Dewey scheme [16]. In this article, we use the

extended Dewey labeling scheme, proposed in paper [16], to

assign each node in XML documents a sequence of integers

to capture the structure information of documents.

Extended Dewey labeling scheme is a variant scheme of

the prefix labeling scheme. In the prefix labeling scheme,

the root is labeled by an empty string and for a non-root

element u, label(u) = label(v).n, where u is the n-th child

of v. In Extended Dewey labeling scheme, each label provides

complete information about ancestors’ names and labels. For

example, given an element e with label “1.2.3”, prefix labeling

schemes can tell us parent(e)=“1.2” and grandparent(e)=“1”,

but extended Dewey labeling scheme can also tell us the

tag name of elements, say, tag(e)=‘A’, tag(parent(e))=‘B’

and tag(grandparent(e))=‘C’. In order to achieve this goal,

paper [16] uses module function to encode the element tag

information to prefix labels, and use finite state transducer

(FST) to decode the the types information for a single extended

Dewey label. The details of modular function and FST are out

of scope of this article. But for the purpose of understanding

this article here, readers only need to know that in the extended
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Dewey labeling scheme, from the label of a single element,

we can derive all the elements names along the path from

the root to the element. And the complete path information

in extended Dewey labels enables holistic algorithms to scan

only leaf query nodes to answer an XML query.

2.3 Basic properties of algorithms

The algorithms for XML tree pattern matching proposed in

this article have two basic yet important properties, as follows.

Single-direction scan We adopt a structure, named label

list, associated with each query node. The label list is a posting

list (or inverted list) containing the extended Dewey labels of

XML elements which have the same name, and all elements

are ordered according to the document order. We use TA to

denote the label list for query node A. There is a cursor for

each list. It moves in the single direction to scan all elements

once in increasing order. Each label in a list can be read only

once.

Bounded main memory For a large class of queries, the

main memory requirement of our algorithm is linear to the

number of nodes in the longest path of XML database, which

is usually small. Therefore, our solution would be scalable to a

very large document with a small main memory requirement.

Recall that the existing algorithms such as TwigStack

[3], TwigStackList [14], TJFast [16] also have the first

property. That is, they keep the single-direction scan of the

document. But for the second property, those algorithms guar-

antee the bounded main memory for a small class of queries.

This article makes the contribution to propose algorithms to

achieve this property for a much larger class of queries with

negation predicates, wildcards and order restriction.

3 THEORETICAL ANALYSIS

In this section, we establish a theoretical framework about

“matching cross” which demonstrates the intrinsic reason

for the sub-optimality of existing holistic algorithms. The

purposes of our study are (i) to provide insight into the

characteristics of the holistic algorithms, and thus promotes

our understanding about their behaviors; and (ii) to lead to

novel algorithms that can guarantee a larger optimal query

class and realize better query performance.

3.1 Matching Cross

The existing holistic algorithms ([11], [16]) consist of two

phases: (i) in the first phase, a list of path solutions is output

as intermediate path solutions and each solution matches the

individual root-to-leaf path expression; and (ii) in the second

phase, the path solutions are merged to produce the final

answers for the whole twig query. However, for queries with

parent-child (P-C) relationships, the state-of-the-art algorithms

cannot guarantee that each intermediate solution output in the

first phase is useful to merge in the second phase. In other

words, many useless intermediate results (i.e. path solutions)

may be produced in the first phase, which is called the sub-

optimality of algorithms, as further illustrated in the following

example.

Example 1: Consider the document and query in Figure 1

again. First, A1, B1 and C1 are scanned. Although B1 has

the parent A1, at this point, we do not know whether A1 has

a child C. Now holistic algorithms meet a dilemma, that is,

whether to output possibly “useless” intermediate path (A1,

B1), or to miss the potential correct answer related to A1. (This

dilemma is formalized as “matching cross” later.) In order

to guarantee the completeness of query answers, previous

methods (e.g. TwigStack) directly output the path (A1, B1),
which may become “useless” intermediate path solution if

there were no C2 in data. ¤

We generalize the observation in Example 1 into a concept,

called matching cross. Before proceeding, we need a prelim-

inary definition called first match.
Definition 3.1: (First Match) Given an XML database D

and a query Q, assume that A, B are two query nodes in Q.

Let Ai be an element in the label list TA. We say that Bj in

TB is the first match of Ai, denoted as FM (Ai,B)=Bj , if and

only if (Ai, Bj) appears in a match binding to query Q and

there is no other element Bk, k < j such that (Ai, Bk) is also

in a match binding.

Note that in the above definition, all elements’ labels in

TA and TB are sorted by document order; and thus Bk is

a preceding element of Bj as k < j. For example, in Figure

1(b), FM(B1,C)=C2 and FM(B2,C)=C1. In addition, note that

FM (Ai,B)=Bj does not guarantee FM (Bj ,A)=Ai.

Definition 3.2: (Matching Cross) Given an XML database

D and a query Q, assume that A, B are two query nodes in Q.

Let Ai, Aj (i < j) be two elements in label list TA; and Bi′ ,

Bj′ (i′ < j′) be two elements in TB . We say that the 4-tuple

<Ai, Aj , Bi′ , Bj′> is a matching cross on D with respect to

Q if and only if FM (Ai,B)=Bj′ and FM (Bi′ ,A)=Aj (See

Fig. 6) ¤
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Fig. 6. Illustration to matching cross

It is easy to prove that if <Ai, Aj , Bi′ , Bj′> is matching

cross, then <Bi′ , Bj′ , Ai, Aj> is also a matching cross.
In Figure 1(b), <B1, B2, C1, C2> is a matching cross since

the first match of B1 is C2, and that of C1 is B2. Note that B1

and C1 are not in the same match binding. The existence of

matching cross forces holistic algorithms to output uncertain

intermediate path solutions and may cause their sub-optimality.
The following lemma identifies a query class, with respect

to which we cannot find any document with matching cross.
Lemma 1: Suppose Q is a tree pattern query with only

ancestor-descendant (A-D) relationships in all edges, given

any document D, there is no matching cross on D with respect

to Q.

PROOF: We prove it by contradiction. Assume that a

matching cross <Ai, Aj , Bi′ , Bj′> occurs when evaluating

Q on document D. Let “≺” denote preceding relationship in

document order. Then Ai≺Aj and Bi′≺Bj′ . There are the

following two cases.
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(1) A and B appear in the same path in the query Q. Without

loss of generality, assume A is ancestor of B in Q. There are

two sub-cases: case(1.1) Ai is an ancestor of Aj in document

D. Since (Aj ,Bi′ ) is a match binding, Aj is an ancestor of

Bi′ . Since all edges in query are A-D relationships, (Ai,Bi′ )

is also a match binding, which contradicts that Aj is the first

match of Bi′ . Case(1.2) Ai and Aj are in different data paths.

Since (Aj ,Bi′ ) is a match binding, Aj is an ancestor of Bi′ .

So Ai≺Bi′ and Bi′ is not in the same data path with Ai. Since

Bi′≺Bj′ , Bj′ is also not in the same data path with Ai, which

contradicts that Bj′ is the first match of Ai.
(2) Assume that A and B are in the different root-to-leaf pathes

in Q. Assume that node C is the lowest common ancestor

of A and B in Q. Then there are two matching bindings

(Ai, Bj′ , C1) and (Aj , Bi′ , C2). Consider two sub-cases. (2.1):

C1=C2, then it is easy to see that <Ai,Bi′> is also a matching

binding, which contradicts Bj′ is the first match of Ai. Case

(2.2): C1 6=C2. Without the loss of generality, assume that

C1≺C2, then C1 is an ancestor of C2, otherwise there is no

overlap in C1, C2 subtrees, which contracts that Bi′≺Bj′ .

Then (Ai, Bi′ , C2) is also a matching binding, which contracts

that Bj′ is the first match of Ai. ¤

According to Lemma 1, no matching cross can occur

during evaluating queries with only A-D relationships. This

lemma shows the intrinsic reason why the previous algorithm

TwigStack [3] can guarantee the optimality for queries with

only A-D relationships, as there is no matching cross in such

cases. But note that an existing algorithm TwigStackList [14]

can identify a larger query class to guarantee the optimality

than that of TwigStack. This fact implies that a certain kind of

matching cross does not necessarily cause the sub-optimality

of holistic algorithms, as illustrated follows.

Definition 3.3: (bounded matching cross) Given a query

Q and an XML database D, assume that <Ai, Aj , Bi′ , Bj′>
is a matching cross for D with respect to Q. If the number of

distinct elements Ak, where i ≤ k ≤ j and FM (Ak,B)=Bk′

i′ < k′, is no more than the height of D, then we say that A
has a bounded matching cross (BMC) with B, otherwise it is

unbounded matching cross (UMC). (See Fig 7)¤
Since the number of distinct elements that have the first

match after Bi′ is no more than |HEIGHT(D)|, we can buffer

all such Ak’s in the main memory and read Aj to find the

matching element for Bi′ .
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Fig. 7. Illustration to bounded matching cross. The num-

ber of elements in TA between Ai and Aj whose first

match is after Bi′ is no more than the height of the tree.

Example 2: Consider the query and document in Fig 8.

<C1, Cn, B1, Bm′+n−1> is a BMC, because the number of
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Fig. 8. Bounded matching cross(BMC) and unbounded

matching Cross(UMC). <C1, Cn, B1, Bm′+n−1> is a BMC,

while <A1, Am+n−1, B1, Bm′+n−1> is a UMC.

distinct elements Ck ( 1 ≤ k ≤ n) that has the first match

behind B1 is no more than n, which is bounded by the height

of the document, i.e. C has a bounded matching cross with B.

In contrast, <A1, Am+n−1, B1, Bm′+n−1> is a UMC. This is

because m or m′ is not bounded by the height of the document

and thus the number of distinct elements Ak (1 ≤ k ≤m+n-

1) (or similarly Bk, 1 ≤ k ≤ m′+n-1) that has the first match

behind B1 (or A1) is possibly much greater than the height of

documents. ¤

As shown in Definition 3.3 and Example 2, matching cross

can be separated to two categories according whether it can

be solved by buffering limited elements. In particular, BMC

can be solved by buffering bounded number of elements in

the main memory. On the other hand, we cannot guarantee

to optimally process UMC with limited size of main memory,

since it needs us to buffer unbounded number of elements (we

say it is unbounded in terms of the height of the document

tree).

The following lemma identifies a query class, with respect

to which no UMC occurs on any given XML document. In

other words, this query class is guaranteed to be processed

optimally by holistic algorithms. This lemma coincides with

the optimal query class in TwigStackList [14].

Lemma 2: Suppose Q is a tree pattern query with only

ancestor-descendant (A-D) relationships to connect branching

nodes and their children nodes, given any document D, there

is no unbounded matching cross (UMC) on D with respect to

Q.

PROOF: Details of proof are given in technical report [15].

A natural question is whether all UMC definitely causes the

sub-optimality of holistic processing algorithms. The answer

is “no”. Note that query answers of an XML tree pattern

usually include only part of query nodes; we can use this

observation to identify a larger optimal query class . In order

to understand this, let us first consider an XML tree in Figure 9

and an XPath query “H[.//B]/A” (A is the selected return

query node). <B1, Bj+1, A1, Ai+1> is a UMC, since i and j
may be greater than the height of XML tree. But we observe

that this UMC still can be efficiently processed by registering

the information that H1 has appropriate children B (e.g. B1)

and then scanning Bj+1 and H2. Then we can get an exact

match (H2, Bj+1, A1) without outputting any possibly useless

intermediate path. This example shows that the existence of
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Fig. 9. An example to illustrate unbounded matching

cross
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Fig. 10. Illustration to mediator node in UMC.

<Bi′ ,Bj′ ,Ai,Aj> is a UMC. H is mediator node, as the

first matches of all elements between Bi′ and Bj′ are be-

tween Hm and Hn; and the first matches of that between

Hm and Hn are Ai and Aj .

UMC does not necessarily result in the sub-optimality of

algorithm. Some UMC still can be solved by buffering limited

information in the main memory. The following definition and

lemma show that if there is a mediator node in UMC, then

such UMC can be still processed optimally.

Definition 3.4: (mediator in UMC) Given a query Q and

an XML database D, assume that <Ai, Aj , Bi′ , Bj′> is an

unbounded matching cross (UMC) on D with respect to Q,

and A is a return node in Q but B is a non-return node. We

call the node H ∈ Q as a mediator node (H may be a return

node or not) if the first matches of all elements between Bi′

and Bj′ against node H are in the range from Hm to Hn,

and the first matches of all elements between Hm and Hn

are between Ai and Aj (see Figure 10); and the number of

elements between Hm and Hn that are the first matches of

Bk (i′ ≤ k ≤ j′) is no more than the height of D. ¤

For example, consider Fig 9 and the query “H[.//B]/A”

again. <B1,Bj+1,A1,Ai+1> is a UMC, and H is a mediator

in this UMC, as the first matches of all elements between B1

and Bj+1 against node H is H1; and the first match of H1

and H2 are Ai+1 and A1; and 2 ≤ Height(D).

Because of the existence of mediator node in UMC, we

still can guarantee the optimality of algorithm by buffering

limited elements of mediator nodes in the main memory. In

the example of Figure 9, we only need to buffer H1 and H2

to the main memory and record that H1 and H2 have the

matching element with node B. Note that we do not need to

buffer B1, . . . , Bj in the main memory as they are not return

nodes.

The next definition and lemma identify a subclass of tree

pattern queries, with respect to which, given any XML docu-

ment, we can always find a mediator node in a UMC.

Definition 3.5: (mediator subclass) We say that a query Q
belongs to mediator subclass if and only if given any return
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Fig. 11. Example queries to illustrate mediator subclass.

Q1,Q2,Q3 is in mediator subclass, but Q4 not, because

of (B,C) edge.

node N in Q and a branching node B in the path from N
to the root, there are only ancestor-descendant relationships

between B and its children that are not in the path from N
to the root.

For example, Figure 11 shows four example queries. Q1, Q2

and Q3 belong to mediator subclass, but Q4 does not becuase

of (B,C) edge.

Lemma 3: Given a query Q that is in mediator subclass

and a document D, for each UMC in D against Q, there

exists a mediator node H∈Q in this UMC.

PROOF: Details of proof are given in technical report [15].

In the next section, we will develop a holistic algorithm to

process mediator subclass query optimally.

As a final remark of this section, it is important to note that

the properties shown in the above theorems is independent

of (i) any concrete labeling schemes and (ii) any special data

index structures, such as XB tree[3], XR tree [11] and R tree

[7]. This is because (i) the proof of the above theorems does

not rely on any specific labeling scheme, and (ii) while special

index structure can skip elements to accelerate processing in

holistic XML query processing, these index structures cannot

achieve the larger optimal query class, as the main bottleneck

of optimality is the size of main memory.

4 HOLISTIC ALGORITHMS

In this section, we propose an algorithm to evaluate an

extended XML tree query. The challenge in the algorithm is

to achieve a large optimal query class according to aforemen-

tioned theorems.

4.1 TreeMatch for Q/,//,∗

4.1.1 Data structures and notations

There is an input list Tq associated with each query node

q, in which all the elements have the same tag name q. Thus,

we use eq to refer to these elements. cur(Tq) denotes the

current element pointed by the cursor of Tq. The cursor can

be advanced to the next element in Tq with the procedure

advance(Tq).
There is a set Sq associated with each branching query

node q (not each query node). Each element eq in sets

consists of a 3-tuple (label, bitV ector, outputList). label is

the extended Dewey label of eq. bitV ector is used to demon-

strate whether the current element has the proper children or

descendant elements in the document. Specifically, the length

of bitV ector(eq) equals to the number of child nodes of q.

Given a node qc∈children(q), we use bitV ector(eq)[qc] to
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denote the bit for qc. Specifically, bitV ector(eq)[qc]=“1” if

and only if there is an element eqc
in the document such

that the eq and eqc
satisfy the query relationship between q

and qc. Finally, outputList contains elements that potentially

contribute to final query answers. Next, we introduce two

properties of elements in outputList and bitVector in details.

At every point during the computing, for each element eq

in set Sq, (i) if all bits in bitV ector(eq) are “1”, then eq

is guaranteed to match the subtree rooted with q. Therefore,

if q is the root, then eq is guaranteed to match the whole

query, and (ii) element e ∈ outputList(eq) is the query answer

if and only if eq matches the whole tree query. Therefore,

using both properties, we say that whether an element e ∈
outputList(eq) is a query answer can be accurately reflected

by the corresponding bitV ector(eq), illustrated as follows.

(B|A|C)*

1

A1

A2

B2 C1

A

B C

SA

0

0.0 0.1

0.1.0 0.1.2

<label,bitVector,outputList>

<(0.1),("11"),(0.1.0)>

<(0),("10"),(0.0)>{ }

DTD: A

B

Fig. 12. Illustration to set encoding (the left side is an

XML tree and the right one is a query with running-time

set encoding)

Example 3: Figure 12 illustrates the set encoding SA to

query node A for an example document. There are two tuples

in set SA. Since A1 (“0”) has only one child B1 and no

child element to match C, bitV ector(A1)=“10”. In contrast,

bitV ector(A2)=“11”, since A2 (“0.1”) has two children B2

and C1, which satisfy the P-C relationships in the query. Since

all bits in bitV ector(A2) are “1”, B2(“0.1.0”) is guaranteed

to be a query answer. ¤

In our algorithm, we will frequently use the following two

notations. (1) NAB(q) denotes the Nearest Ancestor Branching

node of q in the query pattern Q. Formally, q′=NAB(q) if

and only if q′ is a branching node and q′ is an ancestor of

q and there is no other branching node q′′ s.t. q′′ is in the

path from q′ to q. If there is no such ancestor of q, then

NAB(q) denotes the top branching node in query. (2) NDB(q)
denotes the nearest descendants branching (or leaf) nodes of

q. Formally, q′∈NDB(q) if and only if q′ is a branching or

leaf node and q′ is a descendant of q and there is no other

branching or leaf node q′′ s.t. q′′ is in the path from q′ to q.

For example, see the query Q3 in Figure 11, NAB(E)={C},

NAB(D)={B}, NDB(B)={C,D}.

4.1.2 Intuitive example

Before we formally introduce the algorithm TreeMatch, let

us first see an example to intuitively understand this algorithm.

Here the key point is set encoding of elements.

Example 4: Consider the data and query in Figure 12 again.

Note that B is the single return node. Firstly, B1 and C1

are read. Since A1 now has only one child B1 and one

descendant C1 (not child), we insert A1 to set SA and

bitVector(A1)=“10” (see Table 1). Next, when B2 and C1 are

read, since A2 has two children B2 and C1, we add A2 to set

and bitVector(A2)=“11”. Finally, we empty set SA and output

one element B2 in the outputlists. Note that unlike previous

algorithms such as TwigStack [3] and TJFast [16], bitVector

is used to accurately record matching results, thus leading

to avoiding the output of B1, as bitVector(A1) is “10”. But

TwigStack and TJFast would output two “useless” elements

A1 and B1 in that case, and therefore, entail more I/O cost.

¤

Current elements Set encoding of SA

B1,C1 <0,“10”,0.0>

B2,C1 <0.1,“11”,0.1.0>, <0,“10”,0.0>

TABLE 1

Set encoding for the example in Figure 12

Algorithm 1: Algorithm TreeMatch for class Q/,//,∗

1: locateMatchLabel(Q);
2: while (¬end(root)) do
3: fact = getNext(topBranchingNode);
4: if (fact is a return node)
5: addToOutputList(NAB(fact), cur(Tfact));
6: advance(Tfact); // read the next element in Tfact

7: updateSet(fact); // update set-encoding
8: locateMatchLabel(Q); // locate next element with

matching path
9: emptyAllSets(root);

4.1.3 TreeMatch

Now we go through Algorithm 1. Line 1 locates the first

elements whose pathes match the individual root-leaf path

pattern. In each iteration, a leaf node fact is selected by

getNext function (line 3). The purpose of line 4, 5 is to

insert the potential matching elements to outputlist. Line 6

advances the list Tfact
and line 7 updates the set encoding.

Line 8 locates the next matching element to the individual

path. Finally, when all data have been processed, we need to

empty all sets in Procedure EmptyAllSets (Line 9) to guarantee

the completeness of output solutions.

In Procedure addToOutputList(q, eqi
), we add the po-

tential query answer eqi
to the set of Seq

, where q is the

nearest ancestor branching node of qi (i.e. NAB(qi) = q).

Procedure updateSet accomplishes three tasks. First, clean

the sets according to the current scanned elements. Second,

add e into set and calculate the proper bitVector. Finally, we

need recursively update the ancestor set of e. Because of the

insertion of e, the bitVector values of ancestors of q need

update.

Algorithm getNext(see Algorithm 2) is the core function

called in TreeMatch, in which we accomplish two tasks. For

the first task to identify the next processed node, Algorithm

getNext(n) returns a query leaf node f according to the follow-

ing recursive criteria (i) if n is a leaf node, f=n(line 2); else (ii)

n is a branching node, then suppose element ei matches node
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Algorithm 2: Procedures and Functions in TreeMatch

Procedure locateMatchLabel(Q)1

1: for each leaf q ∈ Q, locate the extended Dewey label eq in list
Tq such that eq matches the individual root-leaf path

Procedure addToOutputList(q, eqi
)

1: for each eq ∈ Sq do
2: if ( satisfyTreePattern(eqi

,eq))
3: outputList(eq).add(eqi

);

Function satisfyTreePattern(eqi
,eq)

1: if (bitV ector(eq, qi) = ‘1’) return true;
2: else return false;

Procedure updateSet(q, e)

1: cleanSet(q, e);
2: add e to set Sq; //set the proper bitV ector(e)
3: if (¬isRoot(q) ∧ (bitV ector(e)=“1...1”))

updateAncestorSet(q);

Procedure cleanSet(q, e)

1: for each element eq ∈ Sq do
2: if ( satisfyTreePattern(eq ,e))
3: if (q is a return node)
4: addToOutputList(NAB(q), e);
5: if (isTopBranching(q))
6: if (there is only one element in Sq)
7: output all elements in outputList(eq);
8: else merge all elements in outputList(eq) to

outputList(ea), where ea=NAB(eq);
9: delete eq from set Sq;

Procedure updateAncestorSet(q)

1: /*assume that q′ = NAB(q)*/
2: for each e ∈ Sq′ do
3: if (bitV ector(e, q) = 0)
4: bitV ector(e, q) = 1;
5: if (¬isRoot(q) ∧ (bitV ector(e)=“1...1”))
6: updateAncestorSet(q′);

Procedure emptyAllSets(q)

1: if (q is not a leaf node)
2: for each child c of q do EmptyAllSets(c);
3: for each element e ∈ Sq do cleanSet(q, e);

n in the corresponding path solution(if more than one element

that matches n, ei is the deepest one by level)(line 7,8), we

return fmin such that the current element emin in Tfmin
has

the minimal label in all ei by lexicographical order(line 13,20).

For the second task of getNext, before an element eb is

inserted to the set Sb, we ensure that eb is an ancestor (or

parent) of each other element ebi
to match node b in the

corresponding path solutions(line 13). If there are more than

one element to match the branching node b, ebi
is defined as

their deepest(i.e. maximal) element(line 8).

Example 5: We use the query and document in Figure 13

to illustrate TreeMatch algorithm. Table 2 demonstrates the

current access elements, the sets encoding and the corre-

sponding output elements. There are two branching nodes

in the query. Firstly, B1, D1 and E1 are scanned. C1 and

C2 are added into the set SC , but their bitVectors is “10”

and “01”, which indicate that C1 and C2 have only one

child respectively. In this scenario, recall that TJFast may

output path solutions A1/A2/C1/D1 and A1/A2/C1/C2/E1,

Algorithm 3: getNext(n)

1: if (isLeaf(n)) then

2: return n
3: else

4: for each ni ∈ NDB(n) do

5: fi = getNext(ni)
6: if ( isBranching(ni) ∧ ¬empty(Sni

) )

7: return fi

8: else ei = max{p|p ∈ MB(ni, n)}
9: end for

10: max = maxargi{ei}
11: for each ni ∈NDB(n) do

12: if (∀e ∈ MB(ni, n) : e/∈ ancestors(emax))

13: return fi;

14: endif

15: end for

16: min = minargi{fi|fi is not a return node}
17: for each e ∈ MB(nmin, n)

18: if (e∈ ancestors(emax) ) updateSet(Sn, e)

19: end for

20: return fmin

21: end if

Function MB(n, b)

1: if (isBranching(n)) then

2: Let e be the maximal element in set Sn

3: else

4: Let e = cur(Tn)

5: end if

6: Return a set of element a that is an ancestor of e such

that a can match node b in the path solution of e to path

pattern pn
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Fig. 13. Illustration to Algorithm TreeMatch for class

Q/,//,∗

which might be useless to final results. Thus, our algorithm

TreeMatch diminishes the unnecessary I/O cost. Next, E2 is

scanned and the bitVector(C1) becomes “11” as C1 has two

children now. Similarly, the bitVector(A1) is “11” too. In this

moment, we guarantee that A1 matches the whole pattern tree,

as all bits in bitVector(A1) is 1 (Lemma 4.1 generalizes this

observation.) Finally, when B2 is scanned, A2 is added to set

SA. Therefore, Treematch outputs two final results B1 and

B2. Note that there are no useless nodes output here. ¤

Through this example, we illustrates two differences be-

tween TJFast and TreeMatch. (1) TJFast outputs one useless
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Current elements Set encoding SA Set encoding SC

B1,D1,E1 <0,“10”,Ø> <0.1.2,“10”,Ø>,
<0.1.2.1,“01”,Ø>

B1,D1,E2 <0,“11”,“0.0”> <0.1.2,“11”,Ø>,
<0.1.2.1,“01”,Ø>

B2,D1,E2 <0,“11”,“0.0”> <0.1,“11”,Ø>,
<0.1,“11”,“0.1.0”> <0.1.2.1,“01”,Ø>

TABLE 2

Set encoding for the example in Figure 13

intermediate path A1/A2/C1/C2/E1, but TreeMatch uses the

bitVector encoding to solve this problem. (2) TJFast outputs

the path solution for all nodes in query, but TreeMatch only

outputs nodes for return nodes (i.e. node B in the query) to

reduce I/O cost.
When there are multiple return nodes in a query, TreeMatch

produces the corresponding outputList for each of them, and

then outputs the individual solution for each return node, and

merges all these solutions to get the final result bindings. It

is important to note the differences between TreeMatch and

TJFast [16]. Even if the available amount of main memory

is large, TJFast possibly outputs many path solutions that

do not contribute to any final answers. However, TreeMatch

can efficiently use these available main memory (by buffer-

ing potential useful elements in outputlist) to guarantee that

each output element contributes to final answers. Therefore,

TreeMatch not only identifies a larger optimal query class

than TJFast, but also has the ability to fully utilize the

available amount of the main memory (which will be verified

in our experiments).

4.2 Extension for order-based queries Q/,//,∗,<

In this section we extend TreeMatch algorithm to support

ordered-based queries Q/,//,∗,<. In order to record the position

information of elements, we add minChild and maxChild

attributes for each tuple in sets. That is, each tuple in sets

now is a 5-tuple: <label, bitV ector, outputList, minChild,

maxChild>. The length of minChild(eq) and maxChild(eq)

is equal to the number of children of q. Assume that q1, ...,

qn are the children node of q (in order) in the query. Given

an element emin
qi

in minChild(eq) and emax
qi

in maxChild(eq),

emin
qi

is the minimal element that is greater than the element

emin
qi−1

(if any) and emax
qi

is the maximal element that is smaller

than emax
qi+1

(if any). In particular, emin
q1

is the left-most children

of eq, and emax
qn

is the right-most children.

Example 6: See the query and document in Figure 14. Table

3 shows the values of minChild and maxChild attributes in

set. (Note that the full presentation of each element in SA is

a 5-tuple. Here we only show minChild and maxChild for the

purpose of this example.) When B1 and C1 are read, since

C1 is before B1, we do not insert C1 as a minChild, as it

is not greater than B1. Only after C2 is read, we insert C2

to minChild. When B2 and C3 are scanned, they become the

respective maxChild for node B and C. ¤

Algorithm 4 describes the extended TreeMatch algorithm

for answering ordered tree queries. The purpose of the exten-

sion is to maintain and check the order relationship among

(b) Document

1 B1 C2 B2 C3

A1

(a) Ordered based query

CB 0.1 0.3 0.4 0.5

0

0.2

XPath; //A/B[following−sibling::C]

A

C

Fig. 14. An example ordered XML tree pattern query.

When we scan B1 and C1, we do not insert C1 to min-

Child, as it is before B1 and does not satisfy the order

condition of query.

Current elements Set encoding SA

minChild maxChild
B1,C1 (0.2,Ø) (0.2,Ø)
B1,C2 (0.2,0.3) (0.2,0.3)
B2,C2 (0.2,0.3) (0.4,0.3)
B2,C3 (0.2,0.3) (0.4,0.5)

TABLE 3

Partial set encoding for the example in Figure 14

the matching elements of query sibling nodes. In line 2 of

Procedure updateSet, we need to set the proper minChild

and maxChild according to the current elements. In Function

satisfyTreePattern, we also need to check the order restric-

tion according to minChild and maxChild.

Although the frequent updates of minChild and MaxChild

values in sets may incur CPU cost, compared to the reduction

of useless intermediate results, as we will see in the experi-

mental evaluation, those extra CPU cost is worthwhile.

4.3 Extension for queries with negative edges
Q/,//,∗,<,¬

In this section we further extend TreeMatch to support neg-

ative edges (see algorithm 5). We add negBitVector to record

the matching information about negative child edge. Given a

node qc ∈ negativeChildren(q), negBitV ector(eq)[qc]=“0”

if and only if there is no element eqc
in the document such

that the eq and eqc
satisfy the query relationship in between

q and qc. In this way, in order to know whether all negative

children of q are satisfied, we only check whether all children’s

negBitVectors are “0”. In line 2 of Procedure updateSet,

we need to set the proper negBitVector according to the

current elements. In Function satisfyTreePattern, eq is a valid

element only if the negBitVector is ‘0’.

4.4 Analysis of algorithms

In this section, we discuss the correctness of TreeMatch,

and then analyze its complexity.

Lemma 4: In Algorithm TreeMatch, suppose any element

eq is popped from set Sq, where q is the top branching

node in Procedure CleanSet(q), then eq matches the whole

query if and only if all bits in bitV ector(eq) are “1” and all
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Algorithm 4: Algorithm TreeMatch for class Q/,//,∗,<

Procedure updateSet(q, e)1

...
2: add e to set Sq; //set the proper bitV ector, minChild and
maxChild
...

Function satisfyTreePattern(qi,eq)

1: assume that child nodes of q in Q are q1, ..., qn (in order)
2: if (eqi

< minChild(eq, qi−1)) return false;
3: else if (eqi

> maxChild(eq, qi+1)) return false;
4: else if (bitV ector(eq, qi) = ‘1’) return true;
5: else return false;

Algorithm 5: Algorithm TreeMatch for class Q/,//,∗,<,¬

Procedure updateSet(q, e)1

...
2: add e to set Sq; //set the proper bitV ector, negBitV ector,
minChild and maxChild
...

Function satisfyTreePattern(qi, eq)

1: if (eqi
< minChild(eq, qi−1)) return false;

2: else if (eqi
> maxChild(eq, qi+1)) return false;

3: else if ((bitV ector(eq)[qi]) = ‘1’) and
(negBitV ector(eq)[qi]) = ‘0’))
4: return true;
5: else return false;

children of eq satisfy order condition (if any), and all bits in

negBitV ector(eq) are “0” (if any). ¤

Lemma 5: In Algorithm TreeMatch, suppose any element

eq is popped from set Sq, where q is the top branching node

in Procedure CleanSet(q), then eq matches the whole query if

and only if all elements in outputList(eq) belong to final query

answers. ¤

Using Lemma 4 and 5, we can see that whether or not an

element is a query answers is exactly reflected by the values

of the corresponding bitVector, negBitV ector and minChild,

maxChild. Further, by Line 5-7 in Procedure CleanSet, all cor-

rect solutions are output. In addition, each matching element

is guaranteed to be inserted to the related sets in Procedure

addToOutputList. Thus, the output solutions are also complete.

Therefore, we have the following result.

Theorem 6: Given an extended tree pattern query Q and

an XML database D, Algorithm TreeMatch correctly returns

all the answers for Q on D. ¤

While the correctness holds for any given query, the I/O

optimality holds only for a subset of extended query class. In

these cases, TreeMatch guarantees that each output element

in Procedure CleanSet belongs to final query solutions. Next,

we show the corresponding optimality query subclass for three

categories of queries, i.e. Q/,//,∗, Q/,//,∗,< and Q/,//,∗,<,¬.

Theorem 7: Consider an XML database D and an extended

tree pattern query Q/,//,∗ in mediator subclass (defined in

Definition 3.5), the worst case I/O complexity of TreeMatch

is linear to the sum of the sizes of input and results. The worst-

case memory space complexity is O(d2 ∗ b+d∗f ), where f is

the number of leaves in Q, d is the length of the longest label

in the input lists and b is the number of branching nodes.

PROOF (Sketch): Given any return node q in Q, let b =
NBA(q), according to Definition 3.5, all edges except (b, q)

between b and its children are ancestor-descendant relation-

ships. b is a mediator node for any UMC involving in q. In

Procedure addToOutputList, when each element eq is inserted

to outputList, it is guaranteed to satisfy the subtree rooted with

q (Line 2). In Procedure UpdateAncestorSet, the elements

in outputList is moved to its ancestor set only if the current

subtree is satisfied. We recursively guarantee that each eq in

outputList satisfies the whole tree pattern. Therefore, each

element eq is inserted to outputList of eb only if eb satisfies

the whole tree pattern. We can safely write each element in

outputList to disk in Procedure CleanSet and thus the worst

case I/O complexity of TreeMatch is linear to the sum of the

sizes of input and results. Finally, as for space complexity, the

number of elements in each set S is at most d, where d is the

length of the longest label in the input lists and thus the total

space complexity of d labels is O(d2). Note that each element

in outputList guarantees to contribute to the final results, and

it may be written to the secondary storage and thus their size

is not calculated here. ¤

For queries with ordered node (i.e. Q/,//,∗,<), we can

identify a larger optimal class. If node q is an order node in

Q, the parent-child relationship between q and its first child

does not affect the optimality of TreeMatch. Intuitively, this is

because the order restriction stops some unbounded matching

cross from happening.

Definition 4.1: (optimal subclass for Q/,//,∗,<) We say that

a query Q belongs to the optimal subclass for Q/,//,∗,< if and

only if the parent-child relationship of Q occurs only in the

following edges E, (1) given any return node q in Q, E is in

the path from q to root; or (2) let E = (a, b), then a should

be an ordered node and b is the first child of a.

Theorem 8: Consider an XML database D and an extended

tree pattern query Q/,//,∗,< in the subclass defined in Defini-

tion 4.1, the worst case I/O complexity of TreeMatch is linear

to the sum of the sizes of input and results. The worst-case

memory space complexity is O(2d2 ∗ b+d∗f ), where f is the

number of leaves in Q, d is the length of the longest label in

the input lists and b is the number of branching nodes.

PROOF (Sketch): We need to show that the parent-child (P-

C) relationship in the first branching edge of an ordered node

does not affect the optimality of TreeMatch. Details of proof

are given in technical report [15].

For queries with ordered nodes and negative edges (i.e.

Q/,//,∗,<,¬), the following results show that the existence of

parent-child (or ancestor-descendant) edges in any negative

edges does not affect the optimality of TreeMatch. Intuitively,

this is because parent-child relationships in negative edges do

not cause the matching cross.

Definition 4.2: (optimal subclass for Q/,//,∗,<,¬) We say

that a query Q belongs to the optimal subclass for Q/,//,∗,<,¬

if and only if the parent-child relationship of Q occurs only

in the following edges E, (1) given any return node q in Q,
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E is in the path from q to root; or (2) let E = (a, b), then

all child nodes of a are ordered and b is the first child of a;

or (3) E is a negative edge.

Theorem 9: Consider an XML database D and an extended

optimal tree query Q/,//,∗,<,¬ defined in Definition 4.2, the

worst case I/O complexity of TreeMatch is linear to the sum

of the sizes of input and results. The worst-case memory space

complexity is O(2d2 ∗ b + d ∗ f ), where f is the number of

leaves in Q, d is the length of the longest label in the input

lists and b is the number of branching nodes.

PROOF (Sketch): We need to show the existence of negative

P-C and A-D relationship does not affect the optimality of

TreeMatch. Details of proof are given in technical report [15].

5 EXPERIMENTS

In this section, we present an extensive experimental study

of TreeMatch on real-life and synthetic data sets. Our results

verify the effectiveness, in terms of accuracy and optimality,

of the TreeMatch as holistic twig join algorithms for large

XML data sets. These benefits become apparent in a compar-

ison to previously four proposed algorithms TwigStack [3],

TJFast [16], OrderedTJ [17] and TwigStackListNot [26].

The reason that we choose these algorithms for comparison is

that (1) similar to TreeMatch, both TJFast and TwigStack

are two holistic twig pattern matching algorithms. But they

cannot process queries with order restriction or negative edges;

and (2) OrderedTJ is a holistic twig algorithm which can

handle order-based XML tree pattern, but is not appropriate for

queries with negative edges; and finally (3) TwigStacklistNot

is proposed for queries with negative edges, but it can not work

for ordered queries. Only TreeMatch algorithm can process

queries with order restriction, negative edge and wildcards.

5.1 Experiment Settings and Dataset

We implemented all tested algorithms in JDK 1.4 using

the file system as a simple storage engine. We conducted

all the experiments on a computer with Intel Pentium IV

1.7GHz CPU and 2G of RAM. To offer a comprehensive

evaluation of our new algorithms, we conducted experiments

on both synthetic and real XML data. The synthetic dataset

is generated randomly. There are totally 7 tags A,B,...,F ,G
in the dataset and tags are assigned uniformly from them.

The real data are DBLP (highly regular) and Treebank (highly

irregular), which are included to test the two extremes of the

spectrum in terms of the structural complexity. The recursive

structure in TreeBank is deep (average depth: 7.8, maximal

depth: 36). We can easily find queries on this dataset to

demonstrate the sub-optimality for our tested algorithms.

5.2 Query class Q/,//,∗

In this section, we show the experimental results for queries

class Q/,//,∗. All queries tested in our evaluation are shown

in Figure 15 and 16.

Small size of main memory In the first experiment,

we did not allow the outputlist in TreeMatch to buffer any

elements in the main memory, meaning that any element

(f) Q6 (sub−optimal)

A

B

*

B C

A

B C

B C B

A

C

A

*

A

B C

ED ED

(a) Q1 (optimal) (b) Q2 (optimal) (c) Q3 (sub−optimal)

(d) Q4 (optimal) (e) Q5 (optimal)

Fig. 15. Queries for random data

(g)Q13 (optimal)

title

inproceedings

author

sup

S

VP

IN

NP
IN NP

VBN

PP
VP

NN S ADJP PP

NP IN

S

author

article

cdrom

title

sup

inproceedings

author

(b) Q8(sub−optimal)(a) Q7(optimal) (c) Q9(optimal)

(e) Q11 (sub−optimal)(d) Q10(optimal) (f) Q12 (optimal)

Fig. 16. Queries for DBLP (Q7-Q9) and TreeBank (Q10-

Q13) data

added to outputlist should be output to the secondary storage.

Then the requirement for main memory size is quite small.

The purpose of this experiment is to simulate the application

where the document is extremely large but the available main

memory is relatively small. Table 4 shows the number of total

output elements (including intermediate and final results) and

the corresponding percentage of useful elements. We made

the experiments by using three different sizes of random

documents. In particular, D1 has 100K nodes and D2 has

500K nodes and D3 has 1M nodes. From Table 4, we observe

that for most of queries, TreeMatch achieves the optimality

in the sense that each of the output elements does belong

to final results. The only exception is in Q3 and Q6, where

according to Theorem 7, we cannot guarantee the optimality.

Interestingly, Q6 is optimal for D1 and D2, but only slightly

sub-optimal for D3. This can be explained that D3 is a

larger document than D1 and D2 so that D3 manifests the

sub-optimality which is hidden in D1 and D2. Figure 17(a)

compares the performance of TreeMatch with other three

existing algorithms. Clearly, TreeMatch is the best for all

queries. This advantage is due to the fact that TreeMatch

guarantees that (almost) all of output elements belong to final

results, which, in general, avoids the I/O cost for outputting

useless intermediate results.

Large size of main memory In the second experiment,

we allow the outputlist to buffer all elements in the main

memory. The purpose of this experiment is to simulate the

application where the available main memory is large so that
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Fig. 17. Execution time of Q/,//,∗ on random data

a big portion of documents can fit in the main memory.

Table 5 shows the maximal number of elements buffered in

order to avoid outputting any useless intermediate results. An

obvious observation is that Q3 and Q6 need to buffer many

elements, but all other queries only need to buffer very small

number of elements. This also can be explained that all queries

except Q3,Q6 belong to the optimal query class. We compared

the performance of three algorithms in Figure 17(b) and

Figure 18(a). Obviously, TreeMatch is superior to TwigStack

and TJFast, reaching 20%−95% improvement in execution

time for all queries.

D1 D2 D3
Query O P O P O P

Q1 1321 100% 6576 100% 13290 100%
Q2 3558 100% 17757 100% 35649 100%
Q3 9575 98.8% 95291 99.9% 156954 94.5%
Q4 6635 100% 33055 100% 65691 100%
Q5 296 100% 1313 100% 2782 100%
Q6 7506 100% 94132 100% 127478 99.9%

TABLE 4

Number of output elements (O) and the percentage (P)

of useful elements for TreeMatch on random data

D1 D2 D3

Q1 5 6 6
Q2 9 10 11
Q3 528 27067 89779
Q4 6 7 8
Q5 7 8 10
Q6 520 26808 89627

TABLE 5

# of required buffered elements (Random data)
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Medium size of main memory In most real applica-

tion, the main memory size is not so large that the whole

document can fit in memory, neither so limited that only
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Fig. 19. Output data size with varying memory (medium
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the elements in a single path can load in memory. In order

to test whether TreeMatch has the ability to fully exploit

the available medium size of main memory, we show the

performance of algorithms in terms of the number of output

elements with varying the size of main memory in Figure 19.

In this experiment, we choose Q1 and Q6, since Q1 is an

optimal query for TreeMatch, but Q6 is sub-optimal. The

experimental results show that the number of output elements

in TreeMatch is always much less than that in TwigStack

and TJFast for all sizes of main memory. In particular, for

Q1, with the increasing of the size of the available main

memory, the number of output elements in TwigStack and

TJFast decreases linearly. The reason is that TwigStack and

TJFast buffer the intermediate results in the main memory and

reduce the output of intermediate results. But the numbers of

output elements in TreeMatch remain the same, which always

equals the final result size. For query Q6, all algorithms are

not optimal. But TreeMatch still outputs much less elements

than TwigStack and TJFast.
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Fig. 20. Queries for class Q/,//,∗,<,¬

5.3 Query class Q/,//,∗,<,¬

In this section, we show the experimental results for queries

class Q/,//,∗<,¬, which may contain order restrction, negative

edge and wildcards. The tested queries are shown in Figure

20 and 21. Table 6 shows the number of output elements and
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Fig. 21. Query for DBLP and TreeBank data

D1 D2 D3
Query O P O P O P

Q14 3596 68.2% 17922 69.8% 35959 68.7%
Q15 2481 100% 12367 100% 24575 100%
Q16 1075 100% 5408 100% 10820 100%
Q17 19792 100% 100008 100% 199727 100%
Q18 3926 100% 20182 100% 39796 100%
Q19 19565 100% 190789 100% 246783 100%

TABLE 6

# of output elements (O) and the percentage (P) of

useful elements for TreeMatch on random data

the number of final query answers in the case of small main

memory against synthetic data sets. For all optimal queries

(i.e. Q15-Q19), the number of output elements is the same

as that of final results. This result verifies the correctness of

theorems about the optimality of TreeMatch algorithm.

Finally, we made experiments on the DBLP and TreeBank

with queries in Figure 21. Since Q17,Q18,Q23,Q24 have

negative edges, we compare TreeMatch with TwigStackList-

Not[26] in Figure 18(b). In addition, as Q14-Q16, Q20-Q22

are order-based queries, we compare TreeMatch with Or-

deredTJ[17] in Figure 22. From all tested queries, TreeMatch

has better performance than the previous algorithms. We

contribute this improvement to the larger optimal query class

TreeMatch algorithm achieves. Finally, as for queries Q19

and Q25, since two queries contain wildcards, negative edge

and order restriction, only our TreeMatch can answer such

complicated queries. The execution times of Q19 and Q25

are 16 and 12 seconds, respectively. Note that the above

execution performance is achieved by using a relatively very

small buffer size, we expect that our system can scale well for

even gigabytes of XML data based on the current machine.

D1 D2 D3

Q14 3926 20182 39796
Q15 9 9 10
Q16 4 5 6
Q17 3 5 6
Q18 6 8 9
Q19 9 11 11

TABLE 7

# of required buffered elements (Random data)
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Fig. 22. Execution time of Q/,//,∗,< on random data

6 RELATED WORK

In the context of semi-structured and XML databases, tree-

based query pattern is a very practical and important class

of queries. Lore DBMS [9] and Timber [10] systems have

considered various aspects of query processing on such data

and queries. XML data and various issues in their storage

as well as query processing using relational database systems

have recently been considered in [18], [27], [22], [19]. Our

holistic algorithm TreeMatch for extended tree patterns can

leverage these previous techniques.

From the aspect of theoretical research about the optimality

of XML tree pattern matching, Choi et al. [8] developed

theorems to prove that it is impossible to devise a holistic

algorithm to guarantee the optimality for queries with any

combination of P-C and A-D relationships. Shalem et al. [21]

researched the space complexity of processing XML twig

queries. Their paper showed that the upper bound of full-fledge

queries with parent-child and ancestor-descendant edges are

O(D), where D is the document size. In other words, their

results also theoretically prove that there exists no algorithm

to optimally process an arbitrary query Q/,//,∗. Our research

in this article moves the frontier forward by identifying a

large subclass of Q/,//,∗, which can be guaranteed to process

optimally.

The recent papers (e.g. [17], [26], [6], [5]) are also closely

related to ours. In paper [17], a new holistic algorithm, called

OrderedTJ, is proposed to process order-based XML tree

query. In paper [26], an algorithm called TwigStackListNot is

proposed to handle queries with negation function. Note that

the optimal query classes identified in those papers are smaller

than that in this article. Chen et al [6] proposed different

data streaming schemes to boost the holism of XML tree

pattern processing. They showed that larger optimal class can

be achieved by refined data streaming schemes. We believe

that our work is orthogonal and complementary to their

work. This is because based on the theorems on “matching
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cross” in this paper, their algorithm iTwigJoin [6] can be

further enhanced to identify a larger optimal query class with

different streaming schemes. In addition, Twig2Stack [5] is

proposed for answering generalized XML tree pattern queries.

Note the difference between generalized XML tree pattern

and extended XML tree pattern here. Generalized XML tree

pattern is defined to include optional axis which models the

expression in LET and RETURN clauses of XQuery statements.

But extended XML tree pattern is defined to include some

complicated conditions like negative function, wildcard and

order restriction.

Besides the holistic algorithms, there are other approaches

to match an XML tree pattern, such as ViST ([24], [23]) and

PRIX ([20]), which transform an XML tree pattern match to

sequence match. Their algorithms mainly focus on ordered

queries, and it is non-trivial to extend those methods to handle

unordered queries and extended queries studied in this article.

Note that the paper [18] made comprehensive experiments

to compare different XML tree query processing algorithms

(including sequence match and holistic match) and concluded

that the family of holistic processing methods, which provides

performance guarantees, is the most robust approach. In this

article, we follow the line of holistic XML tree pattern

processing and give a complete solution to efficiently process

extended XML tree queries with wildcards, negative predicates

and ordered/unordered restriction.

7 CONCLUSIONS

We have introduced a notion of matching cross to address

the problem of the sub-optimality in holistic XML tree patten

matching algorithms. We have identified a large optimal query

classes for three kinds of queries, that is Q/,//,∗, Q/,//,∗,<

and Q/,//,∗,<,¬, respectively. Based on these results, we

have proposed a new holistic algorithm called TreeMatch to

achieve such theoretical optimal query classes. Finally, exten-

sive experiments demonstrate the advantage of our algorithms

and verify the correctness of theoretical results.
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